Journal Home > Volume 16 , Issue 1

Electrically conductive porous structures are ideal candidates for lightweight and absorption-dominant electromagnetic interference (EMI) shielding. In this review, we summarize the recent progress in developing porous composites and structures from emerging two-dimensional (2D) graphene and MXene nanosheets for EMI shielding applications. Important properties contributing to various energy loss mechanisms are probed with a critical discussion on their correlations with EMI shielding performance. Technological approaches to constructing bulk porous structures, such as 2D porous films, three-dimensional (3D) aerogels and foams, and hydrogels, are compared to highlight important material and processing parameters required to achieve optimal microstructures. A comprehensive comparison of EMI shielding performance is also carried out to elucidate the effects of different assembly techniques and microstructures. Distinctive multifunctional applications in adaptive EMI shielding, mechanical force attenuation, thermal management, and wearable devices are introduced, underlining the importance of unique compositions and microstructures of porous composites. The process–structure–property relationships established in this review would offer valuable guidance and insights into the design of lightweight EMI shielding materials.


menu
Abstract
Full text
Outline
About this article

Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding

Show Author's information Xi Shen1,3( )Jang-Kyo Kim2( )
Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
The Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China

Abstract

Electrically conductive porous structures are ideal candidates for lightweight and absorption-dominant electromagnetic interference (EMI) shielding. In this review, we summarize the recent progress in developing porous composites and structures from emerging two-dimensional (2D) graphene and MXene nanosheets for EMI shielding applications. Important properties contributing to various energy loss mechanisms are probed with a critical discussion on their correlations with EMI shielding performance. Technological approaches to constructing bulk porous structures, such as 2D porous films, three-dimensional (3D) aerogels and foams, and hydrogels, are compared to highlight important material and processing parameters required to achieve optimal microstructures. A comprehensive comparison of EMI shielding performance is also carried out to elucidate the effects of different assembly techniques and microstructures. Distinctive multifunctional applications in adaptive EMI shielding, mechanical force attenuation, thermal management, and wearable devices are introduced, underlining the importance of unique compositions and microstructures of porous composites. The process–structure–property relationships established in this review would offer valuable guidance and insights into the design of lightweight EMI shielding materials.

Keywords: electrical conductivity, graphene, MXene, porous composite, electromagnetic interference (EMI) shielding

References(172)

[1]

Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300.

[2]

Yousefi, N.; Sun, X. Y.; Lin, X. Y.; Shen, X.; Jia, J. J.; Zhang, B.; Tang, B. Z.; Chan, M.; Kim, J. K. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 2014, 26, 5480–5487.

[3]

Chung, D. D. L. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 2001, 39, 279–285.

[4]

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Man Hong, S.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

[5]

Chen, Y. M.; Yang, Y.; Xiong, Y.; Zhang, L.; Xu, W. H.; Duan, G. G.; Mei, C. T.; Jiang, S. H.; Rui, Z. H.; Zhang, K. Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 2021, 38, 101204.

[6]

Zheng, Q. B.; Li, Z. G.; Yang, J. H.; Kim, J. K. Graphene oxide-based transparent conductive films. Prog. Mater. Sci. 2014, 64, 200–247.

[7]

Zheng, Q. B.; Lee, J. H.; Shen, X.; Chen, X. D.; Kim, J. K. Graphene-based wearable piezoresistive physical sensors. Mater. Today 2020, 36, 158–179.

[8]

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

[9]

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

[10]

Kim, J. E.; Oh, J. H.; Kotal, M.; Koratkar, N.; Oh, I. K. Self-assembly and morphological control of three-dimensional macroporous architectures built of two-dimensional materials. Nano Today 2017, 14, 100–123.

[11]

Dillon, A. D.; Ghidiu, M. J.; Krick, A. L.; Griggs, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W.; Fafarman, A. T. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 2016, 26, 4162–4168.

[12]

Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2016, 2, 1600255.

[13]

Zhang, C. J.; Anasori, B.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Shmeliov, A.; Duesberg, G. S.; Coleman, J. N.; Gogotsi, Y.; Nicolosi, V. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 2017, 29, 1702678.

