Journal Home > Volume 16 , Issue 6

Potassium metal battery is a promising alternative to Li-ion battery for large-scale energy storage due to the abundant potassium resources and high energy density. However, it suffers from rapid capacity fading and safety issues due to the uncontrolled dendrite growth. Herein, we design a fluorine-free ultra-low concentration electrolyte (ULCE) with the super bulky [BPh4] anions for stable potassium metal battery. In this special electrolyte, the migration rate of K+ in the electrolyte is about six times faster than that of the [BPh4] anions because of the super bulky structure of the [BPh4] anions, thus resulting in a high K+ transference number of 0.76. This high transference number can effectively make up for the deficiency of K+ in ULCE for ensuring the normal operation of the potassium metal battery. In addition, the improved transference number can also promote the uniform distribution of K+ flux on the surface of the K metal anode, resulting in uniform K deposition. As a result, this electrolyte achieves a high K plating/stripping Coulombic efficiency of 92.6% over 200 cycles and a stable discharging/charging for 100 cycles under the full battery configuration (K used as the anode and perylene-3,4,9,10-tetracarboxylic dianhydride used as the cathode).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

An ultra-low concentration electrolyte with fluorine-free bulky anions for stable potassium metal batteries

Show Author's information Qinguang Liu1Mei Geng1Ting Yu1Li Zhang1Changdong Wu1Jie Liu1Shulin Zhao1,2Qingxin Yang2Robin Song2Jingjuan Ye2Fenfen Wang1Yuping Wu1Dengji Xiao1( )Yuhui Chen1( )
State Key Laboratory of Materials-Oriented Chemical Engineering, and School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
Jiangsu Sunpower Co., Ltd. Taixing 225411, China

Abstract

Potassium metal battery is a promising alternative to Li-ion battery for large-scale energy storage due to the abundant potassium resources and high energy density. However, it suffers from rapid capacity fading and safety issues due to the uncontrolled dendrite growth. Herein, we design a fluorine-free ultra-low concentration electrolyte (ULCE) with the super bulky [BPh4] anions for stable potassium metal battery. In this special electrolyte, the migration rate of K+ in the electrolyte is about six times faster than that of the [BPh4] anions because of the super bulky structure of the [BPh4] anions, thus resulting in a high K+ transference number of 0.76. This high transference number can effectively make up for the deficiency of K+ in ULCE for ensuring the normal operation of the potassium metal battery. In addition, the improved transference number can also promote the uniform distribution of K+ flux on the surface of the K metal anode, resulting in uniform K deposition. As a result, this electrolyte achieves a high K plating/stripping Coulombic efficiency of 92.6% over 200 cycles and a stable discharging/charging for 100 cycles under the full battery configuration (K used as the anode and perylene-3,4,9,10-tetracarboxylic dianhydride used as the cathode).

Keywords: potassium metal batteries, ultra-low concentration electrolyte, high transference number

References(48)

[1]

Pomerantseva, E.; Bonaccorso, F.; Feng, X.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019, 366, eaan8285.

[2]

Hobold, G. M.; Lopez, J.; Guo, R.; Minafra, N.; Banerjee, A.; Shirley Meng, Y.; Shao-Horn, Y.; Gallant, B. M. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 2021, 6, 951–960.

[3]

Jin, Y.; Le, P. M. L.; Gao, P. Y.; Xu, Y. B.; Xiao, B. W.; Engelhard, M. H.; Cao, X.; Vo, T. D.; Hu, J. T.; Zhong, L. R. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Energy 2022, 7, 718–725.

[4]

Zhou, Y.; Qi, H. L.; Yang, J. Y.; Bo, Z.; Huang, F.; Islam, M. S.; Lu, X. Y.; Dai, L. M.; Amal, R.; Wang, C. H. et al. Two-birds-one-stone: Multifunctional supercapacitors beyond traditional energy storage. Energy Environ. Sci. 2021, 14, 1854–1896.

[5]

Hao, H. C.; Hutter, T.; Boyce, B. L.; Watt, J.; Liu, P. C.; Mitlin, D. Review of multifunctional separators: Stabilizing the cathode and the anode for alkali (Li, Na, and K) metal-sulfur and selenium batteries. Chem. Rev. 2022, 122, 8053–8125.

