Journal Home > Volume 16 , Issue 2

Atomic characterization on tetragonal FeAs layer and engineering FeAs superlattices is highly desirable to get deep insight into the multi-band superconductivity in iron-pnictides. We fabricate the tetragonal FeAs layer by topotactic reaction of FeTe films with arsenic and then obtain KxFe2As2 upon potassium intercalation using molecular beam epitaxy. The in-situ low-temperature scanning tunneling microscopy/spectroscopy investigations demonstrate characteristic 2×2 reconstruction of the FeAs layer and stripe pattern of KxFe2As2, accompanied by the development of a superconducting-like gap. The ex-situ transport measurement with FeTe capping layers shows a superconducting transition with an onset temperature of 10 K. This work provides a promising way to characterize the FeAs layer directly and explore rich emergent physics with epitaxial superlattice design.


menu
Abstract
Full text
Outline
About this article

Obtaining tetragonal FeAs layer and superconducting KxFe2As2 by molecular beam epitaxy

Show Author's information Cui Ding1,2Yuanzhao Li1Shuaihua Ji1Ke He1Lili Wang1,3( )Qi-Kun Xue1,2,4( )
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China

Abstract

Atomic characterization on tetragonal FeAs layer and engineering FeAs superlattices is highly desirable to get deep insight into the multi-band superconductivity in iron-pnictides. We fabricate the tetragonal FeAs layer by topotactic reaction of FeTe films with arsenic and then obtain KxFe2As2 upon potassium intercalation using molecular beam epitaxy. The in-situ low-temperature scanning tunneling microscopy/spectroscopy investigations demonstrate characteristic 2×2 reconstruction of the FeAs layer and stripe pattern of KxFe2As2, accompanied by the development of a superconducting-like gap. The ex-situ transport measurement with FeTe capping layers shows a superconducting transition with an onset temperature of 10 K. This work provides a promising way to characterize the FeAs layer directly and explore rich emergent physics with epitaxial superlattice design.

Keywords: molecular beam epitaxy, topotactic reaction, tetragonal FeAs, KxFe2As2, interface enhanced superconductivity

References(50)

[1]

Takahashi, H.; Igawa, K.; Arii, K.; Kamihara, Y.; Hirano, M.; Hosono, H. Superconductivity at 43 K in an iron-based layered compound LaO1−xFxFeAs. Nature 2008, 453, 376–378.

[2]

Ren, Z. A.; Lu, W.; Yang, J.; Yi, W.; Shen, X. L.; Li, Z. C.; Che, G. C.; Dong, X. L.; Sun, L. L.; Zhou, F. et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1−xFx] FeAs. Chin. Phys. Lett. 2008, 25, 2215–2216.

[3]

Hsu, F. C.; Luo, J. Y.; Yeh, K. W.; Chen, T. K.; Huang, T. W.; Wu, P. M.; Lee, Y. C.; Huang, Y. L.; Chu, Y. Y.; Yan, D. C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. USA 2008, 105, 14262–14264.

[4]

McQueen, T. M.; Huang, Q.; Ksenofontov, V.; Felser, C.; Xu, Q.; Zandbergen, H.; Hor, Y. S.; Allred, J.; Williams, A. J.; Qu, D. et al. Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe. Phys. Rev. B 2009, 79, 014522.

[5]

Medvedev, S.; McQueen, T. M.; Troyan, I. A.; Palasyuk, T.; Eremets, M. I.; Cava, R. J.; Naghavi, S.; Casper, F.; Ksenofontov, V.; Wortmann, G. et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36. 7 K under pressure. Nat. Mater. 2009, 8, 630–633.

[6]

Garbarino, G.; Sow, A.; Lejay, P.; Sulpice, A.; Toulemonde, P.; Mezouar, M.; Núñez-Regueiro, M. High-temperature superconductivity (Tc onset at 34 K) in the high-pressure orthorhombic phase of FeSe. Europhys. Lett. 2009, 86, 27001.

[7]

Hanzawa, K.; Sato, H.; Hiramatsu, H.; Kamiya, T.; Hosono, H. Electric field-induced superconducting transition of insulating FeSe thin film at 35 K. Proc. Natl. Acad. Sci. USA 2016, 113, 3986–3990.

