Journal Home > Volume 16 , Issue 1

Dynamic surface patterns (DSPs) have attracted significant interest in anti-counterfeiting, enabling information to be stored, encrypted and decrypted in response to external stimuli. However, creating dynamic surface patterns, capable of controlling wrinkling time and independently modulating different information in both wrinkled and fluorescent states, remains a tremendous challenge. These limit DSPs to further enhance tamper-proofing capacity and extend the information storage density. Here, a rationally designed patterning strategy based on controllable elastic modulus was demonstrated to fabricate self-erasable dynamic surface patterns (S-DSPs) that increase information storage density. These novel S-DSPs strategically integrated amino co-oligomers (ACOs) with the 9-anthracenemethanol (9-AM) as skin layers, designing a bilayer multi-encoding system which could carry several different types of information with wrinkled and fluorescent patterns. The ACOs with relatively low molecular weight can endow the elastic modulus of skin layers with a wide range of regulation. As a result, the difference between the compressive strain and the critical wrinkle strain in the bilayer system would be precisely modulated by photo-dimerization to form quick-response (minimum < 1 min) and self-erasable (3 min–8 days) wrinkled patterns for S-DSPs. Meanwhile, the fluorescence pattern could be independently erased and reprogrammed without affecting the change in the wrinkle pattern under modulus-controlled conditions. Moreover, controllable self-erasure in S-DSPs significantly develops tamper-proof capabilities in a supply chain. This original strategy could provide a new approach to the tamper-proof, high-density, and multi-encoded information storage in the product security or inkless printing.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-erasable dynamic surface patterns via controllable elastic modulus boosting multi-encoded and tamper-proof information storage

Show Author's information Ziquan Fang1,3Xiaofeng Lin1,2,3( )Yihui Lin1Jiamin Gao1Li Gong4Ruijun Lin1Guoyi Pan1Jianyu Wu1Wenjing Lin1Xudong Chen1,2Guobin Yi1,2( )
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
Instrumental Analysis Research Center, Sun Yat-sen University, Guangzhou 510275, China

Abstract

Dynamic surface patterns (DSPs) have attracted significant interest in anti-counterfeiting, enabling information to be stored, encrypted and decrypted in response to external stimuli. However, creating dynamic surface patterns, capable of controlling wrinkling time and independently modulating different information in both wrinkled and fluorescent states, remains a tremendous challenge. These limit DSPs to further enhance tamper-proofing capacity and extend the information storage density. Here, a rationally designed patterning strategy based on controllable elastic modulus was demonstrated to fabricate self-erasable dynamic surface patterns (S-DSPs) that increase information storage density. These novel S-DSPs strategically integrated amino co-oligomers (ACOs) with the 9-anthracenemethanol (9-AM) as skin layers, designing a bilayer multi-encoding system which could carry several different types of information with wrinkled and fluorescent patterns. The ACOs with relatively low molecular weight can endow the elastic modulus of skin layers with a wide range of regulation. As a result, the difference between the compressive strain and the critical wrinkle strain in the bilayer system would be precisely modulated by photo-dimerization to form quick-response (minimum < 1 min) and self-erasable (3 min–8 days) wrinkled patterns for S-DSPs. Meanwhile, the fluorescence pattern could be independently erased and reprogrammed without affecting the change in the wrinkle pattern under modulus-controlled conditions. Moreover, controllable self-erasure in S-DSPs significantly develops tamper-proof capabilities in a supply chain. This original strategy could provide a new approach to the tamper-proof, high-density, and multi-encoded information storage in the product security or inkless printing.

Keywords: dynamic surface patterns, muti-encoding, tamper-proofing, information storage, self-erasure, inkless printing

References(49)

[1]

Chen, S.; Ma, T. J.; Bai, J.; Ma, X. D.; Yin, J.; Jiang, X. S. Photodynamic pattern memory surfaces with responsive wrinkled and fluorescent patterns. Adv. Sci. 2020, 7, 2002372.

[2]
Tang, Z. L.; Liu, X. P.; Liu, X. C.; Wu, J. Y.; Lin. W. J.; Lin, X. F.; Yi, G. B. Unclonable anti-counterfeiting labels based on plasmonic-patterned nanostructures. Adv. Eng. Mater., in press, https://doi.org/10.1002/adem.202101701.
[3]

Jiang, B. L.; Liu, L. T.; Gao, Z. P.; Feng, Z. Y.; Zheng, Y. Q.; Wang, W. S. Fast dual-stimuli-responsive dynamic surface wrinkles with high bistability for smart windows and rewritable optical displays. ACS Appl. Mater. Interfaces 2019, 11, 40406–40415.