[6]

Lee, B.; Paek, E.; Mitlin, D.; Lee, S. W. Sodium metal anodes: Emerging solutions to dendrite growth. Chem. Rev. 2019, 119, 5416–5460.

[7]

Zhang, W. L.; Yin, J.; Wang, W. X.; Bayhan, Z.; Alshareef, H. N. Status of rechargeable potassium batteries. Nano Energy 2021, 83, 105792.

[8]

Zhang, J. D.; Liu, T. T.; Cheng, X.; Xia, M. T.; Zheng, R. T.; Peng, N.; Yu, H. X.; Shui, M.; Shu, J. Development status and future prospect of non-aqueous potassium ion batteries for large scale energy storage. Nano Energy 2019, 60, 340–361.

[9]

Luo, W.; Tang, F.; Jiang, Y.; Liu, L.; Sun, W. P.; Feng, Y. Z.; Pan, H. G.; Rui, X. H.; Yu, Y. Engineering of crosslinked network and functional interlayer to boost cathode performance of tannin for potassium metal batteries. Adv. Funct. Mater. 2022, 32, 2200178.

[10]

Jiang, Y.; Yang, Y.; Ling, F. X.; Lu, G. X.; Huang, F. Y.; Tao, X. Y.; Wu, S. F.; Cheng, X. L.; Liu, F. F.; Li, D. J. et al. Artificial heterogeneous interphase layer with boosted ion affinity and diffusion for Na/K-metal batteries. Adv. Mater. 2022, 34, 2109439.

[11]

Yang, H.; He, F. X.; Li, M. H.; Huang, F. Y.; Chen, Z. H.; Shi, P. C.; Liu, F. F.; Jiang, Y.; He, L. X.; Gu, M. et al. Design principles of sodium/potassium protection layer for high-power high-energy sodium/potassium-metal batteries in carbonate electrolytes: A case study of Na2Te/K2Te. Adv. Mater. 2021, 33, 2106353.

[12]

Wen, S.; Gu, X.; Ding, X. W.; Zhang, L.; Dai, P. C.; Li, L. J.; Liu, D. D.; Zhang, W. C.; Zhao, X. B.; Guo, Z. P. Constructing ultrastable electrode/electrolyte interface for rapid potassium ion storage capability via salt chemistry and interfacial engineering. Nano Res. 2022, 15, 2083–2091.

[13]

Liu, P. C.; Hao, H. C.; Celio, H.; Cui, J. L.; Ren, M. Q.; Wang, Y. X.; Dong, H.; Chowdhury, A. R.; Hutter, T.; Perras, F. A. et al. Multifunctional separator allows stable cycling of potassium metal anodes and of potassium metal batteries. Adv. Mater. 2022, 34, 2105855.

[14]
Hu, Y. Y.; Fan, L.; Rao, A. M.; Yu, W. J.; Zhuoma, C. X.; Feng, Y. H.; Qin, Z. H.; Zhou, J.; Lu, B. A. Cyclic-anion salt for high-voltage stable potassium metal batteries. Natl. Sci. Rev., in press, https://doi.org/10.1093/nsr/nwac134.
DOI
[15]

Fan, L.; Hu, Y. Y.; Rao, A. M.; Zhou, J.; Hou, Z. H.; Wang, C. X.; Lu, B. G. Prospects of electrode materials and electrolytes for practical potassium-based batteries. Small Methods 2021, 5, 2101131.

[16]

Tang, X.; Zhou, D.; Li, P.; Guo, X.; Sun, B.; Liu, H.; Yan, K.; Gogotsi, Y.; Wang, G. X. MXene-based dendrite-free potassium metal batteries. Adv. Mater. 2020, 32, 1906739.

[17]

Ge, J. M.; Fan, L.; Rao, A. M.; Zhou, J.; Lu, B. A. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustain. 2022, 5, 225–234.

[18]

Park, J.; Jeong, Y.; Alfaruqi, M. H.; Liu, Y. Y.; Xu, X. Y.; Xiong, S. Z.; Jung, M. G.; Jung, H. G.; Kim, J.; Hwang, J. Y. et al. Stable solid electrolyte interphase for long-life potassium metal batteries. ACS Energy Lett. 2022, 7, 401–409.

