Journal Home > Volume 16 , Issue 2

Visible transparent yet low infrared-emissivity (ε) polymeric materials are highly anticipated in many applications, whereas the fabrication of which remains a formidable challenge. Herein, visible transparent, flexible, and low-ε polymeric films were fabricated by nanocoating decoration of indium tin oxide (ITO) and MXene on polyethylene terephthalate (PET) film surface through magnetron sputtering and spray coating, respectively. The obtained PET-ITO@MXene (PET-IM) film exhibits low ε of 24.7% and high visible transmittance exceeding 50%, endowing it with excellent visible transparent infrared stealthy by reducing human skin radiation temperature from 32 to 20.8 °C, and remarkable zero-energy passive radiative heating capability (5.7 °C). Meanwhile, the transparent low-ε PET-IM film has high solar absorptivity and electrical conductivity, enabling superior solar/electric to thermal conversion performance. Notably, the three heating modes of passive radiative and active solar/electric can be integrated together to cope with complex heating scenarios. These visible transparent low-ε polymeric films are highly promising in infrared stealth, building daylighting and thermal management, and personal precision heating.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Visible transparent, infrared stealthy polymeric films with nanocoating of ITO@MXene enable efficient passive radiative heating and solar/electric thermal conversion

Show Author's information Xingyuan Du1Xiangxin Li1Yuxuan Zhang1Xinyi Guo1,2Zhengji Li2Yanxia Cao1Yanyu Yang1Wanjie Wang1Jianfeng Wang1( )
College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
China Construction Seventh Engineering Division Corp. Ltd., Zhengzhou 450004, China

Abstract

Visible transparent yet low infrared-emissivity (ε) polymeric materials are highly anticipated in many applications, whereas the fabrication of which remains a formidable challenge. Herein, visible transparent, flexible, and low-ε polymeric films were fabricated by nanocoating decoration of indium tin oxide (ITO) and MXene on polyethylene terephthalate (PET) film surface through magnetron sputtering and spray coating, respectively. The obtained PET-ITO@MXene (PET-IM) film exhibits low ε of 24.7% and high visible transmittance exceeding 50%, endowing it with excellent visible transparent infrared stealthy by reducing human skin radiation temperature from 32 to 20.8 °C, and remarkable zero-energy passive radiative heating capability (5.7 °C). Meanwhile, the transparent low-ε PET-IM film has high solar absorptivity and electrical conductivity, enabling superior solar/electric to thermal conversion performance. Notably, the three heating modes of passive radiative and active solar/electric can be integrated together to cope with complex heating scenarios. These visible transparent low-ε polymeric films are highly promising in infrared stealth, building daylighting and thermal management, and personal precision heating.

Keywords: transparent polymeric film, nanocoating decoration, ITO@MXene, low infrared emissivity, passive radiative heating, solar/electric heating

References(28)

[1]

Mandal, J.; Jia, M. X.; Overvig, A.; Fu, Y. K.; Che, E.; Yu, N. F.; Yang, Y. Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule 2019, 3, 3088–3099.

[2]

Lee, N.; Lim, J. S.; Chang, I.; Lee, D.; Cho, H. H. Transparent metamaterials for multispectral camouflage with thermal management. Int. J. Heat Mass Transf. 2021, 173, 121173.

[3]

Rao, Y. F.; Dai, J. Y.; Sui, C.; Lai, Y. T.; Li, Z.; Fang, H. M.; Li, X. Q.; Li, W.; Hsu, P. C. Ultra-wideband transparent conductive electrode for electrochromic synergistic solar and radiative heat management. ACS Energy Lett. 2021, 6, 3906–3915.

[4]

Wang, S. C.; Zhou, Y.; Jiang, T. Y.; Yang, R. G.; Tan, G.; Long, Y. Thermochromic smart windows with highly regulated radiative cooling and solar transmission. Nano Energy 2021, 89, 106440.

[5]

Kumar, S.; Kang, D.; Nguyen, V. H.; Nasir, N.; Hong, H.; Kim, M.; Nguyen, D. C.; Lee, Y. J.; Lee, N.; Seo, Y. Application of titanium-carbide MXene-based transparent conducting electrodes in flexible smart windows. ACS Appl. Mater. Interfaces 2021, 13, 40976–40985.

[6]

Zhang, Z. T.; Gao, Y. F.; Luo, H. J.; Kang, L. T.; Chen, Z.; Du, J.; Kanehira, M.; Zhang, Y. Z.; Wang, Z. L. Solution-based fabrication of vanadium dioxide on F: SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications. Energy Environ. Sci. 2011, 4, 4290–4297.

[7]

Chen, W.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 16643–16653.

[8]

Yang, Y.; Chen, S.; Li, W. L.; Li, P.; Ma, J. G.; Li, B. S.; Zhao, X. N.; Ju, Z. S.; Chang, H. C.; Xiao, L. et al. Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 2020, 14, 8754–8765.

[9]
LiM. Y.LiuD. Q.ChengH. F.PengL.ZuM. Manipulating metals for adaptive thermal camouflageSci. Adv.20206eaba349410.1126/sciadv.aba3494

Li, M. Y.; Liu, D. Q.; Cheng, H. F.;; Peng, L.; Zu, M. Manipulating metals for adaptive thermal camouflage. Sci. Adv. 2020, 6, eaba3494.

[10]

Zhu, H. Z.; Li, Q.; Zheng, C. Q.; Hong, Y.; Xu, Z. Q.; Wang, H.; Shen, W. D.; Kaur, S.; Ghosh, P.; Qiu, M. High-temperature infrared camouflage with efficient thermal management. Light:Sci. Appl. 2020, 9, 60.

