Journal Home > Volume 16 , Issue 2

Polyvinyl alcohol (PVA) hydrogels are widely used for flexible sensors by adding various conductive substances due to their excellent mechanical properties and self-healing properties. However, most of the conductive substances added to PVA hydrogel sensors are currently complicated to prepare, costly, and environmentally unfriendly. Herein, to overcome this challenge, we successfully prepared intrinsic conductive cellulose nanofiber (G-CNF) by simply applying sulfuric acid and a low-energy water bath with heat treatment, and obtained a powerful multifunctional self-healing PGC hydrogel biosensor using dynamic chemical cross-linking of PVA and borax with glycerol and G-CNF. The obtained PGC hydrogels have excellent mechanical properties (strain: 950%), good adhesion ability, robust self-healing properties, and room-temperature reversibility, due to the presence of conductive networks and hydrogen bonds within PGC hydrogel. Especially, PGC hydrogels with the graphene structured G-CNF have a fast response to various signals and good stability with gauge factor (GF) values up to 1.83, as well as a sensitive response to temperature (temperature coefficient of resistance (TCR) up to 1.9), which can be designed as a variety of biosensors, such as human motion monitoring, information encryption/transmission, and real-time temperature monitoring biosensors. Thus, PGC hydrogels as multifunctional self-healing hydrogel biosensors pave the way for the development of flexible biosensors in wearable devices, human–computer interaction, and artificial-related applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Intrinsic conductive cellulose nanofiber induce room-temperature reversible and robust polyvinyl alcohol hydrogel for multifunctional self-healable biosensors

Show Author's information Zhouyu Miao1Yi Song1Yanjuan Dong2Dan Ge1JiaXin Shui1Xia He1Hou-Yong Yu1( )
The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
Zhejiang Sci-Tech University Huzhou Research Institute Co., LTD, Huzhou 313000, China

Abstract

Polyvinyl alcohol (PVA) hydrogels are widely used for flexible sensors by adding various conductive substances due to their excellent mechanical properties and self-healing properties. However, most of the conductive substances added to PVA hydrogel sensors are currently complicated to prepare, costly, and environmentally unfriendly. Herein, to overcome this challenge, we successfully prepared intrinsic conductive cellulose nanofiber (G-CNF) by simply applying sulfuric acid and a low-energy water bath with heat treatment, and obtained a powerful multifunctional self-healing PGC hydrogel biosensor using dynamic chemical cross-linking of PVA and borax with glycerol and G-CNF. The obtained PGC hydrogels have excellent mechanical properties (strain: 950%), good adhesion ability, robust self-healing properties, and room-temperature reversibility, due to the presence of conductive networks and hydrogen bonds within PGC hydrogel. Especially, PGC hydrogels with the graphene structured G-CNF have a fast response to various signals and good stability with gauge factor (GF) values up to 1.83, as well as a sensitive response to temperature (temperature coefficient of resistance (TCR) up to 1.9), which can be designed as a variety of biosensors, such as human motion monitoring, information encryption/transmission, and real-time temperature monitoring biosensors. Thus, PGC hydrogels as multifunctional self-healing hydrogel biosensors pave the way for the development of flexible biosensors in wearable devices, human–computer interaction, and artificial-related applications.

Keywords: conductive network, polyvinyl alcohol (PVA) hydrogels, conductive cellulose nanofiber, multifunctional biosensor

References(48)

[1]

Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019, 52, 523–533.

[2]

Yogeswaran, N.; Dang, W.; Navaraj, W. T.; Shakthivel, D.; Khan, S.; Polat, E. O.; Gupta, S.; Heidari, H.; Kaboli, M.; Lorenzelli, L. et al. New materials and advances in making electronic skin for interactive robots. Adv. Rob. 2015, 29, 1359–1373.

[3]

Cui, J. L.; Nan, X. L.; Shao, G. R.; Sun, H. X. High-sensitivity flexible pressure sensor-based 3D CNTs sponge for human−computer interaction. Polymers (Basel) 2021, 13, 3465.

