Journal Home > Volume 16 , Issue 1

Proper regulation of metal-nitrogen carbon (M-N-C) materials derived from zeolitic imidazolate frameworks (ZIFs) is essential to enhance the oxygen reduction reaction (ORR) performance. However, most of the reports focus on the component regulation, and the structure regulation of ZIFs-derived M-N-C materials by a simple preparation method has been barely reported. Herein, using a one-step electrospinning method with subsequent pyrolysis, we have prepared a bead-like cobalt-nitrogen co-doped carbon nanocage/carbon nanofiber (Co-N-C/CNF) composite electrocatalyst with the porous carbon nanocages arranged one by one in the highly conductive carbon nanofibers. Profiting from the fully exposed active sites and improved conductivity, the Co-N-C/CNF catalyst exhibits an excellent ORR performance even surpassing the commercial Pt/C catalyst. Density functional theory (DFT) results demonstrate that the CoNP-N1-C2 active sites on Co-N-C/CNF make the core contribution to the improvement of ORR properties. Moreover, the zinc-air battery (ZAB) based on the Co-N-C/CNF catalyst also shows outstanding discharge performance. This study provides a new strategy for the preparation and structural design for ZIFs-derived M-N-C materials as efficient ORR catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bead-like cobalt-nitrogen co-doped carbon nanocage/carbon nanofiber composite: A high-performance oxygen reduction electrocatalyst for zinc-air batteries

Show Author's information Bo Zhang1,§Yige Zhao1,§Lu Li1Yukun Li1Jin Zhang2Guosheng Shao1Peng Zhang1( )
State Center for International Cooperation on Designer Low-carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China

§ Bo Zhang and Yige Zhao contributed equally to this work.

Abstract

Proper regulation of metal-nitrogen carbon (M-N-C) materials derived from zeolitic imidazolate frameworks (ZIFs) is essential to enhance the oxygen reduction reaction (ORR) performance. However, most of the reports focus on the component regulation, and the structure regulation of ZIFs-derived M-N-C materials by a simple preparation method has been barely reported. Herein, using a one-step electrospinning method with subsequent pyrolysis, we have prepared a bead-like cobalt-nitrogen co-doped carbon nanocage/carbon nanofiber (Co-N-C/CNF) composite electrocatalyst with the porous carbon nanocages arranged one by one in the highly conductive carbon nanofibers. Profiting from the fully exposed active sites and improved conductivity, the Co-N-C/CNF catalyst exhibits an excellent ORR performance even surpassing the commercial Pt/C catalyst. Density functional theory (DFT) results demonstrate that the CoNP-N1-C2 active sites on Co-N-C/CNF make the core contribution to the improvement of ORR properties. Moreover, the zinc-air battery (ZAB) based on the Co-N-C/CNF catalyst also shows outstanding discharge performance. This study provides a new strategy for the preparation and structural design for ZIFs-derived M-N-C materials as efficient ORR catalysts.

Keywords: oxygen reduction reaction, carbon nanocages, bead-like structure, electrospinning technology, zinc−air battery

References(55)

[1]

Zeng, R.; Yang, Y.; Feng, X. R.; Li, H. Q.; Gibbs, L. M.; DiSalvo, F. J.; Abruña, H. D. Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells. Sci. Adv. 2022, 8, eabj1584.

[2]

Yan, L. T.; Xu, Y. L.; Chen, P.; Zhang, S.; Jiang, H. M.; Yang, L. Z.; Wang, Y.; Zhang, L.; Shen, J. X.; Zhao, X. B. et al. A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: a superior multifunctional electrode for overall water splitting and Zn-air batteries. Adv. Mater. 2020, 32, 2003313.

[3]

Zhang, P.; Li, Y. K.; Zhang, Y. S.; Hou, R. H.; Zhang, X. L.; Xue, C.; Wang, S. B.; Zhu, B. C.; Li, N.; Shao, G. S. Photogenerated electron transfer process in heterojunctions: In situ irradiation XPS. Small Methods 2020, 4, 2000214.

[4]

Hou, R. H.; Zhang, S. J.; Zhang, Y. S.; Li, N.; Wang, S. B.; Ding, B.; Shao, G. S.; Zhang, P. A “three-region” configuration for enhanced electrochemical kinetics and high-areal capacity lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2200302.

