Journal Home > Volume 16 , Issue 2

Generating different types of defects in heterogeneous catalysts for synergetic promotion of the reactivity and selectivity in catalytic reactions is highly challenging due to the lack of effective theoretical guidance. Herein, we demonstrate a facile strategy to introduce two types of defects into the CuO-ZnO model catalyst, namely oxygen vacancies (OVs) induced by H2 partial reduction and localized amorphous regions (LARs) generated via the ball milling process. Using industrially important Rochow–Müller reaction as a representative, we found OVs predominantly improved the target product selectivity of dimethyldichlorosilane, while LARs significantly increased the conversion of reactant Si. The CuO-ZnO catalyst with optimized OVs and LARs contents achieved the best catalytic property. Theoretical calculation further revealed that LARs promote the generation of the Cu3Si active phase, and OVs impact the electronic structure of the Cu3Si active phase. This work provides a new understanding of the roles of different catalyst defects and a feasible way of engineering the catalyst structure for better catalytic performances.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Engineering oxygen vacancies and localized amorphous regions in CuO-ZnO separately boost catalytic reactivity and selectivity

Show Author's information Yongjun Ji1,§( )Xiaoli Chen1,§Shaomian Liu2,§Liwen Xing3( )Xingyu Jiang4Bin Zhang5Huifang Li2Wenxing Chen6Ziyi Zhong7,8Ligen Wang9( )Guangwen Xu4Fabing Su2,4( )
School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang 110142, China
Analytical and Testing Center, Chongqing University, Chongqing 401331, China
Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, China
Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), GTIIT, Guangdong 515063, China
Gripm Advanced Materials Co., Ltd., Beijing 101407, China

§ Yongjun Ji, Xiaoli Chen, and Shaomian Liu contributed equally to this work.

Abstract

Generating different types of defects in heterogeneous catalysts for synergetic promotion of the reactivity and selectivity in catalytic reactions is highly challenging due to the lack of effective theoretical guidance. Herein, we demonstrate a facile strategy to introduce two types of defects into the CuO-ZnO model catalyst, namely oxygen vacancies (OVs) induced by H2 partial reduction and localized amorphous regions (LARs) generated via the ball milling process. Using industrially important Rochow–Müller reaction as a representative, we found OVs predominantly improved the target product selectivity of dimethyldichlorosilane, while LARs significantly increased the conversion of reactant Si. The CuO-ZnO catalyst with optimized OVs and LARs contents achieved the best catalytic property. Theoretical calculation further revealed that LARs promote the generation of the Cu3Si active phase, and OVs impact the electronic structure of the Cu3Si active phase. This work provides a new understanding of the roles of different catalyst defects and a feasible way of engineering the catalyst structure for better catalytic performances.

Keywords: oxygen vacancy, selectivity, reactivity, localized amorphous region, CuO-ZnO catalyst

References(48)

[1]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano. Res. 2022, 15, 7806–7839.

[2]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[3]

Zhang, Y. C.; Afzal, N.; Pan, L.; Zhang, X. W.; Zou, J. J. Structure-activity relationship of defective metal-based photocatalysts for water splitting: Experimental and theoretical perspectives. Adv. Sci. 2019, 6, 1900053.

[4]

Yu, K.; Lou, L. L.; Liu, S. X.; Zhou, W. Z. Asymmetric oxygen vacancies: The intrinsic redox active sites in metal oxide catalysts. Adv. Sci. 2020, 7, 1901970.

[5]

Liu, H. X.; Mei, H.; Miao, N. X.; Pan, L. K.; Jin, Z. P.; Zhu, G. Q.; Gao, J. Z.; Wang, J. J.; Cheng, L. F. Synergistic photocatalytic NO removal of oxygen vacancies and metallic bismuth on Bi12TiO20 nanofibers under visible light irradiation. Chem. Eng. J. 2021, 414, 128748.

[6]

Fan, X. J.; Liu, Y. Y.; Chen, S.; Shi, J. J.; Wang, J. J.; Fan, A. L.; Zan, W. Y.; Li, S. D.; Goddard, W. A.; Zhang, X. M. Defect-enriched iron fluoride-oxide nanoporous thin films bifunctional catalyst for water splitting. Nat. Commun. 2018, 9, 1809.

[7]

Hirakawa, H.; Hashimoto, M.; Shiraishi, Y.; Hirai, T. Selective nitrate-to-ammonia transformation on surface defects of titanium dioxide photocatalysts. ACS Catal. 2017, 7, 3713–3720.