[11]

Cinali, M. B.; Coşkun, Ö. D. Optimization of physical properties of sputtered silver films by change of deposition power for low emissivity applications. J. Alloys Compd. 2021, 853, 157073.

[12]

Tang, K. C.; Wang, X.; Dong, K. C.; Li, Y.; Li, J. C.; Sun, B.; Zhang, X.; Dames, C.; Qiu, C. W.; Yao, J. et al. A thermal radiation modulation platform by emissivity engineering with graded metal-insulator transition. Adv. Mater. 2020, 32, 1907071.

[13]

Hu, H. B.; Wang, S. C.; Meng, Y.; Liu, G. W.; Li, M.; Vu, T. D.; Long, Y. Layer-by-layer alignment of silver nanowires for transparent and flexible energy-saving windows. Adv. Mater. Technol. 2022, 7, 2100824.

[14]

Lin, S.; Wang, H. Y.; Zhang, X. N.; Wang, D.; Zu, D.; Song, J. N.; Liu, Z. L.; Huang, Y.; Huang, K.; Tao, N. et al. Direct spray-coating of highly robust and transparent Ag nanowires for energy saving windows. Nano Energy 2019, 62, 111–116.

[15]

Hanauer, S.; Celle, C.; Crivello, C.; Szambolics, H.; Muñoz-Rojas, D.; Bellet, D.; Simonato, J. P. Transparent and mechanically resistant silver-nanowire-based low-emissivity coatings. ACS Appl. Mater. Interfaces 2021, 13, 21971–21978.

[16]

Zhang, C.; Huang, Q. Y.; Cui, Q. Y.; Ji, C. G.; Zhang, Z.; Chen, X.; George, T.; Zhao, S. L.; Guo, L. J. High-performance large-scale flexible optoelectronics using ultrathin silver films with tunable properties. ACS Appl. Mater. Interfaces 2019, 11, 27216–27225.

[17]

Youngblood, N.; Talagrand, C.; Porter, B. F.; Galante, C. G.; Kneepkens, S.; Triggs, G.; Sarwat, S. G.; Yarmolich, D.; Bonilla, R. S.; Hosseini, P. et al. Reconfigurable low-emissivity optical coating using ultrathin phase change materials. ACS Photonics 2022, 9, 90–100.

[18]

Huang, S. N.; Fan, Q.; Wang, J. F.; Xu, C. L.; Wang, B. K.; Yang, B. Y.; Tian, C. H.; Meng, Z. Multi-spectral metasurface with high optical transparency, low infrared surface emissivity, and wideband microwave absorption. Front. Phys. 2020, 8, 385.

[19]

Zhu, R. C.; Wang, J. F.; Jiang, J. M.; Xu, C. L.; Liu, C.; Jia, Y. X.; Sui, S.; Zhang, Z. T.; Liu, T. H.; Chu, Z. T. et al. Machine-learning-empowered multispectral metafilm with reduced radar cross section, low infrared emissivity, and visible transparency. Photonics Res. 2022, 10, 1146–1156.

[20]

Han, J. K.; Yang, J. K.; Gao, W. W.; Bai, H. Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 2021, 31, 2010155.

[21]

Zhu, X. Z.; Guo, A. Q.; Yan, Z. Y.; Qin, F.; Xu, J.; Ji, Y. D.; Kan, C. X. PET/AgNW/PMMA transparent electromagnetic interference shielding films with high stability and flexibility. Nanoscale 2021, 13, 8067–8076.

[22]

Wang, T.; Wu, Y.; Shi, L.; Hu, X. H.; Chen, M.; Wu, L. M. A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 2021, 12, 365.

[23]

Kim, D.; Zhu, L. J.; Jeong, D. J.; Chun, K.; Bang, Y. Y.; Kim, S. R.; Kim, J. H.; Oh, S. K. Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires. Carbon 2013, 63, 530–536.

[24]

Feng, S. Y.; Yi, Y.; Chen, B. X.; Deng, P. C.; Zhou, Z. H.; Lu, C. H. Rheology-guided assembly of a highly aligned MXene/cellulose nanofiber composite film for high-performance electromagnetic interference shielding and infrared stealth. ACS Appl. Mater. Interfaces 2022, 14, 36060–36070.

[25]

Zhou, Z. H.; Song, Q. C.; Huang, B. X.; Feng, S. Y.; Lu, C. H. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano 2021, 15, 12405–12417.

[26]

Shi, M. K.; Shen, M. M.; Guo, X. Y.; Jin, X. X.; Cao, Y. X.; Yang, Y. Y.; Wang, W. J; Wang, J. F. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano 2021, 15, 11396–11405.

[27]

Li, Y.; Xiong, C.; Huang, H.; Peng, X. D.; Mei, D. Q.; Li, M.; Liu, G. Z.; Wu, M. C.; Zhao, T. S.; Huang, B. L. 2D Ti3C2Tx MXenes: Visible black but infrared white materials. Adv. Mater. 2021, 33, 2103054.

[28]

Li, L.; Shi, M. K.; Liu, X. Y.; Jin, X. X.; Cao, Y. X.; Yang, Y. Y.; Wang, W. J.; Wang, J. F. Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage. Adv. Funct. Mater. 2021, 31, 2101381.

File
12274_2022_4962_MOESM1_ESM.pdf (3.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 July 2022
Revised: 21 August 2022
Accepted: 24 August 2022
Published: 22 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

Financial support of the National Natural Science Foundation of China (No. 52003248), the China Postdoctoral Science Foundation (Nos. 2018M642780 and 2021T140613), the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (No. sklpme2019-4-31), and the Key Research and Development and Promotion projects of Henan Province (No. 202102210032) are gratefully acknowledged.

Return