Journal Home > Volume 16 , Issue 2

Increasing the concentration of single-wall carbon nanotubes (SWCNTs) is an effective method for enhancing their luminescence intensity. However, an increase in the concentration of SWCNTs would inevitably increase their reabsorption effect, degrading their luminescence efficiency. Herein, we systematically investigated variations in the photoluminescence (PL) intensity of (6,5) single-chirality SWCNTs while increasing their concentration. The results show that the PL intensity first increased to a maximum and then decreased with increasing concentration. Numerical analysis indicates that the concentration boundary corresponding to the maximum PL intensity was strongly dependent on the ratio of the optical absorbances of the SWCNTs at their excitation and emission wavelengths. According to this, statistical analysis by experimentally measuring the optical absorption spectra of 18 kinds of single-chirality SWCNTs shows that the concentration boundaries of SWCNTs were dependent upon their Types and diameters. The concentration boundary of Type I SWCNTs was higher than that of Type II SWCNTs, and the concentration boundaries of both Types increased with increasing diameter. These results provide important guidance for spectral characterization and applications in bioimaging and photoelectronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Chirality-dependent concentration boundaries of single-wall carbon nanotubes for photoluminescence characterization and applications

Show Author's information Shilong Li1,3Linhai Li1,2,3Xiaojun Wei1,2,3,4( )Weiya Zhou1,2,3,4Sishen Xie1,2,3,4Huaping Liu1,2,3,4( )
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Department of Physical Science, and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
Songshan Lake Materials Laboratory, Dongguan 523808, China

Abstract

Increasing the concentration of single-wall carbon nanotubes (SWCNTs) is an effective method for enhancing their luminescence intensity. However, an increase in the concentration of SWCNTs would inevitably increase their reabsorption effect, degrading their luminescence efficiency. Herein, we systematically investigated variations in the photoluminescence (PL) intensity of (6,5) single-chirality SWCNTs while increasing their concentration. The results show that the PL intensity first increased to a maximum and then decreased with increasing concentration. Numerical analysis indicates that the concentration boundary corresponding to the maximum PL intensity was strongly dependent on the ratio of the optical absorbances of the SWCNTs at their excitation and emission wavelengths. According to this, statistical analysis by experimentally measuring the optical absorption spectra of 18 kinds of single-chirality SWCNTs shows that the concentration boundaries of SWCNTs were dependent upon their Types and diameters. The concentration boundary of Type I SWCNTs was higher than that of Type II SWCNTs, and the concentration boundaries of both Types increased with increasing diameter. These results provide important guidance for spectral characterization and applications in bioimaging and photoelectronic devices.

Keywords: photoluminescence, single-wall carbon nanotube, concentration boundary, reabsorption

References(49)

[1]

Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 298, 2361–2366.

[2]

Cherukuri, T. K.; Tsyboulski, D. A.; Weisman, R. B. Length- and defect-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. ACS Nano 2012, 6, 843–850.

[3]

Ghosh, S.; Bachilo, S. M.; Simonette, R. A.; Beckingham, K. M.; Weisman, R. B. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 2010, 330, 1656–1659.

[4]

Dowgiallo, A. M.; Mistry, K. S.; Johnson, J. C.; Blackburn, J. L. Ultrafast spectroscopic signature of charge transfer between single-walled carbon nanotubes and C60. ACS Nano 2014, 8, 8573–8581.

[5]

Zheng, Y.; Alizadehmojarad, A. A.; Bachilo, S. M.; Kolomeisky, A. B.; Weisman, R. B. Dye quenching of carbon nanotube fluorescence reveals structure-selective coating coverage. ACS Nano 2020, 14, 12148–12158.

[6]

Ma, X. D.; Cambré, S.; Wenseleers, W.; Doorn, S. K.; Htoon, H. Quasiphase transition in a single file of water molecules encapsulated in (6, 5) carbon nanotubes observed by temperature-dependent photoluminescence spectroscopy. Phys. Rev. Lett. 2017, 118, 027402.