[5]

Zhang, Y. S.; Zhang, P.; Zhang, S. J.; Wang, Z.; Li, N.; Silva, S. R. P.; Shao, G. S. A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li-S batteries. InfoMat 2021, 3, 790–803.

[6]
Wu, Z. H.; Yu, Y. R.; Zhang, G. K.; Zhang, Y. S.; Guo, R. X.; Li, L.; Zhao, Y. G.; Wang, Z.; Shen, Y. L.; Shao, G. S. In situ monitored (N, O)-doping of flexible vertical graphene films with high-flux plasma enhanced chemical vapor deposition for remarkable metal-free redox catalysis essential to alkaline zinc-air batteries. Adv. Sci. 2022, 9, 2200614.
DOI
[7]

Meng, Y.; Li, J. C.; Zhao, S. Y.; Shi, C.; Li, X. Q.; Zhang, L. L.; Hou, P. X.; Liu, C.; Cheng, H. M. Fluorination-assisted preparation of self-supporting single-atom Fe-N-doped single-wall carbon nanotube film as bifunctional oxygen electrode for rechargeable Zn-air batteries. Appl. Catal. B Environ. 2021, 294, 120239.

[8]

Zhang, M.; Zhang, J. T.; Ran, S. Y.; Qiu, L. X.; Sun, W.; Yu, Y.; Chen, J. S.; Zhu, Z. H. A robust bifunctional catalyst for rechargeable Zn-air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix. Nano Res. 2021, 14, 1175–1186.

[9]

He, Y. H.; Guo, H.; Hwang, S.; Yang, X. X.; He, Z. Z.; Braaten, J.; Karakalos, S.; Shan, W. T.; Wang, M. Y.; Zhou, H. et al. Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells. Adv. Mater. 2020, 32, 2003577.

[10]

Zhang, H.; Sun, Q. D.; He, Q.; Zhang, Y.; He, X. H.; Gan, T.; Ji, H. B. Single Cu atom dispersed on S, N-codoped nanocarbon derived from shrimp shells for highly-efficient oxygen reduction reaction. Nano Res. 2022, 15, 5995–6000.

[11]

Han, J. X.; Bao, H. L.; Wang, J. Q.; Zheng, L. R.; Sun, S. R.; Wang, Z. L.; Sun, C. W. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl. Catal. B Environ. 2021, 280, 119411.

[12]

Lei, H.; Wang, Z. L.; Yang, F.; Huang, X. Q.; Liu, J. H.; Liang, Y. Y.; Xie, J. P.; Javed, M. S.; Lu, X. H.; Tan, S. Z. et al. NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries. Nano Energy 2020, 68, 104293.

[13]

Li, Y. L.; Jia, B. M.; Fan, Y. Z.; Zhu, K. L.; Li, G. Q.; Su, C. Y. Bimetallic zeolitic imidazolite framework derived carbon nanotubes embedded with Co nanoparticles for efficient bifunctional oxygen electrocatalyst. Adv. Energy Mater. 2018, 8, 1702048.

[14]

Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

[15]

Li, Z. Q.; Yang, J. Y.; Ge, X. L.; Deng, Y. P.; Jiang, G. P.; Li, H. B.; Sun, G. R.; Liu, W. W.; Zheng, Y.; Dou, H. Z. et al. Self-assembly of colloidal MOFs derived yolk-shelled microcages as flexible air cathode for rechargeable Zn-air batteries. Nano Energy 2021, 89, 106314.

[16]

Zhao, M. Q.; Liu, H. R.; Zhang, H. W.; Chen, W.; Sun, H. Q.; Wang, Z. H.; Zhang, B.; Song, L.; Yang, Y.; Ma, C. et al. A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn-air batteries. Energy Environ. Sci. 2021, 14, 6455–6463.

[17]

Li, H. B.; Zhang, M. D.; Zhou, W.; Duan, J. G.; Jin, W. Q. Ultrathin 2D catalysts with N-coordinated single Co atom outside co cluster for highly efficient Zn-air battery. Chem. Eng. J. 2021, 421, 129719.