[8]

Fu, Q.; Li, W. X.; Yao, Y. X.; Liu, H. Y.; Su, H. Y.; Ma, D.; Gu, X. K.; Chen, L. M.; Wang, Z.; Zhang, H. et al. Interface-confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141–1144.

[9]

Li, Z.; Fu, J. Y.; Feng, Y.; Dong, C. K.; Liu, H.; Du, X. W. A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nat. Catal. 2019, 2, 1107–1114.

[10]

Song, Y. H.; Song, M. X.; Liu, P. Z.; Liu, W. W.; Yuan, L. J.; Hao, X. D.; Pei, L. Y.; Xu, B. S.; Guo, J. J.; Sun, Z. Q. Fe-doping induced localized amorphization in ultrathin α-Ni(OH)2 nanomesh for superior oxygen evolution reaction catalysis. J. Mater. Chem. A 2021, 9, 14372–14380.

[11]

He, J.; Li, N.; Li, Z. G.; Zhong, M.; Fu, Z. X.; Liu, M.; Yin, J. C.; Shen, Z. R.; Li, W.; Zhang, J. J. et al. Strategic defect engineering of metal-organic frameworks for optimizing the fabrication of single-atom catalysts. Adv. Funct. Mater. 2021, 31, 2103597.

[12]

Lan, K.; Wang, R. C.; Wei, Q. L.; Wang, Y. X.; Hong, A.; Feng, P. Y.; Zhao, D. Y. Stable Ti3+ defects in oriented mesoporous Titania frameworks for efficient photocatalysis. Angew. Chem., Int. Ed. 2020, 59, 17676–17683.

[13]

Kong, X.; Peng, H. Q.; Bu, S. Y.; Gao, Q. L.; Jiao, T. P.; Cheng, J. Y.; Liu, B.; Hong, G.; Lee, C. S.; Zhang, W. J. Defect engineering of nanostructured electrocatalysts for enhancing nitrogen reduction. J. Mater. Chem. A 2020, 8, 7457–7473.

[14]

Li, H.; Shang, J.; Ai, Z. H.; Zhang, L. Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J. Am. Chem. Soc. 2015, 137, 6393–6399.

[15]

Zhao, Y. G.; Liu, J. J.; Liu, C. G.; Wang, F.; Song, Y. Amorphous CuPt alloy nanotubes induced by Na2S2O3 as efficient catalysts for the methanol oxidation reaction. ACS Catal. 2016, 6, 4127–4134.

[16]

Wang, X. D.; Li, K. L.; He, J.; Yang, J. L.; Dong, F.; Mai, W.; Zhu, M. S. Defect in reduced graphene oxide tailored selectivity of photocatalytic CO2 reduction on Cs4PbBr6 pervoskite hole-in-microdisk structure. Nano Energy 2020, 78, 105388.

[17]

Zhang, Y.; Li, F. W.; Zhang, X. L.; Williams, T.; Easton, C. D.; Bond, A. M.; Zhang, J. Electrochemical reduction of CO2 on defect-rich Bi derived from Bi2S3 with enhanced formate selectivity. J. Mater. Chem. A 2018, 6, 4714–4720.

[18]

Sun, Q. B.; Cortie, D.; Zhang, S. Y.; Frankcombe, T. J.; She, G. W.; Gao, J.; Sheppard, L. R.; Hu, W. B.; Chen, H.; Zhuo, S. J. et al. The formation of defect-pairs for highly efficient visible-light catalysts. Adv. Mater. 2017, 29, 1605123.

[19]

Camellone, M. F.; Fabris, S. Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts: Activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms. J. Am. Chem. Soc. 2009, 131, 10473–10483.

[20]

Li, T. B.; Liu, F.; Tang, Y.; Li, L.; Miao, S.; Su, Y.; Zhang, J. Y.; Huang, J. H.; Sun, H.; Haruta, M. et al. Maximizing the number of interfacial sites in single-atom catalysts for the highly selective, solvent-free oxidation of primary alcohols. Angew. Chem., Int. Ed. 2018, 57, 7795–7799.

[21]

Ji, Q. Q.; Bi, L.; Zhang, J. T.; Cao, H. J.; Zhao, X. S. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ. Sci. 2020, 13, 1408–1428.

[22]

Li, Y. F.; Chen, T. Y.; Zhao, S. Q.; Wu, P.; Chong, Y. N.; Li, A. Q.; Zhao, Y.; Chen, G. X.; Jin, X. J.; Qiu, Y. C. et al. Engineering cobalt oxide with coexisting cobalt defects and oxygen vacancies for enhanced catalytic oxidation of toluene. ACS Catal. 2022, 12, 4906–4917.