[4]

Wu, J. Y.; Li, J. W.; Liu, X. C.; Gong, L.; Chen, J. Y.; Tang, Z. L.; Lin, W. J.; Mu, Y. X.; Lin, X. F.; Hong, W. et al. Unclonable photonic crystal hydrogels with controllable encoding capacity for anticounterfeiting. ACS Appl. Mater. Interfaces 2022, 14, 2369–2380.

[5]

Wu, J. Y.; Liu, X. P.; Liu, X. C.; Tang, Z. L.; Huang, Z. Y.; Lin, W. J.; Lin, X. F.; Yi, G. B. A high-security mutual authentication system based on structural color-based physical unclonable functions labels. Chem. Eng. J. 2022, 439, 135601.

[6]

Cheng, C. H.; Yang, D. S.; Kim, J.; Deotare, P. B. Self-erasable and rewritable optoexcitonic platform for antitamper hardware. Adv. Opt. Mater. 2020, 8, 2001287.

[7]

Schlapak, R.; Danzberger, J.; Armitage, D.; Morgan, D.; Ebner, A.; Hinterdorfer, P.; Pollheimer, P.; Gruber, H. J.; Schäffler, F.; Howorka, S. Nanoscale DNA tetrahedra improve biomolecular recognition on patterned surfaces. Small 2012, 8, 89–97.

[8]

Choueiri, R. M.; Galati, E.; Thérien-Aubin, H.; Klinkova, A.; Larin, E. M.; Querejeta-Fernández, A.; Han, L. L.; Xin, H. L.; Gang, O.; Zhulina, E. B. et al. Surface patterning of nanoparticles with polymer patches. Nature 2016, 538, 79–83.

[9]

Yu, Z. W.; Yun, F. F.; Wang, Y. Q.; Yao, L.; Dou, S. X.; Liu, K. S.; Jiang, L.; Wang, X. L. Desert beetle-inspired superwettable patterned surfaces for water harvesting. Small 2017, 13, 1701403.

[10]

Monroe, J. I.; Shell, M. S. Computational discovery of chemically patterned surfaces that effect unique hydration water dynamics. Proc. Natl. Acad. Sci. USA 2018, 115, 8093–8098.

[11]

Gonçalves, R.; Marques-Almeida, T.; Miranda, D.; Silva, M. M.; Cardoso, V. F.; Costa, C. M.; Lanceros-Méndez, S. Enhanced performance of fluorinated separator membranes for lithium ion batteries through surface micropatterning. Energy Storage Mater. 2019, 21, 124–135.

[12]

Chi, J. J.; Zhang, X. X.; Wang, Y. T.; Shao, C. M.; Shang, L. R.; Zhao, Y. J. Bio-inspired wettability patterns for biomedical applications. Mater. Horiz. 2021, 8, 124–144.

[13]

Liu, H.; Zhang, L.; Huang, J. Y.; Zhang, X. L.; Mao, J. J.; Chen, Z.; Mao, Q. H.; Ge, M. Z.; Lai, Y. K. Superwetting patterned PDMS/PMMA materials by facile one-step electro-spraying for signal expression and liquid transportation. Chem. Eng. J. 2022, 431, 133206.

[14]

Bae, W. G.; Kim, H. N.; Kim, D.; Park, S. H.; Jeong, H. E.; Suh, K. Y. 25th anniversary article: Scalable multiscale patterned structures inspired by nature: The role of hierarchy. Adv. Mater. 2014, 26, 675–700.

[15]

Chung, J. Y.; Nolte, A. J.; Stafford, C. M. Surface wrinkling: A versatile platform for measuring thin-film properties. Adv. Mater. 2011, 23, 349–368.

[16]

Ferrarese Lupi, F.; Giammaria, T. J.; Miti, A.; Zuccheri, G.; Carignano, S.; Sparnacci, K.; Seguini, G.; De Leo, N.; Boarino, L.; Perego, M. et al. Hierarchical order in Dewetted block copolymer thin films on chemically patterned surfaces. ACS Nano 2018, 12, 7076–7085.

[17]

Xie, J. X.; Han, X.; Ji, H. P.; Wang, J. J.; Zhao, J. X.; Lu, C. H. Self-supported crack-free conducting polymer films with stabilized wrinkling patterns and their applications. Sci. Rep. 2016, 6, 36686.

[18]

Xie, J. X.; Wang, J. J.; Zhao, J. X.; Yang, C. F.; Li, L. L.; Lu, C. H. Synergism of self-wrinkling and ultrasonic cleaning to fabricate hierarchically patterned conducting films. Adv. Mater. Interfaces 2018, 5, 1800905.

[19]

Lee, S. G.; Lee, D. Y.; Lim, H. S.; Lee, D. H.; Lee, S.; Cho, K. Switchable transparency and wetting of elastomeric smart windows. Adv. Mater. 2010, 22, 5013–5017.

