Journal Home > Volume 16 , Issue 2

Genetically engineered bacteria have aroused attention as micro-nano drug delivery systems in situ. However, conventional designs of engineered bacteria usually function constantly or autonomously, which might be non-specific or imprecise. Therefore, designing and optimizing in situ control strategy are important methodological progress for therapeutic researches of intestinal engineered bacteria. Here, a micro-nano optogenetic system based on probiotic was developed combining microelectronics, nanotechnology, and synthetic biology to achieve in situ controllable drug delivery. Firstly, optogenetic engineered Lactococcus lactis was orally administrated in the intestinal tract. A wearable optical device was designed to control optical signals remotely. Then, L. lactis could be customized to secrete peptides according to optical signals. As an example, optogenetic L. lactis system can be constructed to secrete glucagon-like peptide-1 (GLP-1) under the control of the wearable optical device to regulate metabolism. To improve the half-life of GLP-1 in vivo, Fc-domain fused GLP-1 was optimally used. Using this strategy, blood glucose, weight, and other features were well controlled in rats and mice models. Furthermore, upconversion microcapsules were introduced to increase the excitation wavelength of the optogenetic system for better penetrability. This strategy has biomedical potential to expand the toolbox for intestinal engineered bacteria.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A micro-nano optogenetic system based on probiotics for in situ host metabolism regulation

Show Author's information Xinyu Zhang1,§Ning Ma1,§Wei Ling2,§Gaoju Pang1Tao Sun3Jing Liu1Huizhuo Pan1Meihui Cui1Chunli Han1Chun Yang1Jin Chang1Xian Huang2( )Hanjie Wang1( )
School of Life Sciences, Tianjin University, Tianjin 300072, China
School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China

§ Xinyu Zhang, Ning Ma, and Wei Ling contributed equally to this work.

Abstract

Genetically engineered bacteria have aroused attention as micro-nano drug delivery systems in situ. However, conventional designs of engineered bacteria usually function constantly or autonomously, which might be non-specific or imprecise. Therefore, designing and optimizing in situ control strategy are important methodological progress for therapeutic researches of intestinal engineered bacteria. Here, a micro-nano optogenetic system based on probiotic was developed combining microelectronics, nanotechnology, and synthetic biology to achieve in situ controllable drug delivery. Firstly, optogenetic engineered Lactococcus lactis was orally administrated in the intestinal tract. A wearable optical device was designed to control optical signals remotely. Then, L. lactis could be customized to secrete peptides according to optical signals. As an example, optogenetic L. lactis system can be constructed to secrete glucagon-like peptide-1 (GLP-1) under the control of the wearable optical device to regulate metabolism. To improve the half-life of GLP-1 in vivo, Fc-domain fused GLP-1 was optimally used. Using this strategy, blood glucose, weight, and other features were well controlled in rats and mice models. Furthermore, upconversion microcapsules were introduced to increase the excitation wavelength of the optogenetic system for better penetrability. This strategy has biomedical potential to expand the toolbox for intestinal engineered bacteria.

Keywords: optogenetics, upconversion nanoparticles, synthetic biology, microelectronics, diabetics

References(35)

[1]

Aron-Wisnewsky, J.; Clément, K.; Nieuwdorp, M. Fecal microbiota transplantation: A future therapeutic option for obesity/diabetes? Curr. Diab. Rep. 2019, 19, 51.

[2]

Antushevich, H. Fecal microbiota transplantation in disease therapy. Clin. Chim. Acta 2020, 503, 90–98.

[3]

Charbonneau, M. R.; Isabella, V. M.; Li, N.; Kurtz, C. B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat. Commun. 2020, 11, 1738.

[4]

Li, Z. T.; Wang, Y. X.; Liu, J.; Rawding, P.; Bu, J.; Hong, S.; Hu, Q. Y. Chemically and biologically engineered bacteria-based delivery systems for emerging diagnosis and advanced therapy. Adv. Mater. 2021, 33, 2102580.

[5]

Chen, Y.; Liu, X. Q.; Guo, Y. X.; Wang, J. C.; Zhang, D. X.; Mei, Y.; Shi, J. F.; Tan, W. Z.; Zheng, J. H. Genetically engineered oncolytic bacteria as drug delivery systems for targeted cancer theranostics. Acta Biomater. 2021, 124, 72–87.

[6]

Riglar, D. T.; Giessen, T. W.; Baym, M.; Kerns, S. J.; Niederhuber, M. J.; Bronson, R. T.; Kotula, J. W.; Gerber, G. K.; Way, J. C.; Silver, P. A. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol. 2017, 35, 653–658.