[8]

Shiogai, J.; Ito, Y.; Mitsuhashi, T.; Nojima, T.; Tsukazaki, A. Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO. Nat. Phys. 2016, 12, 42–46.

[9]

Lin, P. H.; Texier, Y.; Taleb-Ibrahimi, A.; Le Fèvre, P.; Bertran, F.; Giannini, E.; Grioni, M.; Brouet, V. Nature of the bad metallic behavior of Fe1.06Te inferred from its evolution in the magnetic state. Phys. Rev. Lett. 2013, 111, 217002.

[10]

Enayat, M.; Sun, Z. X.; Singh, U. R.; Aluru, R.; Schmaus, S.; Yaresko, A.; Liu, Y.; Lin, C. T.; Tsurkan, V.; Loidl, A. et al. Real-space imaging of the atomic-scale magnetic structure of Fe1+yTe. Science 2014, 345, 653–656.

[11]

Trainer, C.; Yim, C. M.; Heil, C.; Giustino, F.; Croitori, D.; Tsurkan, V.; Loidl, A.; Rodriguez, E. E.; Stock, C.; Wahl, P. Manipulating surface magnetic order in iron telluride. Sci. Adv. 2019, 5, eaav3478.

[12]

Nie, Y. F.; Telesca, D.; Budnick, J. I.; Sinkovic, B.; Ramprasad, R.; Wells, B. O. Superconductivity and properties of FeTeOx films. J. Phys. Chem. Solids 2011, 72, 426–429.

[13]

Zhang, Z. T.; Yang, Z. R.; Lu, W. J.; Chen, X. L.; Li, L.; Sun, Y. P.; Xi, C. Y.; Ling, L. S.; Zhang, C. J.; Pi, L. et al. Superconductivity in Fe1.05Te:Ox single crystals. Phys. Rev. B 2013, 88, 214511.

[14]

Hosono, H.; Kuroki, K. Iron-based superconductors: Current status of materials and pairing mechanism. Phys. C:Supercond. Appl. 2015, 514, 399–422.

[15]

Wu, Y. P.; Zhao, D.; Wang, A. F.; Wang, N. Z.; Xiang, Z. J.; Luo, X. G.; Wu, T.; Chen, X. H. Emergent Kondo lattice behavior in iron-based superconductors AFe2As2 (A = K, Rb, Cs). Phys. Rev. Lett. 2016, 116, 147001.

[16]

Wang, Q. Y.; Li, Z.; Zhang, W. H.; Zhang, Z. C.; Zhang, J. S.; Li, W.; Ding, H.; Ou, Y. B.; Deng, P.; Chang, K. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin. Phys. Lett. 2012, 29, 037402.

[17]

Zhang, W. H.; Sun, Y.; Zhang, J. S.; Li, F. S.; Guo, M. H.; Zhao, Y. F.; Zhang, H. M.; Peng, J. P.; Xing, Y.; Wang, H. C. et al. Direct observation of high-temperature superconductivity in one-unit-cell FeSe films. Chin. Phys. Lett. 2014, 31, 017401.

[18]

Lee, J. J.; Schmitt, F. T.; Moore, R. G.; Johnston, S.; Cui, Y. T.; Li, W.; Yi, M.; Liu, Z. K.; Hashimoto, M.; Zhang, Y. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3. Nature 2014, 515, 245–248.

[19]

Song, Q.; Yu, T. L.; Lou, X.; Xie, B. P.; Xu, H. C.; Wen, C. H. P.; Yao, Q.; Zhang, S. Y.; Zhu, X. T.; Guo, J. D. et al. Evidence of cooperative effect on the enhanced superconducting transition temperature at the FeSe/SrTiO3 interface. Nat. Commun. 2019, 10, 758.

[20]

Gong, G. M.; Yang, H. H.; Zhang, Q. H.; Ding, C.; Zhou, J. S.; Chen, Y. J.; Meng, F. Q.; Zhang, Z. Y.; Dong, W. F.; Zheng, F. W. et al. Oxygen vacancy modulated superconductivity in monolayer FeSe on SrTiO3−δ. Phys. Rev. B 2019, 100, 224504.