[23]

Lee, Y.; Ling, N.; Kim, D.; Zhao, M. L.; Eshete, Y. A.; Kim, E.; Cho, S.; Yang, H. Heterophase boundary for active hydrogen evolution in MoTe2. Adv. Funct. Mater. 2022, 32, 2105675.

[24]

Huang, H. N.; Shi, R.; Li, Z. H.; Zhao, J. Q.; Su, C. L.; Zhang, T. R. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary. Angew. Chem., Int. Ed. 2022, 61, e202200802.

[25]

Jiang, Y. W.; Wang, X. Y.; Duan, D. L.; He, C. H.; Ma, J.; Zhang, W. Q.; Liu, H. J.; Long, R.; Li, Z. B.; Kong, T. T. et al. Structural reconstruction of Cu2O superparticles toward electrocatalytic CO2 reduction with high C2+ products selectivity. Adv. Sci. 2022, 9, 2105292.

[26]

Wang, P.; Zhao, D. Y.; Hui, X. B.; Qian, Z.; Zhang, P.; Ren, Y. Y.; Lin, Y.; Zhang, Z. W.; Yin, L. W. Bifunctional catalytic activity guided by rich crystal defects in Ti3C2 MXene quantum dot clusters for Li-O2 batteries. Adv. Energy Mater. 2021, 11, 2003069.

[27]

Xiao, J. R.; Zhao, F. G.; Zhong, J.; Huang, Z. L.; Fan, L. L.; Peng, L. L.; Zhou, S. F.; Zhan, G. W. Performance enhancement of hematite photoanode with oxygen defects for water splitting. Chem. Eng. J. 2020, 402, 126163.

[28]

Guo, N. K.; Xue, H.; Bao, A.; Wang, Z. H.; Sun, J.; Song, T. S.; Ge, X.; Zhang, W.; Huang, K. K.; He, F. et al. Achieving superior electrocatalytic performance by surface copper vacancy defects during electrochemical etching process. Angew. Chem., Int. Ed. 2020, 59, 13778–13784.

[29]

Chang, B. H.; Li, B.; Wang, Z. X.; Li, H.; Wang, L.; Pan, L.; Li, Z. H.; Yin, L. W. Efficient bulk defect suppression strategy in FASnI3 perovskite for photovoltaic performance enhancement. Adv. Funct. Mater. 2022, 32, 2107710.

[30]

Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298–4308.

[31]

Chen, D. L.; Xu, Z. M.; Chen, W.; Chen, G. L.; Huang, J.; Song, C. S.; Zheng, K.; Zhang, Z. X.; Hu, X. P.; Choi, H. S. et al. Mulberry-inspired nickel-niobium phosphide on plasma-defect-engineered carbon support for high-performance hydrogen evolution. Small 2020, 16, 2004843.

[32]

Wu, S.; Yu, H. T.; Chen, S.; Quan, X. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal. 2020, 10, 14380–14389.

[33]

Gao, J. Q.; Xue, J. B.; Shen, Q. Q.; Liu, T. W.; Zhang, X. C.; Liu, X. G.; Jia, H. S.; Li, Q.; Wu, Y. C. A promoted photocatalysis system trade-off between thermodynamic and kinetic via hierarchical distribution dual-defects for efficient H2 evolution. Chem. Eng. J. 2022, 431, 133281.

[34]

He, S.; Yan, C.; Chen, X. Z.; Wang, Z.; Ouyang, T.; Guo, M. L.; Liu, Z. Q. Construction of core–shell heterojunction regulating α-Fe2O3 layer on CeO2 nanotube arrays enables highly efficient Z-scheme photoelectrocatalysis. Appl. Catal. B: Environ. 2020, 276, 119138.

[35]

Li, Z. H.; Zhou, C.; Hua, J. H.; Hong, X. F.; Sun, C. L.; Li, H. W.; Xu, X.; Mai, L. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv. Mater. 2020, 32, 1907444.

[36]

Jiang, F.; Wang, S. S.; Liu, B.; Liu, J.; Wang, L.; Xiao, Y.; Xu, Y. B.; Liu, X. H. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts. ACS Catal. 2020, 10, 11493–11509.

[37]

Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

[38]

Jiang, R. H.; Liu, S. M.; Li, L.; Ji, Y. J.; Li, H. F.; Guo, X. F.; Jia, L. H.; Zhong, Z. Y.; Su, F. B. Single Ir atoms anchored on ordered mesoporous WO3 are highly efficient for the selective catalytic reduction of NO with CO under oxygen-rich conditions. ChemCatChem 2021, 13, 1834–1846.

