AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Stable cycling of practical high-voltage LiCoO2 pouch cell via electrolyte modification

Chao Tang1,2,§Yawei Chen1,§Zhengfeng Zhang3,§Wenqiang Li2Junhua Jian2Yulin Jie1Fanyang Huang1Yehu Han1Wanxia Li1Fuping Ai1Ruiguo Cao1Pengfei Yan3( )Yuhao Lu2( )Shuhong Jiao1( )
Hefei National Laboratory for Physical Science at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Ningde Amperex Technology limited (ATL), Ningde 352100, China
Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China

§ Chao Tang, Yawei Chen, and Zhengfeng Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

The electrochemical performance and the work mechanism of 1,3,6-hexanetricarbonitrile (HTCN) additive on high-voltage LiCoO2 cathode for practical pouch cells are comprehensively studied.

Abstract

Nitriles as efficient electrolyte additives are widely used in high-voltage lithium-ion batteries. However, their working mechanisms are still mysterious, especially in practical high-voltage LiCoO2 pouch lithium-ion batteries. Herein, we adopt a tridentate ligand-containing 1,3,6-hexanetricarbonitrile (HTCN) as an effective electrolyte additive to shed light on the mechanism of stabilizing high-voltage LiCoO2 cathode (4.5 V) through nitriles. The LiCoO2/graphite pouch cells with the HTCN additive electrolyte possess superior cycling performance, 90% retention of the initial capacity after 800 cycles at 25 °C, and 72% retention after 500 cycles at 45 °C, which is feasible for practical application. Such an excellent cycling performance can be attributed to the stable interface: The HTCN molecules with strong electron-donating ability participate in the construction of cathode-electrolyte interphase (CEI) through coordinating with Co ions, which suppresses the decomposition of electrolyte and improves the structural stability of LiCoO2 during cycling. In summary, the work recognizes a coordinating-based interphase-forming mechanism as an effective strategy to optimize the performance of high voltage LiCoO2 cathode with appropriate electrolyte additives for practical pouch batteries.

Electronic Supplementary Material

Download File(s)
12274_2022_4955_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 < x < −1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789.

[2]

Wang, L. L.; Chen, B. B.; Ma, J.; Cui, G. L.; Chen, L. Q. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem. Soc. Rev. 2018, 47, 6505–6602.

[3]

Ceder, G.; Chiang, Y. M.; Sadoway, D. R.; Aydinol, M. K.; Jang, Y. I.; Huang, B. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 1998, 392, 694–696.

[4]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[5]

Zhang, X. D.; Yue, F. S.; Liang, J. Y.; Shi, J. L.; Li, H.; Guo, Y. G. Structure design of cathode electrodes for solid-state batteries: Challenges and progress. Small Struct. 2020, 1, 2000042.

[6]

Chen, Z. H.; Dahn, J. R. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim. Acta 2004, 49, 1079–1090.

[7]

Liu, Q.; Su, X.; Lei, D.; Qin, Y.; Wen, J. G.; Guo, F. M.; Wu, Y. A.; Rong, Y. C.; Kou, R. H.; Xiao, X. H. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 2018, 3, 936–943.

[8]

Zhang, J. N.; Li, Q. H.; Ouyang, C. Y.; Yu, X. Q.; Ge, M. Y.; Huang, X. J.; Hu, E. Y.; Ma, C.; Li, S. F.; Xiao, R. J. et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 2019, 4, 594–603.

[9]

MacNeil, D. D.; Dahn, J. R. The reactions of Li0.5CoO2 with nonaqueous solvents at elevated temperatures. J. Electrochem. Soc. 2002, 149, A912–A919.

[10]

Mao, S. L.; Shen, Z. Y.; Zhang, W. D.; Wu, Q.; Wang, Z. Y.; Lu, Y. Y. Outside-in nanostructure fabricated on LiCoO2 surface for high-voltage lithium-ion batteries. Adv. Sci. 2022, 9, 2104841.

