Journal Home > Volume 16 , Issue 2

Developing a novel photothermal catalyst for efficient mineralization of volatile organic compounds (VOCs) is of great significance to control air pollution. Herein, for the first-time, a spinel Cu1.5Mn1.5O4 nanomaterial with enhanced surface lattice oxygen activation was successfully obtained by a novel light-driven in situ reconstruction strategy from its precursor (CuMnO2) for efficient toluene mineralization. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) analyses confirm that the CuMnO2 phase was converted into spinel Cu1.5Mn1.5O4 phase under full spectrum light irradiation. Ultraviolet–visible–near infrared ray (UV–vis–NIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) analysis, and density functional theory (DFT) calculations determine that the strong near-infrared absorption ability and low dissociation energy of oxygen bond in Cu1.5Mn1.5O4 are beneficial to its surface lattice oxygen activation. Furthermore, O2-temperature programmed desorption (TPD) and in situ diffuse reflectance infrared transform spectroscopy (DRIFTS) further indicate that the surface lattice oxygen of the Cu1.5Mn1.5O4 is easily activated under light irradiation, which can promote ring opening of toluene. This research endows a new design of photothermal nanomaterial with enhanced lattice oxygen activation for deep oxidation of VOCs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A novel Cu1.5Mn1.5O4 photothermal catalyst with boosted surface lattice oxygen activation for efficiently photothermal mineralization of toluene

Show Author's information Qiang ChengZhuangzhuang WangXiaotian WangJiaming LiYuan LiGaoke Zhang( )
Shenzhen Research Institute, Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China

Abstract

Developing a novel photothermal catalyst for efficient mineralization of volatile organic compounds (VOCs) is of great significance to control air pollution. Herein, for the first-time, a spinel Cu1.5Mn1.5O4 nanomaterial with enhanced surface lattice oxygen activation was successfully obtained by a novel light-driven in situ reconstruction strategy from its precursor (CuMnO2) for efficient toluene mineralization. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) analyses confirm that the CuMnO2 phase was converted into spinel Cu1.5Mn1.5O4 phase under full spectrum light irradiation. Ultraviolet–visible–near infrared ray (UV–vis–NIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) analysis, and density functional theory (DFT) calculations determine that the strong near-infrared absorption ability and low dissociation energy of oxygen bond in Cu1.5Mn1.5O4 are beneficial to its surface lattice oxygen activation. Furthermore, O2-temperature programmed desorption (TPD) and in situ diffuse reflectance infrared transform spectroscopy (DRIFTS) further indicate that the surface lattice oxygen of the Cu1.5Mn1.5O4 is easily activated under light irradiation, which can promote ring opening of toluene. This research endows a new design of photothermal nanomaterial with enhanced lattice oxygen activation for deep oxidation of VOCs.

Keywords: photothermal catalysis, volatile organic compounds, light-driven, Cu1.5Mn1.5O4 nanomaterial, surface lattice oxygen

References(54)

[1]

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

[2]

Liu, J.; Wang, P. L.; Qu, W. Q.; Li, H. R.; Shi, L. Y.; Zhang, D. S. Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene. Appl. Catal. B: Environ. 2019, 257, 117880.

[3]

He, C. H.; Yu, L. L.; Lu, N.; Wang, W. J.; Chen, W.; Lu, S. J.; Yang, Y.; Ma, D. K.; Huang, S. M. Screwdriver-like Pd–Ag heterostructures formed via selective deposition of Ag on Pd nanowires as efficient photocatalysts for solvent-free aerobic oxidation of toluene. Nano Res. 2020, 13, 646–652.

[4]

Kang, S. B.; Han, S. J.; Nam, I. S.; Cho, B. K.; Kim, C. H.; Oh, S. H. Detailed reaction kinetics for double-layered Pd/Rh bimetallic TWC monolith catalyst. Chem. Eng. J. 2014, 241, 273–287.

[5]

Cheng, Q.; Zhang, G. K. Enhanced photocatalytic performance of tungsten-based photocatalysts for degradation of volatile organic compounds: A review. Tungsten 2020, 2, 240–250.