[19]

Yang, W.; Yang, W.; Dong, L. B.; Shao, G. J.; Wang, G. X.; Peng, X. W. Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three-dimensional skeleton for dendrite-free sodium metal anodes. Nano Energy 2021, 80, 105563.

[20]

Li, T. J.; Sun, J. C.; Gao, S. Z.; Xiao, B.; Cheng, J. B.; Zhou, Y. L.; Sun, X. Q.; Jiang, F. Y.; Yan, Z. H.; Xiong, S. L. Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure. Adv. Energy Mater. 2021, 11, 2003699.

[21]

Choudhury, S.; Wei, S. Y.; Ozhabes, Y.; Gunceler, D.; Zachman, M. J.; Tu, Z. Y.; Shin, J. H.; Nath, P.; Agrawal, A.; Kourkoutis, L. F. et al. Designing solid−liquid interphases for sodium batteries. Nat. Commun. 2017, 8, 898.

[22]

Du, X. Q.; Zhang, B. Robust solid electrolyte interphases in localized high concentration electrolytes boosting black phosphorus anode for potassium-ion batteries. ACS Nano 2021, 15, 16851–16860.

[23]

Li, J. F.; Hu, Y. Y.; Xie, H. B.; Peng, J.; Fan, L.; Zhou, J.; Lu, B. A. Weak cation-solvent Interactions in ether-based electrolytes stabilizing potassium-ion batteries. Angew. Chem., Int. Ed. 2022, 134, e202208291.

[24]

Zhang, Y.; Bahi, A.; Ko, F.; Liu, J. Polyacrylonitrile-reinforced composite gel polymer electrolytes for stable potassium metal anodes. Small 2022, 18, 2107186.

[25]

Xu, W. X.; Wang, H. W.; Hu, J. Y.; Zhang, H. D.; Zhang, B.; Kang, F. Y.; Zhai, D. Y. A highly concentrated electrolyte for high-efficiency potassium metal batteries. Chem. Commun. 2021, 57, 1034–1037.

[26]

Yang, F. H.; Hao, J. N.; Long, J.; Liu, S. L.; Zheng, T.; Lie, W.; Chen, J.; Guo, Z. P. Achieving high-performance metal phosphide anode for potassium ion batteries via concentrated electrolyte chemistry. Adv. Energy Mater. 2021, 11, 2003346.

[27]

Liu, X.; Elia, G. A.; Gao, X. P.; Qin, B. S.; Zhang, H.; Passerini, S. Highly concentrated KTFSI: Glyme electrolytes for K/bilayered-V2O5 batteries. Batteries Supercaps 2020, 3, 261–267.

[28]

Yamada, Y.; Wang, J. H.; Ko, S.; Watanabe, E.; Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 2019, 4, 269–280.

[29]

Zeng, Z. Q.; Murugesan, V.; Han, K. S.; Jiang, X. Y.; Cao, Y. L.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Zhang, J. G.; Sushko, M. L. et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 2018, 3, 674–681.

[30]

Suo, L. M.; Borodin, O.; Wang, Y. S.; Rong, X. H.; Sun, W.; Fan, X.; Xu, S. Y.; Schroeder, M. A.; Cresce, A. V.; Wang, F. et al. “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 2017, 7, 1701189.

[31]

Cao, C.; Li, Y.; Feng, Y. Y.; Peng, C.; Li, Z.; Feng, W. A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries. Energy Storage Mater. 2019, 19, 401–407.

[32]

Li, L. G.; Wang, M. C.; Wang, J.; Ye, F. M.; Wang, S. F.; Xu, Y. N.; Liu, J. Y.; Xu, G. G.; Zhang, Y.; Zhang, Y. Y. et al. Asymmetric gel polymer electrolyte with high lithium ion conductivity for dendrite-free lithium metal batteries. J. Mater. Chem. A 2020, 8, 8033–8040.

[33]

Zhang, X. Y.; Wang, A. X.; Liu, X. J.; Luo, J. Y. Dendrites in lithium metal anodes: Suppression, regulation, and elimination. Acc. Chem. Res. 2019, 52, 3223–3232.

[34]

Zhang J.; Cao Z.; Zhou L.; Park G. T.; Cavallo L.; Wang L.; Alshareef H. N.;Sun Y. K.; Ming J. Model-based Design of stable electrolytes for potassium ion batteries. ACS Energy Letters. 2020, 5, 3124–3131.