[14]

Zhang, L.; Alvarez, N. T.; Zhang, M. X.; Haase, M.; Malik, R.; Mast, D.; Shanov, V. Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon 2015, 82, 353–359.

[15]

Shen, B.; Zhai, W. T.; Zheng, W. G. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 2014, 24, 4542–4548.

[16]

Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.

[17]

Hsiao, S. T.; Ma, C. C. M.; Liao, W. H.; Wang, Y. S.; Li, S. M.; Huang, Y. C.; Yang, R. B.; Liang, W. F. Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 2014, 6, 10667–10678.

[18]

Hong, S. K.; Kim, K. Y.; Kim, T. Y.; Kim, J. H.; Park, S. W.; Kim, J. H.; Cho, B. J. Electromagnetic interference shielding effectiveness of monolayer graphene. Nanotechnology 2012, 23, 455704.

[19]

He, Q. M.; Tao, J. R.; Yang, Y.; Yang, D.; Zhang, K.; Fei, B.; Wang, M. Electric-magnetic-dielectric synergism and salisbury screen effect in laminated polymer composites with multiwall carbon nanotube, nickel, and antimony trioxide for enhancing electromagnetic interference shielding. Compos. Part A: Appl. Sci. Manuf. 2022, 156, 106901.

[20]

Yang, Y.; Tao, J. R.; Yang, D.; He, Q. M.; Chen, X. D.; Wang, M. Improving dispersion and delamination of graphite in biodegradable starch materials via constructing cation-π interaction: Towards microwave shielding enhancement. J. Mater. Sci. Technol. 2022, 129, 196–205.

[21]

Cai, J. H.; Tang, X. H.; Chen, X. D.; Wang, M. Temperature and strain-induced tunable electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube composites with temperature-sensitive microspheres. Compos. Part A: Appl. Sci. Manuf. 2021, 140, 106188.

[22]

Gao, Y. N.; Wang, Y.; Yue, T. N.; Zhao, B.; Che, R. C.; Wang, M. Superstructure silver micro-tube composites for ultrahigh electromagnetic wave shielding. Chem. Eng. J. 2022, 430, 132949.

[23]

Shen, X.; Zheng, Q. B.; Kim, J. K. Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Prog. Mater. Sci. 2021, 115, 100708.

[24]

Zhao, B.; Hamidinejad, M.; Wang, S.; Bai, P. W.; Che, R. C.; Zhang, R.; Park, C. B. Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A 2021, 9, 8896–8949.

[25]

Han, M. K.; Shuck, C. E.; Rakhmanov, R.; Parchment, D.; Anasori, B.; Koo, C. M.; Friedman, G.; Gogotsi, Y. Beyond Ti3C2Tx : MXenes for electromagnetic interference shielding. ACS Nano 2020, 14, 5008–5016.

[26]

Tan, X.; Yuan, Q. L.; Qiu, M. T.; Yu, J. H.; Jiang, N.; Lin, C. T.; Dai, W. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: A mini review. J. Mater. Sci. Technol. 2022, 117, 238–250.

[27]

Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 2020, 30, 2000883.

[28]

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

[29]

Wang, M.; Tang, X. H.; Cai, J. H.; Wu, H.; Shen, J. B.; Guo, S. Y. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 2021, 177, 377–402.

[30]

Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

[31]

Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

[32]

Song, Q.; Ye, F.; Kong, L.; Shen, Q. L.; Han, L. Y.; Feng, L.; Yu, G. J.; Pan, Y. A.; Li, H. J. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 2020, 30, 2000475.

[33]

Shu, J. C.; Cao, W. Q.; Cao, M. S. Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 2021, 31, 2100470.

[34]

Zhang, Y.; Xu, M. K.; Wang, Z. G.; Zhao, T. Y.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 2022, 15, 4916–4924.

[35]

Wu, Y.; Wang, Z. Y.; Liu, X.; Shen, X.; Zheng, Q. B.; Xue, Q.; Kim, J. K. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2017, 9, 9059–9069.