[7]

Liu, X. J.; Kuzmany, H.; Ayala, P.; Calvaresi, M.; Zerbetto, F.; Pichler, T. Selective enhancement of photoluminescence in filled single-walled carbon nanotubes. Adv. Funct. Mater. 2012, 22, 3202–3208.

[8]

Cambré, S.; Santos, S. M.; Wenseleers, W.; Nugraha, A. R. T.; Saito, R.; Cognet, L.; Lounis, B. Luminescence properties of individual empty and water-filled single-walled carbon nanotubes. ACS Nano 2012, 6, 2649–2655.

[9]

Rohringer, P.; Shi, L.; Ayala, P.; Pichler, T. Selective enhancement of inner tube photoluminescence in filled double-walled carbon nanotubes. Adv. Funct. Mater. 2016, 26, 4874–4881.

[10]

Heeg, S.; Shi, L.; Poulikakos, L. V.; Pichler, T.; Novotny, L. Carbon nanotube chirality determines properties of encapsulated linear carbon chain. Nano Lett. 2018, 18, 5426–5431.

[11]
Chen, M. T.; Gomez, L. M.; Ishikawa, F. N.; Vernier, P. T.; Zhou, C.; Gundersen, M. A. pH-sensitive intracellular photoluminescence of carbon nanotube-fluorescein conjugates in human ovarian cancer cells. Nanotechnology 2009, 20, 295101.
DOI
[12]

Berger, S.; Voisin, C.; Cassabois, G.; Delalande, C.; Roussignol, P.; Marie, X. Temperature dependence of exciton recombination in semiconducting single-wall carbon nanotubes. Nano Lett. 2007, 7, 398–402.

[13]

Peng, L. M.; Zhang, Z. Y.; Wang, S. Carbon nanotube electronics: Recent advances. Mater. Today 2014, 17, 433–442.

[14]

Qiu, S.; Wu, K. J.; Gao, B.; Li, L. Q.; Jin, H. H.; Li, Q. W. Solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices. Adv. Mater. 2019, 31, e1800750.

[15]

Koo, J. H.; Song, J. K.; Kim, D. H. Solution-processed thin films of semiconducting carbon nanotubes and their application to soft electronics. Nanotechnology 2019, 30, 132001.

[16]

Sarti, F.; Biccari, F.; Fioravanti, F.; Torrini, U.; Vinattieri, A.; Derycke, V.; Gurioli, M.; Filoramo, A. Highly selective sorting of semiconducting single wall carbon nanotubes exhibiting light emission at telecom wavelengths. Nano Res. 2016, 9, 2478–2486.

[17]

Harvey, J. D.; Williams, R. M.; Tully, K. M.; Baker, H. A.; Shamay, Y.; Heller, D. A. An in vivo nanosensor measures compartmental doxorubicin exposure. Nano Lett. 2019, 19, 4343–4354.

[18]

Yomogida, Y.; Tanaka, T.; Zhang, M. F.; Yudasaka, M.; Wei, X. J.; Kataura, H. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nat. Commun. 2016, 7, 12056.

[19]

Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H. L.; Luong, R.; Dai, H. J. High performance in vivo near-IR (> 1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 2010, 3, 779–793.

[20]

Jain, A.; Homayoun, A.; Bannister, C. W.; Yum, K. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine. Biotechnol. J. 2015, 10, 447–459.

[21]

Yu, D. M.; Liu, H. P.; Peng, L. M.; Wang, S. Flexible light-emitting devices based on chirality-sorted semiconducting carbon nanotube films. ACS Appl. Mater. Interfaces 2015, 7, 3462–3467.

[22]

Zorn, N. F.; Berger, F. J.; Zaumseil, J. Charge transport in and electroluminescence from sp3-functionalized carbon nanotube networks. ACS Nano 2021, 15, 10451–10463.