[4]

Qiu, Y.; Zhang, E.; Plamthottam, R.; Pei, Q. B. Dielectric elastomer artificial muscle: Materials innovations and device explorations. Acc. Chem. Res. 2019, 52, 316–325.

[5]

Lee, S.; Shi, Q. F.; Lee, C. From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks. APL Mater. 2019, 7, 031302.

[6]

Meng, X. Y.; Yang, J. H.; Liu, Z. G.; Lu, W. B.; Sun, Y. M.; Dai, Y. Q. Non-contact, fibrous cellulose acetate/aluminum flexible electronic-sensor for humidity detecting. Compos. Commun. 2020, 20, 100347.

[7]

Li, X. K.; Liu, J. Z.; Guo, Q. Q.; Zhang, X. X.; Tian, M. Polymerizable deep eutectic solvent-based skin-like elastomers with dynamic schemochrome and self-healing ability. Small 2022, 18, 2201012.

[8]

Qiu, X. Y.; Cui, Q. K.; Guo, Q. Q.; Zhou, T.; Zhang, X. X.; Tian, M. Strong, healable, stimulus-responsive fluorescent elastomers based on assembled borate dynamic nanostructures. Small 2022, 18, 2107164.

[9]

Wang, Y. Y.; Su, G. H.; Li, J.; Guo, Q. Q.; Miao, Y. G.; Zhang, X. X. Robust, healable, self-locomotive integrated robots enabled by noncovalent assembled gradient nanostructure. Nano Lett. 2022, 22, 5409–5419.

[10]

Zhang, L.; Jiang, D. W.; Dong, T. H.; Das, R.; Pan, D.; Sun, C. Y.; Wu, Z. J.; Zhang, Q. Q.; Liu, C. T.; Guo, Z. H. Overview of ionogels in flexible electronics. Chem. Rec. 2020, 20, 948–967.

[11]

Sun, Q. Q.; Qian, B. B.; Uto, K.; Chen, J. Z.; Liu, X. Y.; Minari, T. Functional biomaterials towards flexible electronics and sensors. Biosens. Bioelectron. 2018, 119, 237–251.

[12]

Wang, L. L.; Jackman, J. A.; Tan, E. L.; Park, J. H.; Potroz, M. G.; Hwang, E. T.; Cho, N. J. High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy 2017, 36, 38–45.

[13]

Liang, Y. Z.; Ye, L. N.; Sun, X. Y.; Lv, Q.; Liang, H. Y. Tough and stretchable dual ionically cross-linked hydrogel with high conductivity and fast recovery property for high-performance flexible sensors. ACS Appl. Mater. Interfaces 2020, 12, 1577–1587.

[14]

Zhang, W.; Feng, P.; Chen, J.; Sun, Z. M.; Zhao, B. X. Electrically conductive hydrogels for flexible energy storage systems. Prog. Polym. Sci. 2019, 88, 220–240.

[15]

Shi, Y.; Pan, L. J.; Liu, B. R.; Wang, Y. Q.; Cui, Y.; Bao, Z. N.; Yu, G. H. Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J. Mater. Chem. A 2014, 2, 6086–6091.

[16]

Wu, Z. X.; Yang, X.; Wu, J. Conductive hydrogel- and organohydrogel-based stretchable sensors. ACS Appl. Mater. Interfaces 2021, 13, 2128–2144.

[17]

Wang, Y.; Xia, Y.; Xiang, P.; Dai, Y. Y.; Gao, Y.; Xu, H.; Yu, J. A; Gao, G. H.; Chen, K. X. Protein-assisted freeze-tolerant hydrogel with switchable performance toward customizable flexible sensor. Chem. Eng. J. 2022, 428, 131171.

[18]

Gao, Y. F.; Peng, J. B.; Zhou, M. H.; Yang, Y. Y.; Wang, X.; Wang, J. F.; Cao, Y. X.; Wang, W. J.; Wu, D. C. A multi-model, large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring. J. Mater. Chem. B 2020, 8, 11010–11020.