[6]

Zhang, J. H.; Liu, J. C.; Wang, X. Y.; Mai, J. J.; Zhao, W.; Ding, Z. X.; Fang, Y. X. Construction of Z-scheme tungsten trioxide nanosheets-nitrogen-doped carbon dots composites for the enhanced photothermal synergistic catalytic oxidation of cyclohexane. Appl. Catal. B: Environ. 2019, 259, 118063.

[7]

Gao, H. J.; Chen, Y. J.; Li, H. L.; Zhang, F. F.; Tian, G. H. Hierarchical Cu7S4–Cu9S8 heterostructure hollow cubes for photothermal aerobic oxidation of amines. Chem. Eng. J. 2019, 363, 247–258.

[8]

Gross, E. Challenges and opportunities in IR nanospectroscopy measurements of energy materials. Nano Res. 2019, 12, 2200–2210.

[9]

Zhao, S. Z.; Wen, Y. F.; Liu, X. J.; Pen, X. Y.; Lü, F.; Gao, F. Y.; Xie, X. Z.; Du, C. C.; Yi, H. H.; Kang, D. J. et al. Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Res. 2020, 13, 1544–1551.

[10]

Kong, D.; Han, X. Y.; Shevlin, S. A.; Windle, C.; Warner, J. H.; Gao, Z. X.; Tang, J. W. A metal-free oxygenated covalent triazine 2-D photocatalyst works effectively from the ultraviolet to near-infrared spectrum for water oxidation apart from water reduction. ACS Appl. Energy Mater. 2020, 3, 8960–8968.

[11]

Zhang, N.; Feng, X. B.; Rao, D. W.; Deng, X.; Cai, L. J.; Qiu, B. C.; Long, R.; Xiong, Y. J.; Lu, Y.; Chai, Y. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 2020, 11, 4066.

[12]

Tong, Y. X.; Song, L. Z.; Ning, S. B.; Ouyang, S. X.; Ye, J. H. Photocarriers-enhanced photothermocatalysis of water–gas shift reaction under H2-rich and low-temperature condition over CeO2/Cu1.5Mn1. 5O4 catalyst. Appl. Catal. B: Environ. 2021, 298, 120551.

[13]

Feng, X. S.; Luo, F. Q.; Chen, Y. Y.; Lin, D. F.; Luo, Y. J.; Xiao, L. R.; Liu, X. P.; Sun, X. L.; Qian, Q. R.; Chen, Q. H. Boosting total oxidation of propane over CeO2@Co3O4 nanofiber catalysts prepared by multifluidic coaxial electrospinning with continuous grain boundary and fast lattice oxygen mobility. J. Hazard. Mater. 2021, 406, 124695.

[14]

Wang, K.; Feng, X. Z.; Shangguan, Y. Z.; Wu, X. Y.; Chen, H. Selective CO2 photoreduction to CH4 mediated by dimension-matched 2D/2D Bi3NbO7/g-C3N4 S-scheme heterojunction. Chin. J. Catal. 2022, 43, 246–254.

[15]

Ma, Z. L.; Zhao, Y. Y.; Wu, Z. H.; Tang, Q. K.; Ni, J. L.; Zhu, Y. F.; Zhang, J. G.; Liu, Y. N.; Zhang, Y.; Li, H. W. et al. Air-stable magnesium nickel hydride with autocatalytic and self-protective effect for reversible hydrogen storage. Nano Res. 2022, 15, 2130–2137.

[16]

Lou, Z. R.; Yuan, D. C.; Zhang, F. Y.; Wang, Y. C.; Li, Y. G.; Zhu, L. P. Fe3Si assisted Co3O4 nanorods: A case study of photothermal catalytic CO oxidation under ambient solar irradiation. Nano Energy 2019, 62, 653–659.

[17]

Borjigin, B.; Ding, L.; Li, H. Q.; Wang, X. J. A solar light-induced photo-thermal catalytic decontamination of gaseous benzene by using Ag/Ag3PO4/CeO2 heterojunction. Chem. Eng. J. 2020, 402, 126070.

[18]

Hu, W. D.; Lan, J. G.; Guo, Y.; Cao, X. M.; Hu, P. Origin of efficient catalytic combustion of methane over Co3O4 (110): Active low-coordination lattice oxygen and cooperation of multiple active sites. ACS Catal. 2016, 6, 5508–5519.

