Journal Home > Volume 16 , Issue 2

The abuse of antibiotics leads to a significant increase in bacterial resistance, which makes it difficult to treat bacterial infections. Therefore, it is urgent to develop new strategies for efficient antibacterial and wound healing. Recently, nanozymes based antibacterial agents have attracted increasing attention for their multifunction and high efficiency. In this study, we report a FeS@lauramidopropyl betaine (LAB-35)@Ti3C2 nanozyme as a high-efficiency antibacterial agent for near infrared (NIR) light induced photothermal enhanced chemodynamic antibacteria and wound healing. The FeS@LAB-35@Ti3C2 nanozyme possesses peroxidase-like catalysis activity, which can promote the generation of hydroxyl radicals (·OH) through catalyzing the decomposition of H2O2. FeS@LAB-35@Ti3C2 has photothermal conversion efficiency (η = 65.1%), and it exhibits enhanced catalytic activity under NIR light irradiation. The in vitro antibacterial experiments demonstrate the excellent antibacterial activity of FeS@LAB-35@Ti3C2 against representative Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. The animal experiments indicate that FeS@LAB-35@Ti3C2 nanozyme can effectively inhibit wound ulceration and promote wound healing. Overall, this study proposes FeS@LAB-35@Ti3C2 nanozyme that integrates chemodynamic and photothermal therapy, which provides an efficient strategy for bacterial inhibition and wound healing.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

FeS@LAB-35@Ti3C2 as a high-efficiency nanozyme for near infrared light induced photothermal enhanced chemodynamic antibacterial activity and wound healing

Show Author's information Gaoqi Sun1Xuefeng Jiang1Cheng Liu2Saijie Song1( )Jun Zhang1( )Jian Shen1,3( )
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Medical School, Nanjing University, Nanjing 210093, China
Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China

Abstract

The abuse of antibiotics leads to a significant increase in bacterial resistance, which makes it difficult to treat bacterial infections. Therefore, it is urgent to develop new strategies for efficient antibacterial and wound healing. Recently, nanozymes based antibacterial agents have attracted increasing attention for their multifunction and high efficiency. In this study, we report a FeS@lauramidopropyl betaine (LAB-35)@Ti3C2 nanozyme as a high-efficiency antibacterial agent for near infrared (NIR) light induced photothermal enhanced chemodynamic antibacteria and wound healing. The FeS@LAB-35@Ti3C2 nanozyme possesses peroxidase-like catalysis activity, which can promote the generation of hydroxyl radicals (·OH) through catalyzing the decomposition of H2O2. FeS@LAB-35@Ti3C2 has photothermal conversion efficiency (η = 65.1%), and it exhibits enhanced catalytic activity under NIR light irradiation. The in vitro antibacterial experiments demonstrate the excellent antibacterial activity of FeS@LAB-35@Ti3C2 against representative Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. The animal experiments indicate that FeS@LAB-35@Ti3C2 nanozyme can effectively inhibit wound ulceration and promote wound healing. Overall, this study proposes FeS@LAB-35@Ti3C2 nanozyme that integrates chemodynamic and photothermal therapy, which provides an efficient strategy for bacterial inhibition and wound healing.

Keywords: MXene, wound healing, nanozyme, FeS, photothermal enhanced chemodynamic antibacterial activity

References(63)

[1]

Tang, J. L.; Li, L. M. Importance of public health tools in emerging infectious diseases. BMJ 2021, 375, n2374.

[2]

Elias, C.; Nkengasong, J. N.; Qadri, F. Emerging infectious diseases-learning from the past and looking to the future. N. Engl. J. Med. 2021, 384, 1181–1184.

[3]
Olesen, S. W.; Trabert, E. Infectious disease modeling: Recommendations for public health decision-makers. Disaster Med. Public Health Prep., in press, https://doi.org/10.1017/dmp.2022.99.
[4]

Nigam, A., Gupta, D.; Sharma, A. Treatment of infectious disease: Beyond antibiotics. Microbiol. Res. 2014, 169, 643–651.

[5]

Samreen; Ahmad, I.; Malak, H. A.; Abulreesh, H. H. Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111.