[11]

Su, Y. F.; Zhang, Q. Y.; Chen, L.; Bao, L. Y.; Lu, Y.; Chen, S.; Wu, F. Effects of ZrO2 coating on Ni-rich LiNi0.8Co0.1Mn0.1O2 cathodes with enhanced cycle stabilities. Acta Phys. Chim. Sin. 2021, 37, 2005062.

[12]

Zhang, S. D.; Liu, Y.; Qi, M. Y.; Cao, A. M. Localized surface doping for improved stability of high energy cathode materials. Acta Phys. Chim. Sin. 2021, 37, 2011007.

[13]

Qian, J. W.; Liu, L.; Yang, J. X.; Li, S. Y.; Wang, X.; Zhuang, H. L.; Lu, Y. Y. Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries. Nat. Commun. 2018, 9, 4918.

[14]

Klein, S.; Harte, P.; van Wickeren, S.; Borzutzki, K.; Röser, S.; Bärmann, P.; Nowak, S.; Winter, M.; Placke, T.; Kasnatscheew, J. Re-evaluating common electrolyte additives for high-voltage lithium ion batteries. Cell Rep. Phys. Sci. 2021, 2, 100521.

[15]

Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550.

[16]

Zhan, C.; Wu, T. P.; Lu, J.; Amine, K. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes-a critical review. Energy Environ. Sci. 2018, 11, 243–257.

[17]

Joshi, T.; Eom, K.; Yushin, G.; Fuller, T. F. Effects of dissolved transition metals on the electrochemical performance and SEI growth in lithium-ion batteries. J. Electrochem. Soc. 2014, 161, A1915–A1921.

[18]

Fan, X. L.; Wang, C. S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives. Chem. Soc. Rev. 2021, 50, 10486–10566.

[19]

Markevich, E.; Salitra, G.; Aurbach, D. Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries. ACS Energy Lett. 2017, 2, 1337–1345.

[20]

Chen, Y.; Zhao, W. M.; Zhang, Q. H.; Yang, G. Z.; Zheng, J. M.; Tang, W.; Xu, Q. J.; Lai, C. Y.; Yang, J. H.; Peng, C. X. Armoring LiNi1/3Co1/3Mn1/3O2 cathode with reliable fluorinated organic–inorganic hybrid interphase layer toward durable high rate battery. Adv. Funct. Mater. 2020, 30, 2000396.

[21]

Su, C. C.; He, M. N.; Amine, R.; Chen, Z. H.; Sahore, R.; Dietz Rago, N.; Amine, K. Cyclic carbonate for highly stable cycling of high voltage lithium metal batteries. Energy Storage Mater. 2019, 17, 284–292.

[22]

Yu, Z. A.; Yu, W. L.; Chen, Y. L.; Mondonico, L.; Xiao, X.; Zheng, Y.; Liu, F.; Hung, S. T.; Cui, Y.; Bao, Z. N. Tuning fluorination of linear carbonate for lithium-ion batteries. J. Electrochem. Soc. 2022, 169, 040555.

[23]

Xiao, P. T.; Zhao, Y.; Piao, Z. H.; Li, B. H.; Zhou, G. M.; Cheng, H. M. A nonflammable electrolyte for ultrahigh-voltage (4.8 V-class) Li||NCM811 cells with a wide temperature range of 100 °C. Energy Environ. Sci. 2022, 15, 2435–2444.

[24]

Aurbach, D.; Markevich, E.; Salitra, G. High energy density rechargeable batteries based on Li metal anodes. The role of unique surface chemistry developed in solutions containing fluorinated organic Co-solvents. J. Am. Chem. Soc. 2021, 143, 21161–21176.

[25]

Tan, S.; Shadike, Z.; Li, J. Z.; Wang, X. L.; Yang, Y.; Lin, R. Q.; Cresce, A.; Hu, J. T.; Hunt, A.; Waluyo, I. et al. Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V. Nat. Energy 2022, 7, 484–494.

[26]

Liu, Q. Y.; Yang, G. J.; Liu, S.; Han, M.; Wang, Z. X.; Chen, L. Q. Trimethyl borate as film-forming electrolyte additive to improve high-voltage performances. ACS Appl. Mater. Interfaces 2019, 11, 17435–17443.

[27]

Li, Y. C.; Wan, S.; Veith, G. M.; Unocic, R. R.; Paranthaman, M. P.; Dai, S.; Sun, X. G. A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7 V. Adv. Energy Mater. 2017, 7, 1601397.

[28]

Li, Y. C.; Veith, G. M.; Browning, K. L.; Chen, J. H.; Hensley, D. K.; Paranthaman, M. P.; Dai, S.; Sun, X. G. Lithium malonatoborate additives enabled stable cycling of 5 V lithium metal and lithium ion batteries. Nano Energy 2017, 40, 9–19.

[29]

Yue, H. Y.; Yang, Y. E.; Xiao, Y.; Dong, Z. Y.; Cheng, S. G.; Yin, Y. H.; Ling, C.; Yang, W. G.; Yu, Y. H.; Yang, S. T. Boron additive passivated carbonate electrolytes for stable cycling of 5 V lithium-metal batteries. J. Mater. Chem. A 2019, 7, 594–602.

[30]

Madec, L.; Xia, J.; Petibon, R.; Nelson, K. J.; Sun, J. P.; Hill, I. G.; Dahn, J. R. Effect of sulfate electrolyte additives on LiNi1/3Mn1/3Co1/3O2/graphite pouch cell lifetime: Correlation between XPS surface studies and electrochemical test results. J. Phys. Chem. C 2014, 118, 29608–29622.

[31]

Xu, G. J.; Pang, C. G.; Chen, B. B.; Ma, J.; Wang, X.; Chai, J. C.; Wang, Q. F.; An, W. Z.; Zhou, X. H.; Cui, G. L. et al. Prescribing functional additives for treating the poor performances of high-voltage (5 V-class) LiNi0.5Mn1. 5O4/MCMB Li-ion batteries. Adv. Energy Mater. 2018, 8, 1701398.

[32]

Lin, Y. L.; Xu, M. Q.; Wu, S. P.; Tian, Y. Y.; Cao, Z. G.; Xing, L. D.; Li, W. S. Insight into the mechanism of improved interfacial properties between electrodes and electrolyte in the graphite/LiNi0.6Mn0.2Co0.2O2 cell via incorporation of 4-propyl-[1,3,2]dioxathiolane-2,2-dioxide (PDTD). ACS Appl. Mater. Interfaces 2018, 10, 16400–16409.

[33]

Kim, Y. S.; Kim, T. H.; Lee, H.; Song, H. K. Electronegativity-induced enhancement of thermal stability by succinonitrile as an additive for Li ion batteries. Energy Environ. Sci. 2011, 4, 4038–4045.

[34]

Lee, S. H.; Hwang, J. Y.; Park, S. J.; Park, G. T.; Sun, Y. K. Adiponitrile (C6H8N2): A new bi-functional additive for high-performance Li-metal batteries. Adv. Funct. Mater. 2019, 29, 1902496.

[35]

Yang, X. R.; Lin, M.; Zheng, G. R.; Wu, J.; Wang, X. S.; Ren, F. C.; Zhang, W. G.; Liao, Y.; Zhao, W. M.; Zhang, Z. R. et al. Enabling stable high-voltage LiCoO2 operation by using synergetic interfacial modification strategy. Adv. Funct. Mater. 2020, 30, 2004664.

[36]

Ruan, D. G.; Chen, M.; Wen, X. Y.; Li, S. Q.; Zhou, X. G.; Che, Y. X.; Chen, J. K.; Xiang, W. J.; Li, S. L.; Wang, H. et al. In situ constructing a stable interface film on high-voltage LiCoO2 cathode via a novel electrolyte additive. Nano Energy 2021, 90, 106535.