[36]

Zeng, Z. H.; Wang, C. X.; Siqueira, G.; Han, D. X.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F.; Zhang, C. F.; Nyström, G. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 2020, 7, 2000979.

[37]

Yu, Y. H.; Yi, P.; Xu, W. B.; Sun, X.; Deng, G.; Liu, X. F.; Shui, J. L.; Yu, R. H. Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 2022, 14, 77.

[38]

Liu, J.; Mckeon, L.; Garcia, J.; Pinilla, S.; Barwich, S.; Möbius, M.; Stamenov, P.; Coleman, J. N.; Nicolosi, V. Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 2022, 34, 2106253.

[39]

Sun, X. Y.; Liu, X.; Shen, X.; Wu, Y.; Wang, Z. Y.; Kim, J. K. Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding. Compos. Part A: Appl. Sci. Manuf. 2016, 85, 199–206.

[40]

Fang, H. M.; Guo, H. C.; Hu, Y. R.; Ren, Y. J.; Hsu, P. C.; Bai, S. L. In-situ grown hollow Fe3O4 onto graphene foam nanocomposites with high EMI shielding effectiveness and thermal conductivity. Compos. Sci. Technol. 2020, 188, 107975.

[41]

Shui, X. P.; Chung, D. D. L. Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness. J. Electron. Mater. 1997, 26, 928–934.

[42]

Wu, Y.; Lin, X. Y.; Shen, X.; Sun, X. Y.; Liu, X.; Wang, Z. Y.; Kim, J. K. Exceptional dielectric properties of chlorine-doped graphene oxide/poly(vinylidene fluoride) nanocomposites. Carbon 2015, 89, 102–112.

[43]

Wang, Z. Y.; Han, N. M.; Wu, Y.; Liu, X.; Shen, X.; Zheng, Q. B.; Kim, J. K. Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon 2017, 123, 385–394.

[44]

Wu, Y.; Wang, Z. Y.; Shen, X.; Liu, X.; Han, N. M.; Zheng, Q. B.; Mai, Y. W.; Kim, J. K. Graphene/boron nitride-polyurethane microlaminates for exceptional dielectric properties and high energy densities. ACS Appl. Mater. Interfaces 2018, 10, 26641–26652.

[45]

Tu, S. B.; Jiang, Q.; Zhang, X. X.; Alshareef, H. N. Large dielectric constant enhancement in MXene percolative polymer composites. ACS Nano 2018, 12, 3369–3377.

[46]

Guo, F. M.; Shen, X.; Zhou, J. M.; Liu, D.; Zheng, Q. B.; Yang, J. L.; Jia, B. H.; Lau, A. K. T.; Kim, J. K. Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets. Adv. Funct. Mater. 2020, 30, 1910826.

[47]

He, Z. Z.; Yu, X.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y.; Zhou, Z. W. Largely enhanced dielectric properties of poly(vinylidene fluoride) composites achieved by adding polypyrrole-decorated graphene oxide. Compos. Part A: Appl. Sci. Manuf. 2018, 104, 89–100.

[48]

Liang, C. B.; Song, P.; Qiu, H.; Zhang, Y. L.; Ma, X. T.; Qi, F. Q.; Gu, H. B.; Kong, J.; Cao, D. P.; Gu, J. W. Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 2019, 11, 22590–22598.

[49]

Lin, X. Y.; Shen, X.; Zheng, Q. B.; Yousefi, N.; Ye, L.; Mai, Y. W.; Kim, J. K. Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano 2012, 6, 10708–10719.

[50]

Shen, X.; Wang, Z. Y.; Wu, Y.; Liu, X.; He, Y. B.; Zheng, Q. B.; Yang, Q. H.; Kang, F. Y.; Kim, J. K. A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Mater. Horiz. 2018, 5, 275–284.

[51]

Ji, K. J.; Zhao, H. H.; Zhang, J.; Chen, J.; Dai, Z. D. Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu-Ni alloy integrated with CNTs. Appl. Surf. Sci. 2014, 311, 351–356.