[7]

Mimee, M.; Citorik, R. J.; Lu, T. K. Microbiome therapeutics-Advances and challenges. Adv. Drug Deliv. Rev. 2016, 105, 44–54.

[8]
PraveschotinuntP.Duraj-ThatteA. M.GelfatI.BahlF.ChouD. B.JoshiN. S. Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gutNat. Commun.201910558010.1038/s41467-019-13336-6

Praveschotinunt, P.; Duraj-Thatte, A. M.; Gelfat, I.; Bahl, F.; Chou, D. B.; Joshi, N. S. Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut. Nat. Commun. 2019, 10, 5580.

[9]

Pan, H. Z.; Sun, T.; Cui, M. H.; Ma, N.; Yang, C.; Liu, J.; Pang, G. J.; Liu, B. N.; Li, L. Y.; Zhang, X. Y. et al. Light-sensitive Lactococcus lactis for microbe-gut-brain axis regulating via upconversion optogenetic micro-nano system. ACS Nano 2022, 16, 6049–6063.

[10]
AdolfsenK. J.CallihanI.MonahanC. E.GreisenP. Jr.SpoonamoreJ.MominM.FitchL. E.CastilloM. J.WengL. D.RenaudL. Improvement of a synthetic live bacterial therapeutic for phenylketonuria with biosensor-enabled enzyme engineeringNat. Commun.202112621510.1038/s41467-021-26524-0

Adolfsen, K. J.; Callihan, I.; Monahan, C. E.; Greisen, P. Jr.; Spoonamore, J.; Momin, M.; Fitch, L. E.; Castillo, M. J.; Weng, L. D.; Renaud, L. et al. Improvement of a synthetic live bacterial therapeutic for phenylketonuria with biosensor-enabled enzyme engineering. Nat. Commun. 2021, 12, 6215.

[11]

Nelson, M. T.; Charbonneau, M. R.; Coia, H. G.; Castillo, M. J.; Holt, C.; Greenwood, E. S.; Robinson, P. J.; Merrill, E. A.; Lubkowicz, D.; Mauzy, C. A. Characterization of an engineered live bacterial therapeutic for the treatment of phenylketonuria in a human gut-on-a-chip. Nat. Commun. 2021, 12, 2805.

[12]

Meyer, A. J.; Segall-Shapiro, T. H.; Glassey, E.; Zhang, J.; Voigt, C. A. Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol. 2019, 15, 196–204.

[13]

Tauer, C.; Heinl, S.; Egger, E.; Heiss, S.; Grabherr, R. Tuning constitutive recombinant gene expression in Lactobacillus plantarum. Microb. Cell Fact. 2014, 13, 150.

[14]

Piraner, D. I.; Abedi, M. H.; Moser, B. A.; Lee-Gosselin, A.; Shapiro, M. G. Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat. Chem. Biol. 2017, 13, 75–80.

[15]

Amrofell, M. B.; Rottinghaus, A. G.; Moon, T. S. Engineering microbial diagnostics and therapeutics with smart control. Curr. Opin. Biotechnol. 2020, 66, 11–17.

[16]

Fernandez-Rodriguez, J.; Moser, F.; Song, M.; Voigt, C. A. Engineering RGB color vision into Escherichia coli. Nat. Chem. Biol. 2017, 13, 706–708.

[17]

Liu, Z. D.; Zhang, J. Z.; Jin, J.; Geng, Z. L.; Qi, Q. S.; Liang, Q. F. Programming bacteria with light-sensors and applications in synthetic biology. Front. Microbiol. 2018, 9, 2692.

[18]

Ohlendorf, R.; Vidavski, R. R.; Eldar, A.; Moffat, K.; Möglich, A. From dusk till dawn: One-plasmid systems for light-regulated gene expression. J. Mol. Biol. 2012, 416, 534–542.

[19]

Sakudo, A. Near-infrared spectroscopy for medical applications: Current status and future perspectives. Clin. Chim. Acta 2016, 455, 181–188.

[20]

Rostami, I.; Rezvani Alanagh, H.; Hu, Z.; Shahmoradian, S. H. Breakthroughs in medicine and bioimaging with up-conversion nanoparticles. Int. J. Nanomed. 2019, 14, 7759–7780.

[21]

Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018, 27, 740–756.

[22]

Drucker, D. J.; Nauck, M. A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006, 368, 1696–1705.

[23]

Kumar, M.; Hunag, Y.; Glinka, Y.; Prud’Homme, G. J.; Wang, Q. Gene therapy of diabetes using a novel GLP-1/IgG1-Fc fusion construct normalizes glucose levels in db/db mice. Gene Therapy 2007, 14, 162–172.