[39]

Meng, C.; Zhao, G. F.; Shi, X. R.; Chen, P. J.; Liu, Y.; Lu, Y. Oxygen-deficient metal oxides supported Nano-intermetallic InNi3C0.5 toward efficient CO2 hydrogenation to methanol. Sci. Adv. 2021, 7, eabi6012.

[40]

Prakash, O.; Kumar, S.; Singh, P.; Deckert, V.; Chatterjee, S.; Ghosh, A. K.; Singh, R. K. Surface-enhanced Raman scattering characteristics of CuO:Mn/Ag heterojunction probed by methyl orange: Effect of Mn2+ doping. J. Raman Spectrosc. 2016, 47, 813–818.

[41]

Ren, Z. H.; Ruan, L. Y.; Yin, L. C.; Akkiraju, K.; Giordano, L.; Liu, Z. R.; Li, S.; Ye, Z. X.; Li, S. D.; Yang, H. S. et al. Surface oxygen vacancies confined by ferroelectric polarization for tunable CO oxidation kinetics. Adv. Mater. 2022, 34, 2202072.

[42]

Liu, H. Z.; Ji, Y. J.; Li, J.; Zhang, Y.; Wang, X. G.; Yu, H. J.; Wang, D. S.; Zhong, Z. Y.; Gu, L.; Xu, G. W. et al. A general bottom-up synthesis of CuO-based trimetallic oxide mesocrystal superstructures for efficient catalytic production of trichlorosilane. Nano Res. 2020, 13, 2819–2827.

[43]

Jiang, X. Y.; Ji, Y. J.; Li, J.; Zhu, Y. X.; Kang, T.; Zhong, Z. Y.; Su, F. B.; Xu, G. W. Impact of oxygen vacancy in CuO-ZnO catalysts on the selectivity of dimethyldichlorosilane monomer in the Rochow reaction. Mol. Catal. 2021, 504, 111453.

[44]

Zou, S. Y.; Ji, Y. J.; Li, J.; Zhang, Y.; Jin, Z. Y.; Jia, L. H.; Guo, X. F.; Zhong, Z. Y.; Su, F. B. Novel leaflike Cu-O-Sn nanosheets as highly efficient catalysts for the Rochow reaction. J. Catal. 2016, 337, 1–13.

[45]

Li, J.; Yin, L. L.; Ji, Y. J.; Liu, H. Z.; Zhang, Y.; Gong, X. Q.; Zhong, Z. Y.; Su, F. B. Impact of the Cu2O microcrystal planes on active phase formation in the Rochow reaction and an experimental and theoretical understanding of the reaction mechanism. J. Catal. 2018, 361, 73–83.

[46]

Shi, Q.; Ji, Y. J.; Chen, W. X.; Zhu, Y. X.; Li, J.; Liu, H. Z.; Li, Z.; Tian, S. B.; Wang, L. G.; Zhong, Z. Y. et al. Single-atom Sn-Zn pairs in CuO catalyst promote dimethyldichlorosilane synthesis. Natl. Sci. Rev. 2020, 7, 600–608.

[47]

Voorhoeve, R. J. H.; Geertsema, B. J. H.; Vlugter, J. C. Mechanism and kinetics of the metal-catalyzed synthesis of methylchlorosilanes: II. The kinetics of the copper-catalyzed reaction of methyl chloride and silicon. J. Catal. 1965, 4, 43–55.

[48]

Voorhoeve, R. J. H.; Vlugter, J. C. Mechanism and kinetics of the metal-catalyzed synthesis of methylchlorosilanes: III. The catalytically active form of the copper catalyst. J. Catal. 1965, 4, 123–133.

File
12274_2022_4940_MOESM1_ESM.pdf (4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 July 2022
Revised: 19 August 2022
Accepted: 19 August 2022
Published: 07 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21878301 and 21978299), the Open Research Fund of State Key Laboratory of Multiphase Complex Systems (No. MPCS-2021-D-08), and GRINM Group. Y. J. J. thanks the financial support from the Research Foundation for Advanced Talents of Beijing Technology and Business University (No. 19008020159). X. L. C. thanks the financial support from the project for improving the research ability of postgraduate from Beijing Technology and Business University (No. 19008022056). L. W. X. thanks the financial support from the Research Foundation for Youth Scholars of Beijing Technology and Business University (No. QNJJ2022-22). Z. Y. Z. thanks the financial support of Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion–Israel Institute of Technology and Guangdong Key Discipline Fund (2022) for this collaboration.

Return