[18]

Wang, Z. L.; Ke, X. X.; Zhou, K. L.; Xu, X. L.; Jin, Y. H.; Wang, H.; Sui, M. L. Engineering the structure of ZIF-derived catalysts by revealing the critical role of temperature for enhanced oxygen reduction reaction. J. Mater. Chem. A 2021, 9, 18515–18525.

[19]

Wang, C. H.; Kaneti, Y. V.; Bando, Y.; Lin, J. J.; Liu, C.; Li, J. S.; Yamauchi, Y. Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater. Horiz. 2018, 5, 394–407.

[20]

Zhang, Y. S.; Zhang, X. L.; Silva, S. R. P.; Ding, B.; Zhang, P.; Shao, G. S. Lithium-sulfur batteries meet electrospinning: Recent advances and the key parameters for high gravimetric and volume energy density. Adv. Sci. 2022, 9, 2103879.

[21]

Zhang, L. C.; Zhao, H. T.; Xu, S. R.; Liu, Q.; Li, T. S.; Luo, Y. L.; Gao, S. Y.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Recent advances in 1D electrospun nanocatalysts for electrochemical water splitting. Small Struct. 2021, 2, 2000048.

[22]

Zhang, P.; Zhang, S. J.; Wan, D. Y.; Zhang, P. P.; Zhang, Z. Y.; Shao, G. S. Multilevel polarization-fields enhanced capture and photocatalytic conversion of particulate matter over flexible Schottky-junction nanofiber membranes. J. Hazard. Mater. 2020, 395, 122639.

[23]

Chen, C.; Zhang, W.; Zhu, H.; Li, B. G.; Lu, Y. Y.; Zhu, S. P. Fabrication of metal-organic framework-based nanofibrous separator via one-pot electrospinning strategy. Nano Res. 2021, 14, 1465–1470.

[24]

Liu, W. J.; Zhao, Y.; Zheng, J. H.; Jin, D. Y.; Wang, Y. Q.; Lian, J. B.; Yang, S. L.; Li, G. C.; Bu, Y. F.; Qiao, F. Heterogeneous cobalt polysulfide leaf-like array/carbon nanofiber composites derived from zeolite imidazole framework for advanced asymmetric supercapacitors. J. Colloid Interface Sci. 2022, 606, 728–735.

[25]

Zhang, Y. S.; Zhang, P.; Li, B.; Zhang, S. J.; Liu, K. L.; Hou, R. H.; Zhang, X. L.; Silva, S. R. P.; Shao, G. S. Vertically aligned graphene nanosheets on multi-yolk/shell structured TiC@C nanofibers for stable Li-S batteries. Energy Storage Mater. 2020, 27, 159–168.

[26]

Hou, R. H.; Zhang, S. J.; Zhang, P.; Zhang, Y. S.; Zhang, X. L.; Li, N.; Shi, Z. H.; Shao, G. S. Ti3C2 MXene as an “energy band bridge” to regulate the heterointerface mass transfer and electron reversible exchange process for Li-S batteries. J. Mater. Chem. A 2020, 8, 25255–25267.

[27]

Hou, T. Y.; Liu, B. R.; Sun, X. H.; Fan, A. R.; Xu, Z. K.; Cai, S.; Zheng, C. M.; Yu, G. H.; Tricoli, A. Covalent coupling-stabilized transition-metal sulfide/carbon nanotube composites for lithium/sodium-ion batteries. ACS Nano 2021, 15, 6735–6746.

[28]

Di, J.; Guo, J. X.; Wang, N. N.; Ma, G. P. Multicomponent doped sugar-coated haws stick-like nanofibers as efficient oxygen reduction reaction catalysts for the Zn-air battery. ACS Sustainable Chem. Eng. 2019, 7, 7716–7727.

[29]

Zhao, Y. X.; Lai, Q. X.; Zhu, J. J.; Zhong, J.; Tang, Z. M.; Luo, Y.; Liang, Y. Y. Controllable construction of core-shell polymer@zeolitic imidazolate frameworks fiber derived heteroatom-doped carbon nanofiber network for efficient oxygen electrocatalysis. Small 2018, 14, 1704207.

[30]

Lou, Y. W.; Liu, J. J.; Liu, M.; Wang, F. Hexagonal Fe2N coupled with N-doped carbon: Crystal-plane-dependent electrocatalytic activity for oxygen reduction. ACS Catal. 2020, 10, 2443–2451.