[6]

Trevas, D.; Caliendo, A. M.; Hanson; K., Levy, J.; Ginocchio, C. C. Diagnostic tests can stem the threat of antimicrobial resistance: Infectious disease professionals can help. Clin. Infect. Dis. 2021, 72, e893–e900.

[7]

Zhu, Y.; Huang, W. E.; Yang, Q. Clinical perspective of antimicrobial resistance in bacteria. Infect. Drug Resist. 2022, 15, 735.

[8]

Goldmann, W. H. Biosensitive and antibacterial coatings on metallic material for medical applications. Cell Biol. Int. 2021, 45, 1624–1632.

[9]

Olmos, D.; González-Benito, J. Polymeric materials with antibacterial activity: A review. Polymers 2021, 13, 613.

[10]

Li, B.; Luo, Y.; Zheng, Y. F.; Liu, X. M.; Tan, L.; Wu, S. L. Two-dimensional antibacterial materials. Prog. Mater. Sci. 2022, 130, 100976.

[11]

Luo, H.; Yin, X. Q.; Tan, P. F.; Gu, Z. P.; Liu, Z. M.; Tan, L. Polymeric antibacterial materials: Design, platforms and applications. J. Mater. Chem. B 2021, 9, 2802–2815.

[12]

Vasilev, K.; Cavallaro, A.; Zilm, P. Special issue: Antibacterial materials and coatings. Molecules 2018, 23, 585.

[13]

Jia, C. Y.; Guo, Y. X.; Wu, F. G. Chemodynamic therapy via Fenton and Fenton-like nanomaterials: Strategies and recent advances. Small 2022, 18, 2103868.

[14]

Maddheshiya, S.; Nara, S. Recent trends in composite nanozymes and their pro-oxidative role in therapeutics. Front. Bioeng. Biotechnol. 2022, 10, 880214.

[15]

Sun, Q. Q.; Wang, Z.; Liu, B.; He, F.; Gai, S. L.; Yang, P. P.; Yang, D.; Li, C. X.; Lin, J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coord. Chem. Rev. 2022, 451, 214267.

[16]

Wang, Y. M.; Song, M. pH-responsive cascaded nanocatalyst for synergistic like-starvation and chemodynamic therapy. Colloids Surf. B: Biointerf. 2020, 111029.

[17]

Li, S. L.; Jiang, P.; Jiang, F. L.; Liu, Y. Recent advances in nanomaterial-based nanoplatforms for chemodynamic cancer therapy. Adv. Funct. Mater. 2021, 31, 2100243.

[18]

Anas, A.; Sobhanan, J.; Sulfiya, K. M.; Jasmin, C.; Sreelakshmi, P. K.; Biju, V. Advances in photodynamic antimicrobial chemotherapy. J. Photochem. Photobiol. C:Photochem. Rev. 2021, 49, 100452.

[19]

Shi, J. P.; Li, J.; Wang, Y.; Cheng, J. J.; Zhang, C. Y. Recent advances in MoS2-based photothermal therapy for cancer and infectious disease treatment. J. Mater. Chem. B 2020, 8, 5793–5807.

[20]

Ma, H.; Xue, M. Q. Recent advances in the photothermal applications of two-dimensional nanomaterials: Photothermal therapy and beyond. J. Mater. Chem. A 2021, 9, 17569–17591.

[21]

Zhao, Y.; Chen, L.; Wang, Y. N.; Song, X. Y.; Li, K. Y., Yan, X. F.; Yu, L. M.; He, Z. Y. Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Res. 2021, 14, 4417–4441.

[22]

Wang, S.; Hu, T. T.; Wang, G. Y.; Wang, Z. D.; Yan, D.; Liang, R. Z.; Tan, C. L. Ultrathin CuFe2S3 nanosheets derived from CuFe-layered double hydroxide as an efficient nanoagent for synergistic chemodynamic and NIR-II photothermal therapy. Chem. Eng. J. 2021, 419, 129458.

[23]

Shi, Y. H.; Zhang, J. J.; Huang, H.; Cao, C. Y.; Yin, J. J.; Xu, W. J.; Wang, W. J.; Song, X. J.; Zhang, Y. W.; Dong, X. C. Fe-doped polyoxometalate as acid-aggregated nanoplatform for NIR-II photothermal-enhanced chemodynamic therapy. Adv. Healthc. Mater. 2020, 9, 2000005.