[19]

Xiao, Y. C.; Li, H.; Xie, K. Activating lattice oxygen at the twisted surface in a mesoporous CeO2 single crystal for efficient and durable catalytic CO oxidation. Angew. Chem., Int. Ed. 2021, 60, 5240–5244.

[20]

Chen, D. J.; Liu, R. R.; Lin, Q. H.; Ma, S. T.; Li, G. Y.; Yu, Y. X.; Zhang, C. S.; An, T. C. Volatile organic compounds in an e-waste dismantling region: From spatial-seasonal variation to human health impact. Chemosphere 2021, 275, 130022.

[21]

Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.

[22]

Wang, X. Y.; Pan, Z. Y; Chu, H. F.; Huang, K. K.; Cong, Y. G.; Cao, R.; Sarangi, R.; Li, L. P.; Li, G. S.; Feng, S. H. Atomic-scale insights into surface lattice oxygen activation at the spinel/perovskite interface of Co3O4/La0.3Sr0. 7CoO3. Angew. Chem., Int. Ed. 2019, 58, 11720–11725.

[23]
He, C. H.; Duan, D. L.; Low, J.; Bai, Y.; Jiang, Y. W.; Wang, X. Y.; Chen, S. M.; Long, R.; Song, L.; Xiong, Y. J. Cu2−xS derived copper nanoparticles: A platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion. Nano Res., in press, https://doi.org/10.1007/s12274-021-3532-7.
[24]

Liu, H.; Jia, W. L.; Yu, X.; Tang, X.; Zeng, X. H.; Sun, Y.; Lei, T. Z.; Fang, H. Y.; Li, T. Y.; Lin, L. Vitamin C-assisted synthesized Mn-Co oxides with improved oxygen vacancy concentration: Boosting lattice oxygen activity for the air-oxidation of 5-(hydroxymethyl)furfural. ACS Catal. 2021, 11, 7828–7844.

[25]

Dong, C.; Qu, Z. P.; Qin, Y.; Fu, Q.; Sun, H. C.; Duan, X. X. Revealing the highly catalytic performance of spinel CoMn2O4 for toluene oxidation: Involvement and replenishment of oxygen species using in situ designed-TP techniques. ACS Catal. 2019, 9, 6698–6710.

[26]

Wang, K.; Wang, Q. P.; Zhang, K. J.; Wang, G. H.; Wang, H. K. Selective solar-driven CO2 reduction mediated by 2D/2D Bi2O2SiO3/MXene nanosheets heterojunction. J. Mater. Sci. Technol. 2022, 124, 202–208.

[27]

Wang, K.; Jiang, L. S.; Xin, T. J.; Li, Y.; Wu, X. Y.; Zhang, G. K. Single-atom V-N charge-transfer bridge on ultrathin carbon nitride for efficient photocatalytic H2 production and formaldehyde oxidation under visible light. Chem. Eng. J. 2022, 429, 132229.

[28]

Chen, D. K.; He, D. D.; Lu, J. C.; Zhong, L. P.; Liu, F.; Liu, J. P.; Yu, J.; Wang, G. P.; He, S. F.; Luo, Y. M. Investigation of the role of surface lattice oxygen and bulk lattice oxygen migration of cerium-based oxygen carriers: XPS and designed H2-TPR characterization. Appl. Catal. B: Environ. 2017, 218, 249–259.

[29]

Chen, L. C.; Chen, P.; Wang, H.; Cui, W.; Sheng, J. P.; Li, J. Y.; Zhang, Y. X.; Zhou, Y.; Dong, F. Surface lattice oxygen activation on Sr2Sb2O7 enhances the photocatalytic mineralization of toluene: From reactant activation, intermediate conversion to product desorption. ACS Appl. Mater. Interfaces 2021, 13, 5153–5164.

[30]

Ye, Z.; Giraudon, J. M.; Nuns, N.; Simon, P.; De Geyter, N.; Morent, R.; Lamonier, J. F. Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation. Appl. Catal. B: Environ. 2018, 223, 154–166.