[52]

Shen, X.; Kim, J. K. Building 3D architecture in 2D thin film for effective EMI shielding. Matter 2019, 1, 796–798.

[53]

Huang, M.; Wang, C. H.; Quan, L.; Nguyen, T. H. Y.; Zhang, H. Y.; Jiang, Y.; Byun, G.; Ruoff, R. S. CVD growth of porous graphene foam in film form. Matter 2020, 3, 487–497.

[54]

Kashani, H.; Giroux, M.; Johnson, I.; Han, J. H.; Wang, C.; Chen, M. W. Unprecedented electromagnetic interference shielding from three-dimensional Bi-continuous nanoporous graphene. Matter 2019, 1, 1077–1087.

[55]

Kim, E.; Zhang, H. M.; Lee, J. H.; Chen, H. M.; Zhang, H.; Javed, M. H.; Shen, X.; Kim, J. K. MXene/polyurethane auxetic composite foam for electromagnetic interference shielding and impact attenuation. Compos. Part A: Appl. Sci. Manuf. 2021, 147, 106430.

[56]

Fan, D. L.; Li, N. X.; Li, M. G.; Wang, S.; Li, S. X.; Tang, T. Polyurethane/polydopamine/graphene auxetic composite foam with high-efficient and tunable electromagnetic interference shielding performance. Chem. Eng. J. 2022, 427, 131635.

[57]

Zhang, Y. L.; Yan, Y.; Qiu, H.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. A mini-review of MXene porous films: Preparation, mechanism and application. J. Mater. Sci. Technol. 2022, 103, 42–49.

[58]

Sun, R. H.; Zhang, H. B.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z. Z. Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 2017, 27, 1702807.

[59]

Zhao, M. Q.; Xie, X. Q.; Ren, C. E.; Makaryan, T.; Anasori, B.; Wang, G. X.; Gogotsi, Y. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 2017, 29, 1702410.

[60]

Li, X. F.; Tao, Z. C.; Hao, B. Y.; Kong, Q. Q.; Liu, Z.; Liu, Z. J.; Guo, Q. G.; Liu, L. Reduced graphene oxide bubbles with tunable electromagnetic shielding effectiveness. Scr. Mater. 2020, 187, 407–412.

[61]

Wang, X. H.; Chen, Y. Q.; Hu, F. Y.; Zhang, S.; Fan, B. B.; Min, Z. Y.; Zhang, R.; Zhao, B.; Wang, H. L.; Lu, H. X. et al. Electromagnetic interference shielding performance of flexible, hydrophobic honeycomb-structured Ag@Ti3C2Tx composites. Adv. Electron. Mater. 2022, 8, 2101028.

[62]

Chen, Q. Q.; Fan, B. B.; Zhang, Q. P.; Wang, S.; Cui, W.; Jia, Y. C.; Xu, S. K.; Zhao, B.; Zhang, R. Design of 3D lightweight Ti3C2Tx MXene porous film with graded holes for efficient electromagnetic interference shielding performance. Ceram. Int. 2022, 48, 14578–14586.

[63]

Liu, X.; Sun, X. Y.; Wang, Z. Y.; Shen, X.; Wu, Y.; Kim, J. K. Planar porous graphene woven fabric/epoxy composites with exceptional electrical, mechanical properties, and fracture toughness. ACS Appl. Mater. Interfaces 2015, 7, 21455–21464.

[64]

Jia, J. J.; Sun, X. Y.; Lin, X. Y.; Shen, X.; Mai, Y. W.; Kim, J. K. Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 2014, 8, 5774–5783.

[65]

Shi, M. K.; Shen, M. M.; Guo, X. Y.; Jin, X. X.; Cao, Y. X.; Yang, Y. Y.; Wang, W. J.; Wang, J. F. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano 2021, 15, 11396–11405.

[66]

Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681.

[67]

Luo, J. M.; Tao, X. Y.; Zhang, J.; Xia, Y.; Huang, H.; Zhang, L. Y.; Gan, Y. P.; Liang, C.; Zhang, W. K. Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 2016, 10, 2491–2499.