[19]

Wang, Z. W.; Cong, Y.; Fu, J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J. Mater. Chem. B 2020, 8, 3437–3459.

[20]

El-Sayed, N. S.; Moussa, M. A.; Kamel, S.; Turky, G. Development of electrical conducting nanocomposite based on carboxymethyl cellulose hydrogel/silver nanoparticles@polypyrrole. Synth. Met. 2019, 250, 104–114.

[21]

Youssef, A. M.; El-Aziz, M. E. A.; Abd El-Sayed, E. S.; Moussa, M. A.; Turky, G.; Kamel, S. Rational design and electrical study of conducting bionanocomposites hydrogel based on chitosan and silver nanoparticles. Int. J. Biol. Macromol. 2019, 140, 886–894.

[22]

Tao, Y. F.; Wei, C. Y. R.; Liu, J. W.; Deng, C. S.; Cai, S.; Xiong, W. Nanostructured electrically conductive hydrogels obtained via ultrafast laser processing and self-assembly. Nanoscale 2019, 11, 9176–9184.

[23]

Huang, J. H.; Huang, X. W.; Wu, P. Y. One stone for three birds: One-step engineering highly elastic and conductive hydrogel electronics with multilayer MXene as initiator, crosslinker and conductive filler simultaneously. Chem. Eng. J. 2022, 428, 132515.

[24]

Li, Y. X.; Guo, J.; Li, M.; Tang, Y. T.; Murugadoss, V.; Seok, I.; Yu, J. F.; Sun, L. Y.; Sun, C. Y.; Luo, Y. C. Recent application of cellulose gel in flexible sensing—A review. ES Food Agrofor. 2021, 4, 9–27.

[25]

Kabir, S. M. F.; Sikdar, P. P.; Haque, B.; Bhuiyan, M. A. R.; Ali, A.; Islam, M. N. Cellulose-based hydrogel materials: Chemistry, properties and their prospective applications. Prog. Biomater. 2018, 7, 153–174.

[26]

Yahya, M. A.; Al-Qodah, Z.; Ngah, C. W. Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sustainable Energy Rev. 2015, 46, 218–235.

[27]

Anjali, J.; Jose, V. K.; Lee, J. M. Carbon-based hydrogels: Synthesis and their recent energy applications. J. Mater. Chem. A 2019, 7, 15491–15518.

[28]

Zhang, S.; Jiang, S. F.; Huang, B. C.; Shen, X. C.; Chen, W. J.; Zhou, T. P.; Cheng, H. Y.; Cheng, B. H.; Wu, C. Z.; Li, W. W. et al. Sustainable production of value-added carbon nanomaterials from biomass pyrolysis. Nat. Sustain. 2020, 3, 753–760.

[29]

Liu, W. J.; Jiang, H.; Yu, H. Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chem. Rev. 2015, 115, 12251–12285.

[30]

Shi, Z. Q.; Gao, H. C.; Feng, J.; Ding, B. B.; Cao, X. D.; Kuga, S.; Wang, Y. J.; Zhang, L. N.; Cai, J. In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Angew. Chem., Int. Ed. 2014, 53, 5380–5384.

[31]

Zhao, D. W.; Zhang, Q.; Chen, W. S.; Yi, X.; Liu, S. X.; Wang, Q. W.; Liu, Y. X.; Li, J.; Li, X. F.; Yu, H. P. Highly flexible and conductive cellulose-mediated PEDOT: PSS/MWCNT composite films for supercapacitor electrodes. ACS Appl. Mater. Interfaces 2017, 9, 13213–13222.

[32]

Oh, H.; Kwak, S. S.; Kim, B.; Han, E.; Lim, G. H.; Kim, S. W.; Lim, B. Highly conductive ferroelectric cellulose composite papers for efficient triboelectric nanogenerators. Adv. Funct. Mater. 2019, 29, 1904066.