[31]

Xu, J.; Li, X. M.; Wu, X.; Wang, W. Z.; Fan, R.; Liu, X. K.; Xu, H. L. Hierarchical CuO colloidosomes and their structure enhanced photothermal catalytic activity. J. Phys. Chem. C 2016, 120, 12666–12672.

[32]

Wei, Z.; Wang, W. C.; Li, W. L.; Bai, X. Q.; Zhao, J. F.; Tse, E. C. M.; Phillips, D. L.; Zhu, Y. F. Steering electron–hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew. Chem., Int. Ed. 2021, 60, 8236–8242.

[33]

Gao, E. H.; Sun, G. J.; Zhang, W.; Bernards, M. T.; He, Y.; Pan, H.; Shi, Y. Surface lattice oxygen activation via Zr4+ cations substituting on A2+ sites of MnCr2O4 forming ZrxMn1−xCr2O4 catalysts for enhanced NH3-SCR performance. Chem. Eng. J. 2020, 380, 122397.

[34]

He, S.; Yan, C.; Chen, X. Z.; Wang, Z.; Ouyang, T.; Guo, M. L.; Liu, Z. Q. Construction of core–shell heterojunction regulating α-Fe2O3 layer on CeO2 nanotube arrays enables highly efficient Z-scheme photoelectrocatalysis. Appl. Catal. B: Environ. 2020, 276, 119138.

[35]

Chen, J. W.; Tang, H. Y.; Huang, M.; Yan, Y.; Zhang, J.; Liu, H. G.; Zhang, J.; Wang, G.; Wang, R. L. Surface lattice oxygen activation by nitrogen-doped manganese dioxide as an effective and longevous catalyst for indoor HCHO decomposition. ACS Appl. Mater. Interfaces 2021, 13, 26960–26970.

[36]

Amaniampong, P. N.; Trinh, Q. T.; Wang, B.; Borgna, A.; Yang, Y. H.; Mushrif, S. H. Biomass oxidation: Formyl C–H bond activation by the surface lattice oxygen of regenerative CuO nanoleaves. Angew. Chem., Int. Ed. 2015, 54, 8928–8933.

[37]

Li, Z. H.; Liu, J. J.; Zhao, Y. F.; Shi, R.; Waterhouse, G. I. N.; Wang, Y. S.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Photothermal hydrocarbon synthesis using alumina-supported cobalt metal nanoparticle catalysts derived from layered-double-hydroxide nanosheets. Nano Energy 2019, 60, 467–475.

[38]

Zhang, G. Q.; Wu, S. W.; Li, Y. Z.; Zhang, Q. Significant improvement in activity, durability, and light-to-fuel efficiency of Ni nanoparticles by La2O3 cluster modification for photothermocatalytic CO2 reduction. Appl. Catal. B: Environ. 2020, 264, 118544.

[39]

Heo, I.; Sung, S.; Park, M. B.; Chang, T. S.; Kim, Y. J.; Cho, B. K.; Hong, S. B.; Choung, J. W.; Nam, I. S. Effect of hydrocarbon on DeNOx performance of selective catalytic reduction by a combined reductant over Cu-containing zeolite catalysts. ACS Catal. 2019, 9, 9800–9812.

[40]

Chen, H. L.; Yang, D.; Zhuang, X. Y.; Chen, D.; Liu, W. L.; Zhang, Q.; Hng, H. H.; Rui, X. H.; Yan, Q. Y.; Huang, S. M. Superior wide-temperature lithium storage in a porous cobalt vanadate. Nano Res. 2020, 13, 1867–1874.

[41]

Wang, Y.; Yang, D. Y.; Li, S. Z.; Zhang, L. X.; Zheng, G. Y.; Guo, L. M. Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation. Chem. Eng. J. 2019, 357, 258–268.

[42]

Wei, G. C.; Zhang, Q. L.; Zhang, D. H.; Wang, J.; Tang, T.; Wang, H. M.; Liu, X.; Song, Z. X.; Ning, P. The influence of annealing temperature on copper-manganese catalyst towards the catalytic combustion of toluene: The mechanism study. Appl. Surf. Sci. 2019, 497, 143777.