[68]

Liu, W. H.; Wang, Z. Q.; Su, Y. L.; Li, Q. W.; Zhao, Z. G.; Geng, F. X. Molecularly stacking manganese dioxide/titanium carbide sheets to produce highly flexible and conductive film electrodes with improved pseudocapacitive performances. Adv. Energy Mater. 2017, 7, 1602834.

[69]

Boota, M.; Anasori, B.; Voigt, C.; Zhao, M. Q.; Barsoum, M. W.; Gogotsi, Y. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 2016, 28, 1517–1522.

[70]

Shao, Y. L.; El-Kady, M. F.; Lin, C. W.; Zhu, G. Z.; Marsh, K. L.; Hwang, J. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z.; Kaner, R. B. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv. Mater. 2016, 28, 6719–6726.

[71]

Zhou, Z. H.; Liu, J. Z.; Zhang, X. X.; Tian, D.; Zhan, Z. Y.; Lu, C. H. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 2019, 6, 1802040.

[72]

Ma, Z. Y.; Zhou, X. F.; Deng, W.; Lei, D.; Liu, Z. P. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 2018, 10, 3634–3643.

[73]

Zhang, Y. L.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Pan, Y.; Yan, Y.; Gu, J. W. Ti3C2Tx/RGO porous composite films with superior electromagnetic interference shielding performances. Carbon 2021, 175, 271–280.

[74]

Lai, D. G.; Chen, X. X.; Wang, Y. Controllable fabrication of elastomeric and porous graphene films with superior foldable behavior and excellent electromagnetic interference shielding performance. Carbon 2020, 158, 728–737.

[75]

Xu, J. D.; Chang, H.; Zhao, B. C.; Li, R. S.; Cui, T. M.; Jian, J.; Yang, Y.; Tian, H.; Zhang, S.; Ren, T. L. Highly stretchable and conformal electromagnetic interference shielding armor with strain sensing ability. Chem. Eng. J. 2022, 431, 133908.

[76]

El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

[77]

Yin, L.; Kang, H.; Ma, H. X.; Wang, J. F.; Liu, Y. Y.; Xie, Z. M.; Wang, Y. S.; Fan, Z. M. Sunshine foaming of compact Ti3C2Tx MXene film for highly efficient electromagnetic interference shielding and energy storage. Carbon 2021, 182, 124–133.

[78]

Shen, B.; Li, Y.; Yi, D.; Zhai, W. T.; Wei, X. C.; Zheng, W. G. Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 2016, 102, 154–160.

[79]

Weng, C. X.; Wang, G. R.; Dai, Z. H.; Pei, Y. M.; Liu, L. Q.; Zhang, Z. Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale 2019, 11, 22804–22812.

[80]

Zeng, Z. H.; Wu, N.; Wei, J. J.; Yang, Y. F.; Wu, T. T.; Li, B.; Hauser, S. B.; Yang, W. D.; Liu, J. R.; Zhao, S. Y. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 2022, 14, 59.

[81]

Shen, B.; Li, Y.; Zhai, W. T.; Zheng, W. G. Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 2016, 8, 8050–8057.

[82]

Fu, B. Q.; Ren, P. G.; Guo, Z. Z.; Du, Y. L.; Jin, Y. L.; Sun, Z. F.; Dai, Z.; Ren, F. Construction of three-dimensional interconnected graphene nanosheet network in thermoplastic polyurethane with highly efficient electromagnetic interference shielding. Compos. Part B:Eng. 2021, 215, 108813.

[83]

Cheng, H. R.; Xing, L. L.; Zuo, Y.; Pan, Y. M.; Huang, M. N.; Alhadhrami, A.; Ibrahim, M. M.; El-Bahy, Z. M.; Liu, C. T.; Shen, C. Y. et al. Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 2022, 5, 755–765.

[84]

Ma, W. J.; Cai, W. R.; Chen, W. H.; Liu, P. J.; Wang, J. F.; Liu, Z. X. A novel structural design of shielding capsule to prepare high-performance and self-healing MXene-based sponge for ultra-efficient electromagnetic interference shielding. Chem. Eng. J. 2021, 426, 130729.