[21]

Tan, S. Y.; Zhang, Y.; Xia, M.; Ye, Z. R.; Chen, F.; Xie, X.; Peng, R.; Xu, D. F.; Fan, Q.; Xu, H. et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat. Mater. 2013, 12, 634–640.

[22]
ZhangS. Y.GuanJ. Q.JiaX.LiuB.WangW. H.LiF. S.WangL. L.MaX. C.XueQ. K.ZhangJ. D. Role of SrTiO3 phonon penetrating into thin FeSe films in the enhancement of superconductivityPhys. Rev. B201694081116(R)10.1103/PhysRevB.94.08116

Zhang, S. Y.; Guan, J. Q.; Jia, X.; Liu, B.; Wang, W. H.; Li, F. S.; Wang, L. L.; Ma, X. C.; Xue, Q. K.; Zhang, J. D. et al. Role of SrTiO3 phonon penetrating into thin FeSe films in the enhancement of superconductivity. Phys. Rev. B 2016, 94, 081116(R).

[23]

Sun, Y.; Zhang, W. H.; Xing, Y.; Li, F. S.; Zhao, Y. F.; Xia, Z. C.; Wang, L. L.; Ma, X. C.; Xue, Q. K.; Wang, J. High temperature superconducting FeSe films on SrTiO3 substrates. Sci. Rep. 2014, 4, 6040.

[24]

Zhang, Z. C.; Wang, Y. H.; Song, Q.; Liu, C.; Peng, R.; Moler, K. A.; Feng, D. L.; Wang, Y. Y. Onset of the Meissner effect at 65 K in FeSe thin film grown on Nb-doped SrTiO3 substrate. Sci. Bull. 2015, 60, 1301–1304.

[25]

Xu, Y.; Rong, H. T.; Wang, Q. Y.; Wu, D. S.; Hu, Y.; Cai, Y. Q.; Gao, Q.; Yan, H. T.; Li, C.; Yin, C. H. et al. Spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/SrTiO3 films. Nat. Commun. 2021, 12, 2840.

[26]

Liu, C.; Zheng, F. W.; Shen, L.; Liao, M. H.; Wu, R.; Gong, G. M.; Ding, C.; Yang, H. H.; Li, W.; Song, C. L. et al. Anti-PbO-type CoSe film: A possible analog to FeSe superconductors. Supercond. Sci. Technol. 2018, 31, 115011.

[27]

Ding, C.; Gong, G. M.; Liu, Y. Z.; Zheng, F. W.; Zhang, Z. Y.; Yang, H. H.; Li, Z.; Xing, Y.; Ge, J.; He, K. et al. Signature of superconductivity in orthorhombic CoSb monolayer films on SrTiO3 (001). ACS Nano 2019, 13, 10434–10439.

[28]

Chang, K.; Deng, P.; Zhang, T.; Lin, H. C.; Zhao, K.; Ji, S. H.; Wang, L. L.; He, K.; Ma, X. C.; Chen, X. et al. Molecular beam epitaxy growth of superconducting LiFeAs film on SrTiO3 (001) substrate. Europhys. Lett. 2015, 109, 28003.

[29]

Kang, J. H.; Xie, L.; Wang, Y.; Lee, H.; Campbell, N.; Jiang, J. Y.; Ryan, P. J.; Keavney, D. J.; Lee, J. W.; Kim, T. H. et al. Control of epitaxial BaFe2As2 atomic configurations with substrate surface terminations. Nano Lett. 2018, 18, 6347–6352.

[30]
TangC. J.ZhangD.ZangY. Y.LiuC.ZhouG. Y.LiZ.ZhengC.HuX. P.SongC. L.JiS. H. Superconductivity dichotomy in K-coated single and double unit cell FeSe films on SrTiO3Phys. Rev. B201592180507(R)10.1103/PhysRevB.92.18057

Tang, C. J.; Zhang, D.; Zang, Y. Y.; Liu, C.; Zhou, G. Y.; Li, Z.; Zheng, C.; Hu, X. P.; Song, C. L.; Ji, S. H. et al. Superconductivity dichotomy in K-coated single and double unit cell FeSe films on SrTiO3. Phys. Rev. B 2015, 92, 180507(R).