[35]

Chen, X. J.; Qin, L.; Sun, J. N.; Zhang, S. W.; Xiao, D.; Wu, Y. Y. Phase transfer-mediated degradation of ether-based localized high-concentration electrolytes in alkali metal batteries. Angew. Chem., Int. Ed. 2022, 134, e202207018.

[36]

Peng, X. D.; Lin, Y. K.; Wang, Y.; Li, Y. J.; Zhao, T. S. A lightweight localized high-concentration ether electrolyte for high-voltage Li-ion and Li-metal batteries. Nano Energy 2022, 96, 107102.

[37]

He, J. R.; Bhargav, A.; Shin, W.; Manthiram, A. Stable dendrite-free sodium-sulfur batteries enabled by a localized high-concentration electrolyte. J. Am. Chem. Soc. 2021, 143, 20241–20248.

[38]

Guéguen, A.; Streich, D.; He, M. L.; Mendez, M.; Chesneau, F. F.; Novák, P.; Berg, E. J. Decomposition of LiPF6 in high energy lithium-ion batteries studied with online electrochemical mass spectrometry. J. Electrochem. Soc. 2016, 163, A1095–A1100.

[39]

Galluzzo, M. D.; Maslyn, J. A.; Shah, D. B.; Balsara, N. P. Ohm’s law for ion conduction in lithium and beyond-lithium battery electrolytes. J. Chem. Phys. 2019, 151, 020901.

[40]

Woo, S. G.; Hwang, E. K.; Kang, H. K.; Lee, H.; Lee, J. N.; Kim, H. S.; Jeong, G.; Yoo, D. J.; Lee, J.; Kim, S. et al. High transference number enabled by sulfated zirconia superacid for lithium metal batteries with carbonate electrolytes. Energy Environ. Sci. 2021, 14, 1420–1428.

[41]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[42]

Parimalam, B. S.; Macintosh, A. D.; Kadam, R.; Lucht, B. L. Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6. J. Phys. Chem. C 2017, 121, 22733–22738.

[43]

Doi, K.; Yamada, Y.; Okoshi, M.; Ono, J.; Chou, C. P.; Nakai, H.; Yamada, A. Reversible sodium metal electrodes: Is fluorine an essential interphasial component? Angew. Chem. , Int. Ed. 2019, 58, 8024–8028.

[44]

Wang, Q. Y.; Zhu, M.; Chen, G. R.; Dudko, N.; Li, Y.; Liu, H. J.; Shi, L. Y.; Wu, G.; Zhang, D. S. High-performance microsized Si anodes for lithium-ion batteries: Insights into the polymer configuration conversion mechanism. Adv. Mater. 2022, 34, 2109658.

[45]

Fan, L.; Ma, R. F.; Wang, J.; Yang, H. G.; Lu, B. A. An ultrafast and highly stable potassium-organic battery. Adv. Mater. 2018, 30, 1805486.

[46]

Holoubek, J.; Yin, Y. J.; Li, M. Q.; Yu, M. Y.; Meng, Y. S.; Liu, P.; Chen, Z. Exploiting mechanistic solvation kinetics for dual-graphite batteries with high power output at extremely low temperature. Angew. Chem., Int. Ed. 2019, 58, 18892–18897.

[47]

Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew. Chem., Int. Ed. 2018, 57, 5301–5305.

[48]

Chen, X.; Shen, X.; Li, B.; Peng, H. J.; Cheng, X. B.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q.; Zhang. Q. Ion-solvent complexes promote gas evolution from electrolytes on a sodium metal anode. Angew. Chem., Int. Ed. 2018, 57, 734–737.

File
4961_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 July 2022
Revised: 19 August 2022
Accepted: 24 August 2022
Published: 03 October 2022
Issue date: June 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. 21975124 and 52173173). This work was supported by 21C Innovation Laboratory, Contemporary Amperex Technology Ltd (No. 21C-OP-202008). The authors also acknowledge the Computing support by Synfuels China Co Ltd, Natl Energy R&D Ctr Coal Liquid Fuels, Beijing 101400, China. We are grateful to the High Performance Computing Center of Nanjing Tech University for supporting the computational resources.

Return