[33]

Wang, D. C.; Yu, H. Y.; Qi, D. M.; Wu, Y. H.; Chen, L. M.; Li, Z. H. Confined chemical transitions for direct extraction of conductive cellulose nanofibers with graphitized carbon shell at low temperature and pressure. J. Am. Chem. Soc. 2021, 143, 11620–11630.

[34]

Bacon, R.; Tang, M. M. Carbonization of cellulose fibers—II. Physical property study. Carbon 1964, 2, 221–225.

[35]

Sevilla, M.; Fuertes, A. B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 2009, 47, 2281–2289.

[36]

Sun, X. M.; Li, Y. D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem., Int. Ed 2004, 116, 607–611.

[37]

Kim, J. H.; Kim, J. M.; Lee, G. W.; Shim, G. H.; Lim, S. T.; Kim, K. M.; Nguyen Vo, T. T.; Kweon, B.; Wongwises, S.; Jerng, D. W. et al. Advanced boiling—A scalable strategy for self-assembled three-dimensional graphene. ACS Nano 2021, 15, 2839–2848.

[38]

Haubner, K.; Murawski, J.; Olk, P.; Eng, L. M.; Ziegler, C.; Adolphi, B.; Jaehne, E. The route to functional graphene oxide. Chem Phys Chem 2010, 11, 2131–2139.

[39]

Xu, J. X.; Li, T. X.; Yan, T. S.; Wu, S.; Wu, M. Q.; Chao, J. W.; Huo, X. Y.; Wang, P. F.; Wang, R. Z. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent. Energy Environ. Sci. 2021, 14, 5979–5994.

[40]

Ouyang, Z. F.; Yu, H. Y.; Song, M. L.; Zhu, J. Y.; Wang, D. C. Ultrasensitive and robust self-healing composite films with reinforcement of multi-branched cellulose nanocrystals. Compos. Sci. Technol. 2020, 198, 108300.

[41]

Zhu, M. H.; Yu, H. Y.; Tang, F.; Li, Y. Z.; Liu, Y. N.; Yao, J. M. Robust natural biomaterial based flexible artificial skin sensor with high transparency and multiple signals capture. Chem. Eng. J. 2020, 394, 124855.

[42]

Bai, J. H.; Wang, R.; Wang, X. M.; Liu, S. D.; Wang, X. L.; Ma, J. M.; Qin, Z. H.; Jiao, T. F. Biomineral calcium-ion-mediated conductive hydrogels with high stretchability and self-adhesiveness for sensitive iontronic sensors. Cell Rep. Phys. Sci. 2021, 2, 100623.

[43]

Alofi, A.; Srivastava, G. P. Thermal conductivity of graphene and graphite. Phys. Rev. B 2013, 87, 115421.

[44]

El-Sayed, M. A. Small is different: Shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res. 2004, 37, 326–333.

[45]

Chen, Y. G.; Yuan, X. L. Experimental study of the performance of single-band air curtains for a multi-deck refrigerated display cabinet. J. Food Eng. 2005, 69, 261–267.

[46]

Cheng, B. C.; Wu, P. Y. Scalable fabrication of kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 2021, 15, 8676–8685.

[47]

Wu, R. H.; Ma, L. Y.; Hou, C.; Meng, Z. H.; Guo, W. X.; Yu, W. D.; Yu, R.; Hu, F.; Liu, X. Y. Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing. Small 2019, 15, 1901558.

[48]

Chandrasekhar, A.; Vivekananthan, V.; Khandelwal, G.; Kim, S. J. A fully packed water-proof, humidity resistant triboelectric nanogenerator for transmitting Morse code. Nano Energy 2019, 60, 850–856.

File
12274_2022_4944_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 June 2022
Revised: 02 August 2022
Accepted: 22 August 2022
Published: 20 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work was supported by Outstanding Youth Project of Zhejiang Provincial Natural Science Foundation (No. LR22E030002), Zhejiang Provincial Natural Science Key Foundation of China (No. LZ20E030003/LGG22E030005), and the National Natural Science Key Foundation of China (No. 52273095).

Return