[31]

Liu, P. G.; Huang, Z. X.; Gao, X. P.; Hong, X.; Zhu, J. F.; Wang, G. M.; Wu, Y. E.; Zeng, J.; Zheng, X. S. Synergy between palladium single atoms and nanoparticles via hydrogen spillover for enhancing Co2 photoreduction to CH4. Adv. Mater. 2022, 34, 2200057.

[32]

Zhang, Y. Y.; Kong, X. P.; Lin, X. R.; Hu, K. L.; Zhao, W. W.; Xie, G. Q.; Lin, X.; Liu, X. J.; Ito, Y.; Qiu, H. J. Enhanced bifunctional catalytic activities of N-doped graphene by Ni in a 3D trimodal nanoporous nanotubular network and its ultralong cycling performance in Zn-air batteries. J. Energy Chem. 2022, 66, 466–473.

[33]

Ji, D. X.; Fan, L.; Li, L. L.; Peng, S. J.; Yu, D. S.; Song, J. N.; Ramakrishna, S.; Guo, S. J. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. 2019, 31, 1808267.

[34]

Lu, Q.; Wu, H.; Zheng, X. R.; Chen, Y. N.; Rogach, A. L.; Han, X. P.; Deng, Y. D.; Hu, W. B. Encapsulating cobalt nanoparticles in interconnected n-doped hollow carbon nanofibers with enriched Co-N-C moiety for enhanced oxygen electrocatalysis in Zn-air batteries. Adv. Sci. 2021, 8, 2101438.

[35]

Wang, C. H.; Liu, C.; Li, J. S.; Sun, X. Y.; Shen, J. Y.; Han, W. Q.; Wang, L. J. Electrospun metal-organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors. Chem. Commun. 2017, 53, 1751–1754.

[36]

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

[37]

Li, J. C.; Meng, Y.; Zhang, L. L.; Li, G. Z.; Shi, Z. C.; Hou, P. X.; Liu, C.; Cheng, H. M.; Shao, M. H. Dual-phasic carbon with Co single atoms and nanoparticles as a bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Adv. Funct. Mater. 2021, 31, 2103360.

[38]

Guo, J. X.; Chen, B. L.; Hao, Q.; Nie, J.; Ma, G. P. Pod-like structured Co/CoOx nitrogen-doped carbon fibers as efficient oxygen reduction reaction electrocatalysts for Zn-air battery. Appl. Surf. Sci. 2018, 456, 959–966.

[39]

Chen, L. F.; Lu, Y.; Yu, L.; Lou, X. W. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ. Sci. 2017, 10, 1777–1783.

[40]

Han, Z.; Feng, J. J.; Yao, Y. Q.; Wang, Z. G.; Zhang, L.; Wang, A. J. Mn, N, P-tridoped bamboo-like carbon nanotubes decorated with ultrafine Co2P/FeCo nanoparticles as bifunctional oxygen electrocatalyst for long-term rechargeable Zn-air battery. J. Colloid Interface Sci. 2021, 590, 330–340.

[41]

Niu, Y. L.; Teng, X.; Gong, S. Q.; Xu, M. Z.; Sun, S. G.; Chen, Z. F. Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn-air batteries. Nano-Micro Lett. 2021, 13, 126.

[42]

Li, L.; Wu, Z. H.; Zhang, J.; Zhao, Y. G.; Shao, G. S. Watermelon peel-derived nitrogen-doped porous carbon as a superior oxygen reduction electrocatalyst for zinc-air batteries. ChemElectroChem 2021, 8, 4790–4796.

[43]

Liu, L. N.; Wang, Y.; Yan, F.; Zhu, C. L.; Geng, B.; Chen, Y. J.; Chou, S. L. Cobalt-encapsulated nitrogen-doped carbon nanotube arrays for flexible zinc-air batteries. Small Methods 2020, 4, 1900571.

[44]

Li, J. M.; Kang, Y. M.; Liu, D.; Lei, Z. Q.; Liu, P. Nitrogen-doped graphitic carbon-supported ultrafine Co nanoparticles as an efficient multifunctional electrocatalyst for HER and rechargeable Zn-air batteries. ACS Appl. Mater. Interfaces 2020, 12, 5717–5729.