[23]

Jones, M.; Engtrakul, C.; Metzger, W. K.; Ellingson, R. J.; Nozik, A. J.; Heben, M. J.; Rumbles, G. Analysis of photoluminescence from solubilized single-walled carbon nanotubes. Phys. Rev. B 2005, 71, 115426.

[24]

Powell, L. R.; Piao, Y.; Ng, A. L.; Wang, Y. H. Channeling excitons to emissive defect sites in carbon nanotube semiconductors beyond the dilute regime. J. Phys. Chem. Lett. 2018, 9, 2803–2807.

[25]

Wei, X. J.; Tanaka, T.; Li, S. L.; Tsuzuki, M.; Wang, G. W.; Yao, Z. H.; Li, L. H.; Yomogida, Y.; Hirano, A.; Liu, H. P. et al. Photoluminescence quantum yield of single-wall carbon nanotubes corrected for the photon reabsorption effect. Nano Lett. 2020, 20, 410–417.

[26]

Li, S. L.; Yang, D. H.; Cui, J. M.; Wang, Y. C.; Wei, X. J.; Zhou, W. Y.; Kataura, H.; Xie, S. S.; Liu, H. P. Quantitative analysis of the intertube coupling effect on the photoluminescence characteristics of distinct (n,m) carbon nanotubes dispersed in solution. Nano Res. 2020, 13, 1149–1155.

[27]

Tan, P. H.; Rozhin, A. G.; Hasan, T.; Hu, P.; Scardaci, V.; Milne, W. I.; Ferrari, A. C. Photoluminescence spectroscopy of carbon nanotube bundles: Evidence for exciton energy transfer. Phys. Rev. Lett. 2007, 99, 137402.

[28]

Mehlenbacher, R. D.; McDonough, T. J.; Grechko, M.; Wu, M. Y.; Arnold, M. S.; Zanni, M. T. Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy. Nat. Commun. 2015, 6, 6732.

[29]

Ghosh, S.; Bachilo, S. M.; Weisman, R. B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat. Nanotechnol. 2010, 5, 443–450.

[30]

Green, A. A.; Duch, M. C.; Hersam, M. C. Isolation of single-walled carbon nanotube enantiomers by density differentiation. Nano Res. 2009, 2, 69–77.

[31]

Liu, H. P.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309.

[32]

Wei, X. J.; Tanaka, T.; Yomogida, Y.; Sato, N.; Saito, R.; Kataura, H. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra. Nat. Commun. 2016, 7, 12899.

[33]

Li, H.; Gordeev, G.; Garrity, O.; Reich, S.; Flavel, B. S. Separation of small-diameter single-walled carbon nanotubes in one to three steps with aqueous two-phase extraction. ACS Nano 2019, 13, 2567–2578.

[34]

Fagan, J. A.; Khripin, C. Y.; Silvera Batista, C. A.; Simpson, J. R.; Hároz, E. H.; Hight Walker, A. R.; Zheng, M. Isolation of specific small-diameter single-wall carbon nanotube species via aqueous two-phase extraction. Adv. Mater. 2014, 26, 2800–2804.

[35]

Wei, X. J.; Tanaka, T.; Hirakawa, T.; Tsuzuki, M.; Wang, G. W.; Yomogida, Y.; Hirano, A.; Kataura, H. High-yield and high-throughput single-chirality enantiomer separation of single-wall carbon nanotubes. Carbon 2018, 132, 1–7.

[36]

Yang, D. H.; Li, L. H.; Wei, X. J.; Wang, Y. C.; Zhou, W. Y.; Kataura, H.; Xie, S. S.; Liu, H. P. Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system. Sci. Adv. 2021, 7, eabe0084.

[37]

Chou, S. G.; Plentz, F.; Jiang, J.; Saito, R.; Nezich, D.; Ribeiro, H. B.; Jorio, A.; Pimenta, M. A.; Samsonidze, G. G.; Santos, A. P. et al. Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy. Phys. Rev. Lett. 2005, 94, 127402.