[20]

Cho, S. H.; Joo, P.; Zhang, C.; Lewis, E. A.; Vogt, B. D.; Zacharia, N. S. Patterned hydrophilic patches on slippery surfaces with anticounterfeit applications. ACS Appl. Polym. Mater. 2022, 4, 100–110.

[21]

Chen, G. X.; Weng, Y. L.; Wang, W. W.; Hong, D. M.; Zhou, L. P.; Zhou, X. T.; Wu, C. X.; Zhang, Y. A.; Yan, Q.; Yao, J. M. et al. Spontaneous formation of random wrinkles by atomic layer infiltration for anticounterfeiting. ACS Appl. Mater. Interfaces 2021, 13, 27548–27556.

[22]

Xie, M. X.; Lin, G. J.; Ge, D. T.; Yang, L. L.; Zhang, L. Z.; Yin, J.; Jiang, X. S. Pattern memory surface (PMS) with dynamic wrinkles for Unclonable Anticounterfeiting. ACS Mater. Lett. 2019, 1, 77–82.

[23]

Shou, H. Z.; Ma, T. J.; Li, T. T.; Chen, S.; Ma, X. D.; Yin, J.; Jiang, X. S. Photo-oxidation-controlled surface pattern with responsive wrinkled topography and fluorescence. Chem. –Eur. J. 2021, 27, 5810–5816.

[24]

González-Henríquez, C. M.; Sagredo-Oyarce, D. H.; Sarabia-Vallejos, M. A.; Rodríguez-Hernández, J. Fabrication of micro and sub-micrometer wrinkled hydrogel surfaces through thermal and photocrosslinking processes. Polymer 2016, 101, 24–33.

[25]

Kim, H. S.; Crosby, A. J. Solvent-responsive surface via wrinkling instability. Adv. Mater. 2011, 23, 4188–4192.

[26]

Wu, K.; Sun, Y.; Yuan, H. Z.; Zhang, J. Y.; Liu, G.; Sun, J. Harnessing dynamic wrinkling surfaces for smart displays. Nano Lett. 2020, 20, 4129–4135.

[27]

Um, E.; Cho, Y. K.; Jeong, J. Spontaneous wrinkle formation on Hydrogel surfaces using photoinitiator diffusion from oil–water interface. ACS Appl. Mater. Interfaces 2021, 13, 15837–15846.

[28]

Zhou, L. W.; Hu, K. M.; Zhang, W. M.; Meng, G.; Yin, J.; Jiang, X. S. Regulating surface wrinkles using light. Natl. Sci. Rev. 2020, 7, 1247–1257.

[29]

Zong, C. Y.; Zhao, Y.; Ji, H. P.; Han, X.; Xie, J. X.; Wang, J. J.; Cao, Y. P.; Jiang, S. C.; Lu, C. H. Tuning and erasing surface wrinkles by reversible visible-light-induced photoisomerization. Angew. Chem., Int. Ed. 2016, 55, 3931–3935.

[30]

Li, W. B.; Liu, Y. J.; Leng, J. S. Harnessing wrinkling patterns using shape memory polymer microparticles. ACS Appl. Mater. Interfaces 2021, 13, 23074–23080.

[31]

Li, T. T.; Hu, K. M.; Ma, X. D.; Zhang, W. M.; Yin, J.; Jiang, X. S. Hierarchical 3D patterns with dynamic wrinkles produced by a photocontrolled Diels–Alder reaction on the surface. Adv. Mater. 2020, 32, 1906712.

[32]

Hou, H. H.; Yin, J.; Jiang, X. S. Reversible Diels–Alder reaction to control wrinkle patterns: From dynamic chemistry to dynamic patterns. Adv. Mater. 2016, 28, 9126–9132.

[33]

Chilivery, R.; Begum, G.; Chaitanya, V.; Rana, R. K. Tunable surface wrinkling by a bio-inspired polyamine anion coacervation process that mediates the assembly of polyoxometalate nanoclusters. Angew. Chem., Int. Ed. 2020, 59, 8160–8165.

[34]

Zhang, Y.; Liu, F.; Zhao, J. M.; Yan, M.; Wang, X.; Wang, W. S. Dual pH-/photo-responsive color switching systems for dynamic rewritable paper. ACS Appl. Mater. Interfaces 2022, 14, 5825–5833.

[35]

Zhang, X. A.; Jiang, Y. J.; Venkatesh, R. B.; Raney, J. R.; Stebe, K. J.; Yang, S.; Lee, D. Scalable manufacturing of bending-induced surface wrinkles. ACS Appl. Mater. Interfaces 2020, 12, 7658–7664.