[24]

Liu, Z. W.; Zhao, X. Y.; Yu, B. R.; Zhao, N. N.; Zhang, C.; Xu, F. J. Rough carbon-iron oxide nanohybrids for near-infrared-II light-responsive synergistic antibacterial therapy. ACS Nano 2021, 15, 7482–7490.

[25]

Niu, N.; Yang, N.; Yu, C.; Wang, D.; Tang, B. Z. NIR-II absorbing charge transfer complexes for synergistic photothermal-chemodynamic antimicrobial therapy and wounds healing. ACS Mater. Lett. 2022, 4, 692–700.

[26]

George, S. M.; Kandasubramanian, B. Advancements in MXene-polymer composites for various biomedical applications. Ceram. Int. 2020, 46, 8522–8535.

[27]

Lei, J. C.; Zhang, X.; Zhou, Z. Recent advances in MXene: Preparation, properties, and applications. Front. Phys. 2015, 10, 276–286.

[28]

Soufi, G. J.; Iravani, P.; Hekmatnia, A.; Mostafavi, E.; Khatami, M.; Iravani, S. MXenes and MXene-based materials with cancer diagnostic applications: Challenges and opportunities. Comments Inorg. Chem. 2022, 42, 174–207.

[29]

Lin, X. P.; Li, Z. J.; Qiu, J. M.; Wang, Q.; Wang, J. X.; Zhang, H.; Chen, T. K. Fascinating MXene nanomaterials: Emerging opportunities in the biomedical field. Biomater. Sci. 2021, 9, 5437–5471.

[30]

Zheng, K. Y.; Li, S.; Jing, L.; Chen, P. Y.; Xie, J. P. Synergistic antimicrobial titanium carbide (MXene) conjugated with gold nanoclusters. Adv. Healthc. Mater. 2020, 9, 2001007.

[31]

Zhong, Q.; Li, Y.; Zhang, G. K. Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives. Chem. Eng. J. 2021, 409, 128099.

[32]

Liu, G. H.; Xiong, Q. S.; Xu, Y. Q.; Fang, Q. L.; Leung, K. C. F.; Sang, M.; Xuan, S. H.; Hao, L. Y. Magnetically separable MXene@Fe3O4/Au/PDA nanosheets with photothermal-magnetolytic coupling antibacterial performance. Appl. Surf. Sci. 2022, 590, 153125.

[33]

Shaban, S. M.; Kang, J.; Kim, D. H. Surfactants: Recent advances and their applications. Compos. Commun. 2020, 22, 100537.

[34]

Erfani, A.; Khosharay, S.; Flynn, N. H.; Ramsey, J. D.; Aichele, C. P. Effect of zwitterionic betaine surfactant on interfacial behavior of bovine serum albumin (BSA). J. Mol. Liq. 2020, 318, 114067.

[35]

Kim, D. H.; Sung, B.; Kang, Y. J.; Jang, J. Y.; Hwang, S. Y.; Lee, Y.; Kim, M.; Im, E.; Yoon, J. H.; Kim, C. M. et al. Anti-inflammatory effects of betaine on AOM/DSS-induced colon tumorigenesis in ICR male mice. Int. J. Oncol. 2014, 45, 1250–1256.

[36]

Padnya, P. L.; Bayarashov, E. E.; Zueva, I. V.; Lushchekina, S. V.; Lenina, O. A.; Evtugyn, V. G.; Osin, Y. N.; Petrov, K. A.; Stoikov, I. I. Water-soluble betaines and amines based on thiacalix[4]arene scaffold as new cholinesterase inhibitors. Bioorg. Chem. 2020, 94, 103455.

[37]

Huang, Z. X.; Nazifi, S.; Cheng, K.; Karim, A.; Ghasemi, H. Scalable inter-diffused zwitterionic polyurethanes for durable antibacterial coatings. Chem. Eng. J. 2021, 422, 130085.