[38]

Mäntele, W.; Deniz, E. UV-vis absorption spectroscopy:Lambert-beer reloaded. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 173, 965–968.

[39]

De Nicola, F.; Pintossi, C.; Nanni, F.; Cacciotti, I.; Scarselli, M.; Drera, G.; Pagliara, S.; Sangaletti, L.; De Crescenzi, M.; Castrucci, P. Controlling the thickness of carbon nanotube random network films by the estimation of the absorption coefficient. Carbon 2015, 95, 28–33.

[40]

Li, S. L.; Wei, X. J.; Li, L. H.; Cui, J. M.; Yang, D. H.; Wang, Y. C.; Zhou, W. Y.; Xie, S. S.; Hirano, A.; Tanaka, T. et al. Quantitative analysis of the effect of reabsorption on the Raman spectroscopy of distinct (n,m) carbon nanotubes. Anal. Methods 2020, 12, 2376–2384.

[41]

Streit, J. K.; Bachilo, S. M.; Ghosh, S.; Lin, C. W.; Weisman, R. B. Directly measured optical absorption cross sections for structure-selected single-walled carbon nanotubes. Nano Lett. 2014, 14, 1530–1536.

[42]

Yomogida, Y.; Tanaka, T.; Tsuzuki, M.; Wei, X. J.; Kataura, H. Automatic sorting of single-chirality single-wall carbon nanotubes using hydrophobic cholates: Implications for multicolor near-infrared optical technologies. ACS Appl. Nano Mater. 2020, 3, 11289–11297.

[43]

Wei, X. J.; Tanaka, T.; Akizuki, N.; Miyauchi, Y.; Matsuda, K.; Ohfuchi, M.; Kataura, H. Single-chirality separation and optical properties of (5, 4) single-wall carbon nanotubes. J. Phys. Chem. C 2016, 120, 10705–10710.

[44]

Choi, S.; Deslippe, J.; Capaz, R. B.; Louie, S. G. An explicit formula for optical oscillator strength of excitons in semiconducting single-walled carbon nanotubes: Family behavior. Nano Lett. 2013, 13, 54–58.

[45]

Malić, E.; Hirtschulz, M.; Milde, F.; Knorr, A.; Reich, S. Analytical approach to optical absorption in carbon nanotubes. Phys. Rev. B 2006, 74, 195431.

[46]

Oyama, Y.; Saito, R.; Sato, K.; Jiang, J.; Samsonidze, G. G.; Grüneis, A.; Miyauchi, Y.; Maruyama, S.; Jorio, A.; Dresselhaus, G. et al. Photoluminescence intensity of single-wall carbon nanotubes. Carbon 2006, 44, 873–879.

[47]

Samsonidze, G. G.; Saito, R.; Jorio, A.; Filho, A. G. S.; Grüneis, A.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Phonon trigonal warping effect in graphite and carbon nanotubes. Phys. Rev. Lett. 2003, 90, 027403.

[48]

Ohno, Y.; Iwasaki, S.; Murakami, Y.; Kishimoto, S.; Maruyama, S.; Mizutani, T. Chirality-dependent environmental effects in photoluminescence of single-walled carbon nanotubes. Phys. Rev. B 2006, 73, 235427.

[49]

Hirana, Y.; Tanaka, Y.; Niidome, Y.; Nakashima, N. Strong micro-dielectric environment effect on the band gaps of (n,m) single-walled carbon nanotubes. J. Am. Chem. Soc. 2010, 132, 13072–13077.

File
12274_2022_4959_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 July 2022
Revised: 18 August 2022
Accepted: 24 August 2022
Published: 22 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2020YFA0714700 and 2018YFA0208402), the National Natural Science Foundation of China (Nos. 51820105002, 11634014, 51872320, and 52172060), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB33030100), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No. QYZDBSSW-SYS028), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2020005).

Return