[36]

Jiang, B. L.; Liu, L. T.; Gao, Z. P.; Wang, W. S. A general and robust strategy for fabricating mechanoresponsive surface wrinkles with dynamic switchable transmittance. Adv. Opt. Mater. 2018, 6, 1800195.

[37]

Zhou, L. W.; Yang, L. L.; Liu, Y.; Xu, Z.; Yin, J.; Ge, D. T.; Jiang, X. S. Dynamic structural color from wrinkled thin films. Adv. Opt. Mater. 2020, 8, 2000234.

[38]

Wang, J. J.; Zheng, Y.; Li, L. L.; Liu, E. P.; Zong, C. Y.; Zhao, J. X.; Xie, J. X.; Xu, F.; König, T. A. F.; Grenzer Saphiannikova, M. et al. All-optical reversible azo-based wrinkling patterns with high aspect ratio and polarization-independent orientation for light-responsive soft photonics. ACS Appl. Mater. Interfaces 2019, 11, 25595–25604.

[39]

Zhou, L. W.; Ma, T. J.; Li, T. T.; Ma, X. D.; Yin, J.; Jiang, X. S. Dynamic interpenetrating polymer network (IPN) strategy for multiresponsive hierarchical pattern of reversible wrinkle. ACS Appl. Mater. Interfaces 2019, 11, 15977–15985.

[40]

Xie, M. X.; Xu, F. G.; Zhang, L. Z.; Yin, J.; Jiang, X. S. Reversible surface dual-pattern with simultaneously dynamic wrinkled topography and fluorescence. ACS Macro Lett. 2018, 7, 540–545.

[41]

Ma, T. J.; Li, T. T.; Zhou, L. W.; Ma, X. D.; Yin, J.; Jiang, X. S. Dynamic wrinkling pattern exhibiting tunable fluorescence for anticounterfeiting applications. Nat. Commun. 2020, 11, 1811.

[42]

Cerda, E.; Mahadevan, L. Geometry and physics of wrinkling. Phys. Rev. Lett. 2003, 90, 074302.

[43]

Cutolo, A.; Pagliarulo, V.; Merola, F.; Coppola, S.; Ferraro, P.; Fraldi, M. Wrinkling prediction, formation and evolution in thin films adhering on polymeric substrata. Mater. Des. 2020, 187, 108314.

[44]

Hou, H. H.; Hu, K. M.; Lin, H. B.; Forth, J.; Zhang, W. M.; Russell, T. P.; Yin, J.; Jiang, X. S. Reversible surface patterning by dynamic crosslink gradients: Controlling buckling in 2D. Adv. Mater. 2018, 30, 1803463.

[45]

Takeshima, T.; Liao, W. Y.; Nagashima, Y.; Beppu, K.; Hara, M.; Nagano, S.; Seki, T. Photoresponsive surface wrinkle morphologies in liquid crystalline polymer films. Macromolecules 2015, 48, 6378–6384.

[46]

Chen, T. L.; Lin, Y. P.; Chien, C. H.; Chen, Y. C.; Yang, Y. J.; Wang, W. L.; Chien, L. F.; Hsueh, H. Y. Fabrication of frog-skin-inspired slippery Antibiofouling coatings through degradable block copolymer wrinkling. Adv. Funct. Mater. 2021, 31, 2170309.

[47]

Li, F. D.; Hou, H. H.; Yin, J.; Jiang, X. S. Multi-responsive wrinkling patterns by the photoswitchable supramolecular network. ACS Macro Lett. 2017, 6, 848–853.

[48]

Ji, H. P.; Zhao, Y.; Zong, C. Y.; Xie, J. X.; Han, X.; Wang, J. J.; Zhao, J. X.; Jiang, S. C.; Cao, Y. P.; Lu, C. H. Simple and versatile strategy to prevent surface wrinkling by visible light irradiation. ACS Appl. Mater. Interfaces 2016, 8, 19127–19134.

[49]

Li, F. D.; Hou, H. H.; Yin, J.; Jiang, X. S. Near-infrared light-responsive dynamic wrinkle patterns. Sci. Adv. 2018, 4, eaar5762.

Video
12274_2022_4958_MOESM2_ESM.mp4
12274_2022_4958_MOESM3_ESM.mp4
12274_2022_4958_MOESM4_ESM.mp4
12274_2022_4958_MOESM5_ESM.mp4
12274_2022_4958_MOESM6_ESM.mp4
File
12274_2022_4958_MOESM1_ESM.pdf (3.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 July 2022
Revised: 03 August 2022
Accepted: 24 August 2022
Published: 07 October 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundations of China (Nos. 51903058, 51873042, and 51833011), Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education (No. PCFM-2922A02), and Guangzhou Basic and Applied Basic Research Foundation (No. 202201010382).

Return