[38]

Xie, C. K.; Cen, D.; Ren, Z. H.; Wang, Y. F.; Wu, Y. J.; Li, X.; Han, G. R.; Cai, X. J. FeS@BSA nanoclusters to enable H2S-amplified ROS-based therapy with MRI guidance. Adv. Sci. 2020, 7, 1903512.

[39]

Ren, H.; Yong, J. H.; Yang, Q. Q.; Yang, Z.; Liu, Z. Y.; Xu, Y.; Wang, H.; Jiang, X.; Miao, W. J.; Li, X. M. Self-assembled FeS-based cascade bioreactor with enhanced tumor penetration and synergistic treatments to trigger robust cancer immunotherapy. Acta Pharm. Sin. B 2021, 11, 3244–3261.

[40]

Li, H. J.; Tang, C.; Wang, M.; Mei, C. G.; Liu, N. Decolorization of azo dyes in a heterogeneous persulfate system using FeS as the activator. Water Sci. Technol. 2021, 83, 1703–1713.

[41]

Yang, K.; Yang, G. B.; Chen, L.; Cheng, L.; Wang, L.; Ge, C. C.; Liu, Z. FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy. Biomaterials 2015, 38, 1–9.

[42]

Agnihotri, S.; Mohan, T.; Jha, D.; Gautam, H. K.; Roy, I. Dual modality FeS nanoparticles with reactive oxygen species-induced and photothermal toxicity toward pathogenic bacteria. ACS Omega 2020, 5, 597–602.

[43]

Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644.

[44]

Wang, J. X.; Liu, Y.; Yang, G. W. Cobalt decorated ultra-thin Ti3C2 MXene electrocatalyst for high-efficiency hydrogen evolution reaction. Mater. Res. Express 2018, 6, 025056.

[45]

Chen, Z. R.; Liu, R. L.; Liu, S. H.; Huang, J. L.; Chen, L. Y.; Nadimicherla, R.; Wu, D. C.; Fu, R. W. FeS/FeNC decorated N, S-co-doped porous carbon for enhanced ORR activity in alkaline media. Chem. Commun. 2020, 56, 12921–12924.

[46]

Song, S. J.; Jiang, X. F.; Shen, H.; Wu, W. N.; Shi, Q. Q.; Wan, M. H.; Zhang, J.; Mo, H.; Shen, J. MXene (Ti3C2) based pesticide delivery system for sustained release and enhanced pest control. ACS Appl. Bio Mater. 2021, 4, 6912–6923.

[47]

Jin, Z. Y.; Xu, G. F.; Niu, Y. S.; Ding, X. T.; Han, Y. Q.; Kong, W. H.; Fang, Y. F.; Niu, H. T.; Xu, Y. H. Ti3C2Tx MXene-derived TiO2/C-QDs as oxidase mimics for the efficient diagnosis of glutathione in human serum. J. Mater. Chem. B 2020, 8, 3513–3518.

[48]

Wang, H. C.; You, L.; Guan, Y.; Wang, H. B.; Ma, X. X.; Wang, D. L.; Wu, J.; Zhu, Y. Y.; Lin, J.; Liu, J. H. Rational fabrication of flower-like VS2-decorated Ti3C2 MXene heterojunction nanocomposites for supercapacitance performances. Colloids Surf. A: Physicochem. Eng. Aspects 2021, 629, 127381.

[49]

Chen, D.; Du, X. H.; Chen, K. Y.; Liu, G. R.; Jin, X.; Song, C. F.; He, F. D.; Huang, Q. Efficient removal of aqueous Cr(VI) with ferrous sulfide/N-doped biochar composites: Facile, in-situ preparation and Cr(VI) uptake performance and mechanism. Sci. Total Environ. 2022, 837, 155791.

[50]

Xu, Q. T.; Xue, H. G.; Guo, S. P. Facile preparation of FeS@GO and its outstanding electrochemical performances for lithium storage. Inorg. Chem. Front. 2018, 5, 2540–2545.

[51]

Han, F.; Luo, S. J.; Xie, L. Y.; Zhu, J. J.; Wei, W.; Chen, X.; Liu, F. W.; Chen, W.; Zhao, J. L.; Dong, L. et al. Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation. ACS Appl. Mater. Interfaces 2019, 11, 8443–8452.