[31]

Zhang, Z. M.; Cai, M.; Li, R.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Ye, Z. J.; Xu, G.; Fu, Y. S.; Zhang, W. H. Controllable synthesis and electronic structure characterization of multiple phases of iron telluride thin films. Phys. Rev. Mater. 2020, 4, 125003.

[32]

Zhang, L.; Singh, D. J.; Du, M. H. Density functional study of excess Fe in Fe1+xTe: Magnetism and doping. Phys. Rev. B 2009, 79, 012506.

[33]
Wei, Z. X.; Ding, C.; Sun, Y. J.; Wang, L.; Xue, Q. K. Preparation of spatially uniform monolayer FeSexTe1–x (0 < x ≤ 1) by topotactic reaction. Nano Res., in press, https://doi.org/10.1007/s12274-022-4718-3.
[34]

Gao, M.; Ma, F. J.; Lu, Z. Y.; Xiang, T. Surface structures of ternary iron arsenides AFe2As2 (A = Ba, Sr, or Ca). Phys. Rev. B 2010, 81, 193409.

[35]

Li, A.; Yin, J. X.; Wang, J. H.; Wu, Z.; Ma, J. H.; Sefat, A. S.; Sales, B. C.; Mandrus, D. G.; McGuire, M. A.; Jin, R. et al. Surface terminations and layer-resolved tunneling spectroscopy of the 122 iron pnictide superconductors. Phys. Rev. B 2019, 99, 134520.

[36]

Yin, J. X.; Wu, X. X.; Li, J.; Wu, Z.; Wang, J. H.; Ting, C. S.; Hor, P. H.; Liang, X. J.; Zhang, C. L.; Dai, P. C. et al. Orbital selectivity of layer-resolved tunneling in the iron-based superconductor Ba0.6K0. 4Fe2As2. Phys. Rev. B 2020, 102, 054515.

[37]

Sato, T.; Nakayama, K.; Sekiba, Y.; Richard, P.; Xu, Y. M.; Souma, S.; Takahashi, T.; Chen, G. F.; Luo, J. L.; Wang, N. L. et al. Band structure and fermi surface of an extremely overdoped iron-based superconductor KFe2As2. Phys. Rev. Lett. 2009, 103, 047002.

[38]
XuN.RichardP.ShiX.van RoekeghemA.QianT.RazzoliE.RienksE.ChenG. F.IekiE.NakayamaK. Possible nodal superconducting gap and Lifshitz transition in heavily hole-doped Ba0.1K0.9Fe2As2Phys. Rev. B201388220508(R)10.1103/PhysRevB.88.220508

Xu, N.; Richard, P.; Shi, X.; van Roekeghem, A.; Qian, T.; Razzoli, E.; Rienks, E.; Chen, G. F.; Ieki, E.; Nakayama, K. et al. Possible nodal superconducting gap and Lifshitz transition in heavily hole-doped Ba0.1K0.9Fe2As2. Phys. Rev. B 2013, 88, 220508(R).

[39]

Hardy, F.; Böhmer, A. E.; Aoki, D.; Burger, P.; Wolf, T.; Schweiss, P.; Heid, R.; Adelmann, P.; Yao, Y. X.; Kotliar, G. et al. Evidence of strong correlations and coherence−incoherence crossover in the iron pnictide superconductor KFe2As2. Phys. Rev. Lett. 2013, 111, 027002.

[40]

Tafti, F. F.; Juneau-Fecteau, A.; Delage, M. È.; René de Cotret, S.; Reid, J. P.; Wang, A. F.; Luo, X. G.; Chen, X. H.; Doiron-Leyraud, N.; Taillefer, L. Sudden reversal in the pressure dependence of Tc in the iron-based superconductor KFe2As2. Nat. Phys. 2013, 9, 349–352.

[41]

Eilers, F.; Grube, K.; Zocco, D. A.; Wolf, T.; Merz, M.; Schweiss, P.; Heid, R.; Eder, R.; Yu, R.; Zhu, J. X. et al. Strain-driven approach to quantum criticality in AFe2As2 with A= K, Rb, and Cs. Phys. Rev. Lett. 2016, 116, 237003.