[85]

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

[86]

Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

[87]

Nguyen, V. T.; Min, B. K.; Yi, Y.; Kim, S. J.; Choi, C. G. MXene(Ti3C2Tx)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skins. Chem. Eng. J. 2020, 393, 124608.

[88]

Kong, L.; Yin, X. W.; Han, M. K.; Yuan, X. Y.; Hou, Z. X.; Ye, F.; Zhang, L. T.; Cheng, L. F.; Xu, Z. W.; Huang, J. F. Macroscopic bioinspired graphene sponge modified with in-situ grown carbon nanowires and its electromagnetic properties. Carbon 2017, 111, 94–102.

[89]

Yang, Y. L.; Zuo, Y.; Feng, L.; Hou, X. J.; Suo, G. Q.; Ye, X. H.; Zhang, L. Powerful and lightweight electromagnetic-shielding carbon nanotube/graphene foam/silicon carbide composites. Mater. Lett. 2019, 256, 126634.

[90]

Shao, G. F.; Hanaor, D. A. H.; Shen, X. D.; Gurlo, A. Freeze casting: From low-dimensional building blocks to aligned porous structures—A review of novel materials, methods, and applications. Adv. Mater. 2020, 32, 1907176.

[91]

Zhao, S.; Zhang, H. B.; Luo, J. Q.; Wang, Q. W.; Xu, B.; Hong, S.; Yu, Z. Z. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 2018, 12, 11193–11202.

[92]

Yang, J.; Yang, W.; Chen, W.; Tao, X. M. An elegant coupling: Freeze-casting and versatile polymer composites. Prog. Polym. Sci. 2020, 109, 101289.

[93]

Yang, J.; Chan, K. Y.; Venkatesan, H.; Kim, E.; Adegun, M. H.; Lee, J. H.; Shen, X.; Kim, J. K. Superinsulating BNNS/PVA composite aerogels with high solar reflectance for energy-efficient buildings. Nano-Micro Lett. 2022, 14, 54.

[94]

Zhang, H. M.; Shen, X.; Kim, E.; Wang, M. Y.; Lee, J. H.; Chen, H. M.; Zhang, G. C.; Kim, J. K. Integrated water and thermal managements in bioinspired hierarchical MXene aerogels for highly efficient solar-powered water evaporation. Adv. Funct. Mater. 2022, 32, 2111794.

[95]

Wang, Z. Y.; Shen, X.; Han, N. M.; Liu, X.; Wu, Y.; Ye, W. J.; Kim, J. K. Ultralow electrical percolation in graphene aerogel/epoxy composites. Chem. Mater. 2016, 28, 6731–6741.

[96]

Wang, C. H.; Chen, X.; Wang, B.; Huang, M.; Wang, B.; Jiang, Y.; Ruoff, R. S. Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 2018, 12, 5816–5825.

[97]

Xu, W. Z.; Xing, Y.; Liu, J.; Wu, H. P.; Cui, Y.; Li, D. W.; Guo, D. Y.; Li, C. R.; Liu, A. P.; Bai, H. Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS Nano 2019, 13, 7930–7938.

[98]

Bian, R. J.; He, G. L.; Zhi, W. Q.; Xiang, S. L.; Wang, T. W.; Cai, D. Y. Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C 2019, 7, 474–478.

[99]

Han, M. K.; Yin, X. W.; Hantanasirisakul, K.; Li, X. L.; Iqbal, A.; Hatter, C. B.; Anasori, B.; Koo, C. M.; Torita, T.; Soda, Y. et al. Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 2019, 7, 1900267.

[100]

Tetik, H.; Orangi, J.; Yang, G.; Zhao, K. R.; Mujib, S. B.; Singh, G.; Beidaghi, M.; Lin, D. 3D printed MXene aerogels with truly 3D macrostructure and highly engineered microstructure for enhanced electrical and electrochemical performance. Adv. Mater. 2022, 34, 2104980.

[101]

Cong, H. P.; Wang, P.; Yu, S. H. