Journal Home > Volume 16 , Issue 2

Transition metal selenides have aroused great attention in recent years due to their high theoretical capacity. However, the huge volume fluctuation generated by conversion reaction during the charge/discharge process results in the significant electrochemical performance reduction. Herein, the carbon-regulated copper(I) selenide (Cu2Se@C) is designed to significantly promote the interface stability and ion diffusion for selenide electrodes. The systematic X-ray spectroscopies characterizations and density functional theory (DFT) simulations reveal that the Cu–Se–C bonding forming on the surface of Cu2Se not only improves the electronic conductivity of Cu2Se@C but also retards the volume change during electrochemical cycling, playing a pivotal role in interface regulation. Consequently, the storage kinetics of Cu2Se@C is mainly controlled by the capacitance process diverting from the ion diffusion-controlled process of Cu2Se. When employed this distinctive Cu2Se@C as anode active material in Li coin cell configuration, the ultrahigh specific capacity of 810.3 mA·h·g−1 at 0.1 A·g−1 and the capacity retention of 83% after 1,500 cycles at 5 A·g−1 is achieved, implying the best Cu-based Li+-storage capacity reported so far. This strategy of heterojunction combined with chemical bonding regulation opens up a potential way for the development of advanced electrodes for battery storage systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interface regulation of Cu2Se via Cu–Se–C bonding for superior lithium-ion batteries

Show Author's information Kefu Zhu1,§Shiqiang Wei1,§Quan Zhou1,§Shuangming Chen1( )Yunxiang Lin2Pengjun Zhang1Yuyang Cao1Changda Wang1Yixiu Wang1Yujian Xia1Dengfeng Cao1Zeinab Mohamed1Xin Guo1Xiya Yang1Xiaojun Wu3Li Song1( )
National Synchrotron Radiation Laboratory, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230029, China
Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
School of Chemistry and Material Sciences, University of Science and Technology of China, Hefei 230026, China

§ Kefu Zhu, Shiqiang Wei, and Quan Zhou contributed equally to this work.

Abstract

Transition metal selenides have aroused great attention in recent years due to their high theoretical capacity. However, the huge volume fluctuation generated by conversion reaction during the charge/discharge process results in the significant electrochemical performance reduction. Herein, the carbon-regulated copper(I) selenide (Cu2Se@C) is designed to significantly promote the interface stability and ion diffusion for selenide electrodes. The systematic X-ray spectroscopies characterizations and density functional theory (DFT) simulations reveal that the Cu–Se–C bonding forming on the surface of Cu2Se not only improves the electronic conductivity of Cu2Se@C but also retards the volume change during electrochemical cycling, playing a pivotal role in interface regulation. Consequently, the storage kinetics of Cu2Se@C is mainly controlled by the capacitance process diverting from the ion diffusion-controlled process of Cu2Se. When employed this distinctive Cu2Se@C as anode active material in Li coin cell configuration, the ultrahigh specific capacity of 810.3 mA·h·g−1 at 0.1 A·g−1 and the capacity retention of 83% after 1,500 cycles at 5 A·g−1 is achieved, implying the best Cu-based Li+-storage capacity reported so far. This strategy of heterojunction combined with chemical bonding regulation opens up a potential way for the development of advanced electrodes for battery storage systems.

Keywords: lithium-ion battery, Cu–Se–C bonding, interface regulation, X-ray absorption spectroscopy (XAS), operando synchrotron radiation X-ray diffraction (SRXRD)

References(51)

[1]

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

[2]

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

[3]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[4]

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

[5]

Huang, Y.; Fang, Y. J.; Lu, X. F.; Luan, D. Y.; Lou, X. W. Co3O4 hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage. Angew. Chem., Int. Ed. 2020, 59, 19914–19918.

[6]

Wang, Q. S.; Meng, T.; Li, Y. H.; Yang, J. D.; Huang, B. B.; Ou, S. Q.; Meng, C. G.; Zhang, S. Q.; Tong, Y. X. Consecutive chemical bonds reconstructing surface structure of silicon anode for high-performance lithium-ion battery. Energy Stor. Mater. 2021, 39, 354–364.

[7]

Yang, C.; Feng, J. R.; Lv, F.; Zhou, J. H.; Lin, C. F.; Wang, K.; Zhang, Y. L.; Yang, Y.; Wang, W.; Li, J. B. et al. Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater. 2018, 30, 1800036.

[8]

Zhang, J.; Liu, Y. C.; Liu, H.; Song, Y. Z.; Sun, S. D.; Li, Q.; Xing, X. R.; Chen, J. Urchin-like Fe3Se4 hierarchitectures: A novel pseudocapacitive sodium-ion storage anode with prominent rate and cycling properties. Small 2020, 16, 2000504.

[9]

Xiao, Y. H.; Zhao, X. B.; Wang, X. Z.; Su, D. C.; Bai, S.; Chen, W.; Fang, S. M.; Zhou, L. M.; Cheng, H. M.; Li, F. A nanosheet array of Cu2Se intercalation compound with expanded interlayer space for sodium ion storage. Adv. Energy Mater. 2020, 10, 2000666.

[10]

Yue, L. C.; Wang, D.; Wu, Z. G.; Zhao, W. X.; Ren, Y. C.; Zhang, L. C.; Zhong, B. H.; Li, N.; Tang, B.; Liu, Q. et al. Polyrrole-encapsulated Cu2Se nanosheets in situ grown on Cu mesh for high stability sodium-ion battery anode. Chem. Eng. J. 2022, 433, 134477.

[11]

Yuan, H. C.; Wang, N.; NuLi, Y.; Yang, J.; Wang, J. L. Hybrid Mg2+/Li+ batteries with Cu2Se cathode based on displacement reaction. Electrochim. Acta 2018, 261, 503–512.

[12]

Jiang, J. L.; Li, H.; Fu, T.; Hwang, B. J.; Li, X.; Zhao, J. B. One-dimensional Cu2−xSe nanorods as the cathode material for high-performance aluminum-ion battery. ACS Appl. Mater. Interfaces 2018, 10, 17942–17949.

[13]

Ye, H.; Yin, Y. X.; Zhang, S. F.; Guo, Y. G. Advanced Se-C nanocomposites: A bifunctional electrode material for both Li-Se and Li-ion batteries. J. Mater. Chem. A 2014, 2, 13293–13298.

[14]

Wang, K. X.; Li, X. H.; Chen, J. S. Surface and interface engineering of electrode materials for lithium-ion batteries. Adv. Mater. 2015, 27, 527–545.

[15]

Diao, J. X.; Qiu, Y.; Liu, S. Q.; Wang, W. T.; Chen, K.; Li, H. L.; Yuan, W. Y.; Qu, Y. T.; Guo, X. H. Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: A highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Adv. Mater. 2020, 32, 1905679.

[16]

Xiao, S. H.; Li, Z. Z.; Liu, J. T.; Song, Y. S.; Li, T. S.; Xiang, Y.; Chen, J. S.; Yan, Q. Y. Se–C bonding promoting fast and durable Na+ storage in yolk–shell SnSe2@Se-C. Small 2020, 16, 2002486.

[17]

Zhang, Y. K.; Lin, Y. X.; Jiang, H. L.; Wu, C. Q.; Liu, H. J.; Wang, C. D.; Chen, S. M.; Duan, T.; Song, L. Well-defined cobalt catalyst with N-doped carbon layers enwrapping: The correlation between surface atomic structure and electrocatalytic property. Small 2018, 14, 1702074.

[18]

Xiao, J. Y.; Liu, H. D.; Huang, J. M.; Lu, Y.; Zhang, L. Decahedron Cu1.8Se/C nano-composites derived from metal–organic framework Cu-BTC as anode materials for high performance lithium-ion batteries. Appl. Surf. Sci. 2020, 526, 146746.

[19]

Jin, R. C.; Meng, M.; Zhang, S. H.; Yang, L. X.; Li, G. H. CNTs@C@Cu2−xSe hybrid materials: An advanced electrode for high performance lithium batteries and supercapacitors. Energy Technol. 2018, 6, 2179–2187.

[20]

Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 2015, 87, 1051–1069.

[21]

Zhu, K. F.; Wei, S. Q.; Shou, H. W.; Shen, F. R.; Chen, S. M.; Zhang, P. J.; Wang, C. D.; Cao, Y. Y.; Guo, X.; Luo, M. et al. Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries. Nat. Commun. 2021, 12, 6878.

[22]

Jin, R. C.; Liu, X. G.; Yang, L. X.; Li, G. H.; Gao, S. M. Sandwich-like Cu2−xSe@C@MoSe2 nanosheets as an improved-performance anode for lithium-ion battery. Electrochim. Acta 2018, 259, 841–849.

[23]

Zhao, X.; Cai, W.; Yang, Y.; Song, X. D.; Neale, Z.; Wang, H. E.; Sui, J. H.; Cao, G. Z. MoSe2 nanosheets perpendicularly grown on graphene with Mo–C bonding for sodium-ion capacitors. Nano Energy 2018, 47, 224–234.

[24]

Scimeca, M. R.; Yang, F.; Zaia, E.; Chen, N.; Zhao, P.; Gordon, M. P.; Forster, J. D.; Liu, Y. S.; Guo, J. H.; Urban, J. J. et al. Rapid stoichiometry control in Cu2Se thin films for room-temperature power factor improvement. ACS Appl. Energy Mater. 2019, 2, 1517–1525.

[25]

Jiang, H. L.; He, Q.; Wang, C. D.; Liu, H. J.; Zhang, Y. K.; Lin, Y. X.; Zheng, X. S.; Chen, S. M.; Ajayan, P. M.; Song, L. Definitive structural identification toward molecule-type sites within 1D and 2D carbon-based catalysts. Adv. Energy Mater. 2018, 8, 1800436.

[26]
KuznetsovaA.PopovaI.YatesJ. T. Jr.BronikowskiM. J.HuffmanC. B.LiuJ.SmalleyR. E.HwuH. H.ChenJ. G. Oxygen-containing functional groups on single-wall carbon nanotubes:  NEXAFS and vibrational spectroscopic studies J. Am. Chem. Soc.2001123106991070410.1021/ja011021b

Kuznetsova, A.; Popova, I.; Yates, J. T. Jr.; Bronikowski, M. J.; Huffman, C. B.; Liu, J.; Smalley, R. E.; Hwu, H. H.; Chen, J. G. Oxygen-containing functional groups on single-wall carbon nanotubes:  NEXAFS and vibrational spectroscopic studies. J. Am. Chem. Soc. 2001, 123, 10699–10704.

[27]

Xiang, T.; Tao, S.; Xu, W. Y.; Fang, Q.; Wu, C. Q.; Liu, D. B.; Zhou, Y.; Khalil, A.; Muhammad, Z.; Chu, W. S. et al. Stable 1T-MoSe2 and carbon nanotube hybridized flexible film: Binder-free and high-performance Li-ion anode. ACS Nano 2017, 11, 6483–6491.

[28]
LuC. X.LiA. R.LiG. Z.YanY.ZhangM. Y.YangQ. L.ZhouW.GuoL. S-decorated porous Ti3C2 MXene combined with in situ forming Cu2Se as effective shuttling interrupter in Na-Se batteriesAdv. Mater.202133200841410.1002/adma.202008414

Lu, C. X.; Li, A. R.; Li, G. Z.; Yan, Y.; Zhang, M. Y.; Yang, Q. L.; Zhou, W.; Guo, L. S-decorated porous Ti3C2 MXene combined with in situ forming Cu2Se as effective shuttling interrupter in Na-Se batteries. Adv. Mater. 2021, 33, 2008414.

[29]

Cheng, D. L.; Yang, L. C.; Hu, R. Z.; Liu, J. W.; Che, R. C.; Cui, J.; Wu, Y. N.; Chen, W. Y.; Huang, J. L.; Zhu, M. et al. Sn–C and Se–C Co-bonding SnSe/Few-layered graphene micro-nano structure: Route to a densely compacted and durable anode for lithium/sodium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 36685–36696.

[30]

Yang, K. W.; Zhang, X. X.; Song, K. M.; Zhang, J. Y.; Liu, C. T.; Mi, L. W.; Wang, Y. Y.; Chen, W. H. Se–C bond and reversible SEI in facile synthesized SnSe2⊂3D carbon induced stable anode for sodium-ion batteries. Electrochim. Acta 2020, 337, 135783.

[31]

He, Q.; Yu, B.; Li, Z. H.; Zhao, Y. Density functional theory for battery materials. Energy Environ. Mater. 2019, 2, 264–279.

[32]

Cao, D. F.; Moses, O. A.; Sheng, B. B.; Chen, S. M.; Pan, H. B.; Wu, L. H.; Shou, H. W.; Xu, W. J.; Li, D. D.; Zheng, L. R. et al. Anomalous self-optimization of sulfate ions for boosted oxygen evolution reaction. Sci. Bull. 2021, 66, 553–561.

[33]

Liu, Q.; Li, X. L.; Xiao, Z. R.; Zhou, Y.; Chen, H. P.; Khalil, A.; Xiang, T.; Xu, J. Q.; Chu, W. S.; Wu, X. J. et al. Stable metallic 1T-WS2 nanoribbons intercalated with ammonia ions: The correlation between structure and electrical/optical properties. Adv. Mater. 2015, 27, 4837–4844.

[34]

Yue, H. L.; Tian, Q.; Wang, G. M.; Jin, R. C.; Wang, Q. Y.; Gao, S. M. Construction of Sb2Se3 nanocrystals on Cu2−xSe@C nanosheets for high performance lithium storage. New J. Chem. 2019, 43, 14066–14073.

[35]

Li, H.; Jiang, J. L.; Wang, F.; Huang, J. X.; Wang, Y. H.; Zhang, Y. Y.; Zhao, J. B. Facile synthesis of rod-like Cu2−xSe and insight into its improved lithium-storage property. ChemSusChem 2017, 10, 2235–2241.

[36]

Li, J. B.; Yan, D.; Lu, T.; Yao, Y. F.; Pan, L. K. An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem. Eng. J. 2017, 325, 14–24.

[37]

Zeng, L. X.; Fang, Y. X.; Xu, L. H.; Zheng, C.; Yang, M. Q.; He, J. F.; Xue, H.; Qian, Q. R.; Wei, M. D.; Chen, Q. H. Rational design of few-layer MoSe2 confined within ZnSe-C hollow porous spheres for high-performance lithium-ion and sodium-ion batteries. Nanoscale 2019, 11, 6766–6775.

[38]

Yu, L. T.; Qin, L. S.; Xu, X. J.; Kim, K.; Liu, J.; Kang, J.; Ho Kim, K. SnSex (x = 1 and 2) nanoparticles encapsulated in carbon nanospheres with reversible electrochemical behaviors for lithium-ion half/full cells. Chem. Eng. J. 2022, 431, 133463.

[39]

Ma, D. J.; Zhu, Q. L.; Li, X. T.; Gao, H. C.; Wang, X. F.; Kang, X. W.; Tian, Y. Unraveling the impact of ether and carbonate electrolytes on the solid-electrolyte interface and the electrochemical performances of ZnSe@C core–shell composites as anodes of lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 8009–8017.

[40]

Liu, Q.; Hou, J. G.; Hao, Q.; Huang, P.; Xu, C. X.; Zhou, Q. X.; Zhou, J.; Liu, H. Nitrogen-doped carbon encapsulated hollow ZnSe/CoSe2 nanospheres as high performance anodes for lithium-ion batteries. Nanoscale 2020, 12, 22778–22786.

[41]

Lu, S. Y.; Wu, H.; Xu, S. Y.; Wang, Y. K.; Zhao, J. Y.; Li, Y. H.; Abdelkader, A. M.; Li, J.; Wang, W.; Xi, K. et al. Iron selenide microcapsules as universal conversion-typed anodes for alkali metal-ion batteries. Small 2021, 17, 2005745.

[42]

Wei, S. Q.; Wang, C. D.; Chen, S. M.; Zhang, P. J.; Zhu, K. F.; Wu, C. Q.; Song, P.; Wen, W.; Song, L. Dial the mechanism switch of VN from conversion to intercalation toward long cycling sodium-ion battery. Adv. Energy Mater. 2020, 10, 1903712.

[43]

Zhang, N.; Dong, Y.; Jia, M.; Bian, X.; Wang, Y. Y.; Qiu, M. D.; Xu, J. Z.; Liu, Y. C.; Jiao, L. F.; Cheng, F. Y. Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 2018, 3, 1366–1372.

[44]

Wei, S. Q.; Chen, S. M.; Su, X. Z.; Qi, Z. H.; Wang, C. D.; Ganguli, B. B.; Zhang, P. J.; Zhu, K. F.; Cao, Y. Y.; He, Q. et al. Manganese buffer induced high-performance disordered MnVO cathodes in zinc batteries. Energy Environ. Sci. 2021, 14, 3954–3964.

[45]

Ressler, T. WinXAS: A program for X-ray absorption spectroscopy data analysis under MS-windows. J. Synchrotron Rad. 1998, 5, 118–122.

[46]

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

[47]

Kresse, G.; Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[48]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[49]

Blöchl, P. E.; Jepsen, O.; Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223–16233.

[50]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[51]

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

File
12274_2022_4953_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 June 2022
Revised: 04 August 2022
Accepted: 24 August 2022
Published: 30 September 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported in part by the National Key Research and Development Program of China (No. 2020YFA0405800), the National Natural Science Foundation of China (NSFC, Nos. U1932201 and U2032113), Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS) (No. 2022457), CAS Collaborative Innovation Program of Hefei Science Center (No. 2020HSC-CIP002), CAS International Partnership Program (No. 211134KYSB20190063), and the Fundamental Research Funds for the Central Universities (No. WK2060000039). L.S. acknowledges the support from the Institute of Energy, Hefei Comprehensive National Science Center, University Synergy Innovation Program of Anhui Province (No. GXXT-2020-002). The authors thank the Beijing Synchrotron Radiation Facility (BSRF, 1W1B), Shanghai Synchrotron Radiation Facility (SSRF, BL14W1 and 14B1), the Hefei Synchrotron Radiation Facility (MCD-A and MCD-B Soochow Beamline for Energy Materials at National Synchrotron Radiation Laboratory (NSRL)), and the University of Science and Technology of China (USTC) Center for Micro and Nanoscale Research and Fabrication for helps in characterizations.

Return