[24]

Ng, D. T. W.; Sarkar, C. A. Nisin-inducible secretion of a biologically active single-chain insulin analog by Lactococcus lactis NZ9000. Biotechnol. Bioeng. 2011, 108, 1987–1996.

[25]

Campbell, J. E.; Drucker, D. J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013, 17, 819–837.

[26]

Xiao, C. T.; Bandsma, R. H. J.; Dash, S.; Szeto, L.; Lewis, G. F. Exenatide, a glucagon-like peptide-1 receptor agonist, acutely inhibits intestinal lipoprotein production in healthy humans. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1513–1519.

[27]

Hsieh, J.; Longuet, C.; Baker, C. L.; Qin, B.; Federico, L. M.; Drucker, D. J.; Adeli, K. The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice. Diabetologia 2010, 53, 552–561.

[28]

Nash, T. R.; Chow, E. S.; Law, A. D.; Fu, S. D.; Fuszara, E.; Bilska, A.; Bebas, P.; Kretzschmar, D.; Giebultowicz, J. M. Daily blue-light exposure shortens lifespan and causes brain neurodegeneration in Drosophila. npj Aging Mech. Dis. 2019, 5, 8.

[29]
ZhengB.SuL.PanH. Z.HouB. B.ZhangY.ZhouF.WuX. L.GongX. Q.WangH. J.ChangJ. NIR-remote selected activation gene expression in living cells by upconverting microrodsAdv. Mater.20162870771410.1002/adma.201503961

Zheng, B.; Su, L.; Pan, H. Z.; Hou, B. B.; Zhang, Y.; Zhou, F.; Wu, X. L.; Gong, X. Q.; Wang, H. J.; Chang, J. NIR-remote selected activation gene expression in living cells by upconverting microrods. Adv. Mater. 2016, 28, 707–714.

[30]

Yu, N.; Huang, L.; Zhou, Y. B.; Xue, T.; Chen, Z. G.; Han, G. Near-infrared-light activatable nanoparticles for deep-tissue-penetrating wireless optogenetics. Adv. Healthcare Mater. 2019, 8, 1801132.

[31]

Jia, Y. K.; Ren, Y. K.; Hou, L. K.; Liu, W. Y.; Jiang, T. Y.; Deng, X. K.; Tao, Y.; Jiang, H. Y. Electrically controlled rapid release of actives encapsulated in double-emulsion droplets. Lab Chip 2018, 18, 1121–1129.

[32]

Andrews, L. B.; Nielsen, A. A. K.; Voigt, C. A. Cellular checkpoint control using programmable sequential logic. Science 2018, 361, eaap8987.

[33]

Ding, Q.; Ma, D. L.; Liu, G. Q.; Li, Y.; Guo, L.; Gao, C.; Hu, G. P.; Ye, C.; Liu, J.; Liu, L. M. et al. Light-powered Escherichia coli cell division for chemical production. Nat. Commun. 2020, 11, 2262.

[34]

Gong, X.; Mendoza-Halliday, D.; Ting, J. T.; Kaiser, T.; Sun, X. Y.; Bastos, A. M.; Wimmer, R. D.; Guo, B. L.; Chen, Q.; Zhou, Y. et al. An ultra-sensitive step-function opsin for minimally invasive optogenetic stimulation in mice and macaques. Neuron 2020, 107, 38–51.e8.

[35]

Liu, X.; Chen, H. M.; Wang, Y. T.; Si, Y. G.; Zhang, H. X.; Li, X. M.; Zhang, Z. C.; Yan, B.; Jiang, S.; Wang, F. et al. Near-infrared manipulation of multiple neuronal populations via trichromatic upconversion. Nat. Commun. 2021, 12, 5662.

Video
12274_2022_4963_MOESM2_ESM.mp4
12274_2022_4963_MOESM3_ESM.mp4
File
12274_2022_4963_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 May 2022
Revised: 25 August 2022
Accepted: 25 August 2022
Published: 07 December 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was sponsored by the National Science Fund for Excellent Young Scholars (No. 32122047), the National Key Research and Development Program of China (No. 2019YFA0906500), the National Natural Science Foundation of China (Nos. 31971300 and 51873150), the Key project of Tianjin Foundational Research (JingJinJi) Program, China (No. 19JCZDJC64100), the Key Research and Development Program of Tianjin (No. 19YFZCSY00190), and the National Science Foundation of Tianjin (No. 20YDTPJC00090).

Return