[42]

Backes, S.; Jeschke, H. O.; Valentí, R. Microscopic nature of correlations in multiorbital AFe2As2 (A = K, Rb, Cs): Hund's coupling versus Coulomb repulsion. Phys. Rev. B 2015, 92, 195128.

[43]
NakajimaY.WangR. X.MetzT.WangX. F.WangL. M.CynnH.WeirS. T.JeffriesJ. R.PaglioneJ. High-temperature superconductivity stabilized by electron-hole interband coupling in collapsed tetragonal phase of KFe2As2 under high pressurePhys. Rev. B201591060508(R)10.1103/PhysRevB.91.060508

Nakajima, Y.; Wang, R. X.; Metz, T.; Wang, X. F.; Wang, L. M.; Cynn, H.; Weir, S. T.; Jeffries, J. R.; Paglione, J. High-temperature superconductivity stabilized by electron-hole interband coupling in collapsed tetragonal phase of KFe2As2 under high pressure. Phys. Rev. B 2015, 91, 060508(R).

[44]
WangB. S.MatsubayashiK.ChengJ. G.TerashimaT.KihouK.IshidaS.LeeC. H.IyoA.EisakiH.UwatokoY. Absence of superconductivity in the collapsed tetragonal phase of KFe2As2 under hydrostatic pressurePhys. Rev. B201694020502(R)10.1103/PhysRevB.94.020502

Wang, B. S.; Matsubayashi, K.; Cheng, J. G.; Terashima, T.; Kihou, K.; Ishida, S.; Lee, C. H.; Iyo, A.; Eisaki, H.; Uwatoko, Y. Absence of superconductivity in the collapsed tetragonal phase of KFe2As2 under hydrostatic pressure. Phys. Rev. B 2016, 94, 020502(R).

[45]

Shen, S. D.; Zhang, X. W.; Wo, H. L.; Shen, Y.; Feng, Y.; Schneidewind, A.; Čermák, P.; Wang, W. B.; Zhao, J. Neutron spin resonance in the heavily hole-doped KFe2As2 superconductor. Phys. Rev. Lett. 2020, 124, 017001.

[46]

Mizuguchi, Y.; Hara, Y.; Deguchi, K.; Tsuda, S.; Yamaguchi, T.; Takeda, K.; Kotegawa, H.; Tou, H.; Takano, Y. Anion height dependence of Tc for the Fe-based superconductor. Supercond. Sci. Technol. 2010, 23, 054013.

[47]

Takeda, S.; Ueda, S.; Yamagishi, T.; Agatsuma, S.; Takano, S.; Mitsuda, A.; Naito, M. Molecular beam epitaxy growth of superconducting Sr1–xKxFe2As2 and Ba1–xKxFe2As2. Appl. Phys. Express 2010, 3, 093101.

[48]

Ueda, S.; Yamagishi, T.; Takeda, S.; Agatsuma, S.; Takano, S.; Mitsuda, A.; Naito, M. MBE growth of Fe-based superconducting films. Phys. C:Supercond. Appl. 2011, 471, 1167–1173.

[49]

Yamagishi, T.; Ueda, S.; Takeda, S.; Takano, S.; Mitsuda, A.; Naito, M. A study of the doping dependence of Tc in Ba1–xKxFe2As2 and Sr1–xKxFe2As2 films grown by molecular beam epitaxy. Phys. C:Supercond. Appl. 2011, 471, 1177–1180.

[50]

Lee, S.; Jiang, J.; Zhang, Y.; Bark, C. W.; Weiss, J. D.; Tarantini, C.; Nelson, C. T.; Jang, H. W.; Folkman, C. M.; Baek, S. H. et al. Template engineering of Co-doped BaFe2As2 single-crystal thin films. Nat. Mater. 2010, 9, 397–402.

Publication history
Copyright
Acknowledgements

Publication history

Received: 30 June 2022
Revised: 18 August 2022
Accepted: 24 August 2022
Published: 13 September 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 12074210, 51788104, 11790311, and 12141403), the Basic and Applied Basic Research Major Programme of Guangdong Province of China (No. 2021B0301030003), and Jihua Laboratory (Project No. X210141TL210).

Return