[45]

Peng, L. C.; Sun, Y. X.; Guo, S. Q.; Li, C. J. Highly efficient construction of hollow Co-NX nanocube cage dispersion implanted with porous carbonized nanofibers for Li-O2 batteries. J. Mater. Chem. A 2022, 10, 740–751.

[46]

Zhang, S. J.; Zhang, Y. S.; Shao, G. S.; Zhang, P. Bio-inspired construction of electrocatalyst decorated hierarchical porous carbon nanoreactors with enhanced mass transfer ability towards rapid polysulfide redox reactions. Nano Res. 2021, 14, 3942–3951.

[47]

Ma, Y.; Chen, D.; Li, W. J.; Zheng, Y. P.; Wang, L.; Shao, G.; Liu, Q.; Yang, W. Y. Highly dispersive Co@N-C catalyst as freestanding bifunctional cathode for flexible and rechargeable zinc-air batteries. Energy Environ. Mater. 2022, 5, 543–554.

[48]

Wu, Z. H.; Zhang, Y. S.; Li, L.; Zhao, Y. G.; Shen, Y. L.; Wang, S. B.; Shao, G. S. Nitrogen-doped vertical graphene nanosheets by high-flux plasma enhanced chemical vapor deposition as efficient oxygen reduction catalysts for Zn-air batteries. J. Mater. Chem. A 2020, 8, 23248–23256.

[49]

Wu, M. M.; Wang, K.; Yi, M.; Tong, Y. X.; Wang, Y.; Song, S. Q. A facile activation strategy for an MOF-derived metal-free oxygen reduction reaction catalyst: Direct access to optimized pore structure and nitrogen species. ACS Catal. 2017, 7, 6082–6088.

[50]

Cui, Y. Q.; Xu, J. X.; Wang, M. L.; Guan, L. H. Surface oxidation of single-walled-carbon-nanotubes with enhanced oxygen electroreduction activity and selectivity. Chin. J. Struct. Chem. 2021, 40, 533–539.

[51]

Yang, W. G.; Gong, Z. W.; Chen, Y. N.; Chen, R. R.; Meng, D. L.; Cao, M. N. Nitrogen doped carbon as efficient catalyst toward oxygen reduction reaction. Chin. J. Struct. Chem. 2020, 39, 287–293.

[52]

Guo, J.; Jiang, H. L.; Dai, Y.; Gu, S. H.; Yu, M.; Jiang, X. B.; Zheng, W. J.; He, G. H.; Li, X. C. Hierarchically porous membranes with synergistic Co clusters and N active sites enabled high-efficient Li-ion transporting and redox reaction activity in Li-S batteries. Chem. Eng. J. 2022, 434, 134797.

[53]

Zhang, Y. S.; Wu Z. H.; Wang S. B.; Li N.; Silva, S. R. P.; Shao, G. S.; Zhang, P. Complex permittivity-dependent plasma confinement-assisted growth of asymmetric vertical graphene nanofiber membrane for high-performance Li-S full cells. InfoMat 2021, 4, e12294.

[54]

Yang, H.; Gao, S.; Rao, D. W.; Yan, X. H. Designing superior bifunctional electrocatalyst with high-purity pyrrole-type CoN4 and adjacent metallic cobalt sites for rechargeable Zn-air batteries. Energy Storage Mater. 2022, 46, 553–562.

[55]

Qi, D. F.; Liu, Y. F.; Hu, M.; Peng, X. Y.; Qiu, Y.; Zhang, S. S.; Liu, W.; Li, H. Y.; Hu, G. Z.; Zhuo, L. C. et al. Engineering atomic sites via adjacent dual-metal sub-nanoclusters for efficient oxygen reduction reaction and Zn-air battery. Small 2020, 16, 2004855.

File
12274_2022_4972_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 July 2022
Revised: 26 August 2022
Accepted: 27 August 2022
Published: 21 September 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 52104314, 51972287, U2004172, and 51502269), Natural Science Foundation of Henan Province (No. 202300410368), the Special Project of Key Research Development and Promotion of Henan Province (No. 222102240084), Sponsored by Program for Science&Technology Innovation Talents in Universities of Henan Province (23HASTIT001) and the Foundation for University Key Teachers of Henan Province (No. 2020GGJS009).

Return