[37]

Fu, A.; Lin, J. D.; Zhang, Z. F.; Xu, C. J.; Zou, Y.; Liu, C. Y.; Yan, P. F.; Wu, D. Y.; Yang, Y.; Zheng, J. M. Synergistical stabilization of Li metal anodes and LiCoO2 cathodes in high-voltage Li∥LiCoO2 batteries by potassium selenocyanate (KSeCN) additive. ACS Energy Lett. 2022, 7, 1364–1373.

[38]

Ping, P.; Wang, Q. S.; Sun, J. H.; Xia, X.; Dahn, J. R. Studies of the effect of triphenyl phosphate on positive electrode symmetric Li-ion cells. J. Electrochem. Soc. 2012, 159, A1467–A1473.

[39]

Liao, B.; Li, H. Y.; Xu, M. Q.; Xing, L. D.; Liao, Y. H.; Ren, X. B.; Fan, W. Z.; Yu, L.; Xu, K.; Li, W. S. Designing low impedance interface films simultaneously on anode and cathode for high energy batteries. Adv. Energy Mater. 2018, 8, 1800802.

[40]

Zhu, X. M.; Jiang, X. Y.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Bis(2,2,2-trifluoroethyl) ethylphosphonate as novel high-efficient flame retardant additive for safer lithium-ion battery. Electrochim. Acta 2015, 165, 67–71.

[41]

Zhao, W. M.; Zheng, B. Z.; Liu, H. D.; Ren, F. C.; Zhu, J. P.; Zheng, G. R.; Chen, S. J.; Liu, R.; Yang, X. R.; Yang, Y. Toward a durable solid electrolyte film on the electrodes for Li-ion batteries with high performance. Nano Energy 2019, 63, 103815.

[42]

Yang, X. R.; Chen, J. W.; Zheng, Q. F.; Tu, W. Q.; Xing, L. D.; Liao, Y. H.; Xu, M. Q.; Huang, Q. M.; Cao, G. Z.; Li, W. S. Mechanism of cycling degradation and strategy to stabilize a nickel-rich cathode. J. Mater. Chem. A 2018, 6, 16149–16163.

[43]

Ye, C. C.; Tu, W. Q.; Yin, L. M.; Zheng, Q. F.; Wang, C.; Zhong, Y. T.; Zhang, Y. G.; Huang, Q. M.; Xu, K.; Li, W. S. Converting detrimental HF in electrolytes into a highly fluorinated interphase on cathodes. J. Mater. Chem. A 2018, 6, 17642–17652.

[44]

Ma, Q. T.; Zhang, X. Y.; Wang, A. X.; Xia, Y. Y.; Liu, X. J.; Luo, J. Y. Stabilizing solid electrolyte interphases on both anode and cathode for high areal capacity, high-voltage lithium metal batteries with high Li utilization and lean electrolyte. Adv. Funct. Mater. 2020, 30, 2002824.

[45]

Zhi, H. Z.; Xing, L. D.; Zheng, X. W.; Xu, K.; Li, W. S. Understanding how nitriles stabilize electrolyte/electrode interface at high voltage. J. Phys. Chem. Lett. 2017, 8, 6048–6052.

[46]

Xian, F.; Li, J. D.; Hu, Z. L.; Zhou, Q.; Wang, C.; Lu, C. L.; Zhang, Z. Y.; Dong, S. M.; Mou, C. B.; Cui, G. L. Investigation of the cathodic interfacial stability of a nitrile electrolyte and its performance with a high-voltage LiCoO2 cathode. Chem. Commun. 2020, 56, 4998–5001.

Nano Research
Pages 3864-3871
Cite this article:
Tang C, Chen Y, Zhang Z, et al. Stable cycling of practical high-voltage LiCoO2 pouch cell via electrolyte modification. Nano Research, 2023, 16(3): 3864-3871. https://doi.org/10.1007/s12274-022-4955-5
Topics:
Part of a topical collection:

1781

Views

6

Crossref

5

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 26 June 2022
Revised: 05 August 2022
Accepted: 24 August 2022
Published: 22 September 2022
© Tsinghua University Press 2022
Return