[52]

Sun, Y.; Lou, Z. M.; Yu, J. B.; Zhou, X. X.; Lv, D.; Zhou, J. S.; Baig, S. A.; Xu, X. H. Immobilization of mercury(II) from aqueous solution using Al2O3-supported nanoscale FeS. Chem. Eng. J. 2017, 323, 483–491.

[53]

Shao, X. X.; Zhu, Z. Q.; Zhao, C. J.; Zhao, C. H.; Qian, X. Z. Hierarchical FeS/RGO/FeS@Fe foil as high-performance negative electrode for asymmetric supercapacitors. Inorg. Chem. Front. 2018, 5, 1912–1922.

[54]

Ge, C. C.; Wu, R. F.; Chong, Y.; Fang, G.; Jiang, X. M.; Pan, Y.; Chen, C. Y.; Yin, J. J. Synthesis of Pt hollow nanodendrites with enhanced peroxidase-like activity against bacterial infections: Implication for wound healing. Adv. Funct. Mater. 2018, 28, 1801484.

[55]

Chen, C.; Zhang, S. Y.; Zhang, C. W.; Li, L.; Zhu, J. X.; Liu, J. H. TMB-assembly as nanosubstrate construction colorimetric kit for highly sensitive and selective detection of H2O2 and monoamine oxidase-A based on Fenton reaction. Microchem. J. 2019, 150, 104177.

[56]

Wang, A. L.; Guan, C. Y.; Shan, G. Y.; Chen, Y. W.; Wang, C. L.; Liu, Y. C. A nanocomposite prepared from silver nanoparticles and carbon dots with peroxidase mimicking activity for colorimetric and SERS-based determination of uric acid. Microchim. Acta 2019, 186, 644.

[57]

Savic, S.; Petrovic, S.; Savic, S.; Petronijevic, Z. Immobilization of horseradish peroxidase on modified cellulose carriers via hydrophobic interactions: Catalytic properties and stability. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 55–63.

[58]

Suhaimi, N. A. A.; Shahri, N. N. M.; Samat, J. H.; Kusrini, E.; Lim, J. W.; Hobley, J.; Usman, A. Domination of methylene blue over rhodamine B during simultaneous photocatalytic degradation by TiO2 nanoparticles in an aqueous binary solution under UV irradiation. React. Kinet. Mech. Catal. 2022, 135, 511–527.

[59]

Feng, Y. Y.; Qin, J.; Zhou, Y.; Yue, Q.; Wei, J. Spherical mesoporous Fe-N-C single-atom nanozyme for photothermal and catalytic synergistic antibacterial therapy. J. Colloid Interface Sci. 2022, 606, 826–836.

[60]

Meng, X. Q.; Li, D. D.; Chen, L.; He, H.; Wang, Q.; Hong, C. Y.; He, J. Y.; Gao, X. F.; Yang, Y. L.; Jiang, B. et al. High-performance self-cascade pyrite nanozymes for apoptosis-ferroptosis synergistic tumor therapy. ACS Nano 2021, 15, 5735–5751.

[61]

Tao, Y.; Ju, E. G; Ren, J. S; Qu, X. G. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 2015, 27, 1097–1104.

[62]

Kalinski, I.; Juretic, D.; Kusic, H.; Peternel, I.; Bozic, A. L. Structural aspects of the degradation of sulfoaromatics by the UV/H2O2 process. J. Photochem. Photobiol. A: Chem. 2014, 293, 1–11.

[63]

Liu, Z.; Zhao, M. L.; Lin, H.; Dai, C.; Ren, C. Y.; Zhang, S. J.; Peng, W. J.; Chen, Y. 2D magnetic titanium carbide MXene for cancer theranostics. J. Mater. Chem. B 2018, 6, 3541–3548.

File
12274_2022_4965_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 July 2022
Revised: 25 August 2022
Accepted: 25 August 2022
Published: 03 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the Jiangsu Province Science and Technology Support Plan (No. BE2019391) and the Jiangsu Collaborative Innovation Center of Biomedical Functional Materials.

Return