[43]

Xiao, Z.; Yang, J. S.; Ren, R.; Li, J.; Wang, N.; Chu, W. Facile synthesis of homogeneous hollow microsphere Cu-Mn based catalysts for catalytic oxidation of toluene. Chemosphere 2020, 247, 125812.

[44]

Luo, M. M.; Cheng, Y.; Peng, X. Z.; Pan, W. Copper modified manganese oxide with tunnel structure as efficient catalyst for low-temperature catalytic combustion of toluene. Chem. Eng. J. 2019, 369, 758–765.

[45]

Fu, S. X.; Li, L. P.; Jing, Y. C.; Zhang, Y. L.; Wang, X. Y.; Fang, S. F.; Wang, J. H.; Li, G. S. Crystal growth of bimetallic oxides CuMnO2 with tailored valence states for optimum electrochemical energy storage. Cryst. Growth Des. 2018, 18, 6107–6116.

[46]

Liu, J. Z.; Hu, Q.; Wang, Y.; Yang, Z.; Fan, X. Y.; Liu, L. M.; Guo, L. Achieving delafossite analog by in situ electrochemical self-reconstruction as an oxygen-evolving catalyst. Proc. Natl. Acad. Sci. USA 2020, 117, 21906–21913.

[47]

Liu, L. Z.; Liu, R. Y.; Xu, T.; Zhang, Q.; Tan, Y. B.; Zhang, Q. L.; Ding, J. D.; Tang, Y. F. Enhanced catalytic oxidation of chlorobenzene over MnO2 grafted in situ by rare earth oxide: Surface doping induces lattice oxygen activation. Inorg. Chem. 2020, 59, 14407–14414.

[48]

Wang, J. J.; Tian, P.; Li, K. X.; Ge, B. C.; Liu, D.; Liu, Y.; Yang, T. T.; Ren, R. The excellent performance of nest-like oxygen-deficient Cu1.5Mn1. 5O4 applied in activated carbon air-cathode microbial fuel cell. Bioresour. Technol. 2016, 222, 107–113.

[49]

Chen, S.; Zeng, L.; Tian, H.; Li, X. Y.; Gong, J. L. Enhanced lattice oxygen reactivity over Ni-modified WO3-based redox catalysts for chemical looping partial oxidation of methane. ACS Catal. 2017, 7, 3548–3559.

[50]

Sun, H.; Liu, Z. G.; Chen, S.; Quan, X. The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene. Chem. Eng. J. 2015, 270, 58–65.

[51]

Li, J.; Na, H. B.; Zeng, X. L.; Zhu, T. L.; Liu, Z. M. In situ DRIFTS investigation for the oxidation of toluene by ozone over Mn/HZSM-5, Ag/HZSM-5, and Mn-Ag/HZSM-5 catalysts. Appl. Surf. Sci. 2014, 311, 690–696.

[52]

Zhu, Z. R.; Liu, F. Y.; Zhang, W. Fabricate and characterization of Ag/BaAl2O4 and its photocatalytic performance towards oxidation of gaseous toluene studied by FTIR spectroscopy. Mater. Res. Bull. 2015, 64, 68–75.

[53]

Wang, Y.; Arandiyan, H.; Liu, Y. X.; Liang, Y. J.; Peng, Y.; Bartlett, S.; Dai, H. X.; Rostamnia, S.; Li, J. H. Template-free scalable synthesis of flower-like Co3−xMnxO4 spinel catalysts for toluene oxidation. ChemCatChem 2018, 10, 3429–3434.

[54]

Yang, X. Q.; Yu, X. L.; Lin, M. Y.; Ma, X. Y.; Ge, M. F. Enhancement effect of acid treatment on Mn2O3 catalyst for toluene oxidation. Catal. Today 2019, 327, 254–261.

File
12274_2022_4946_MOESM1_ESM.pdf (1.5 MB)
12274_2022_4946_MOESM2_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 June 2022
Revised: 21 August 2022
Accepted: 22 August 2022
Published: 07 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The study was supported by Science and Technology Planning Project of Shenzhen Municipality (No. JCYJ20200109150225155) and the National Natural Science Foundation of China (NSFC, No. 92163125).

Return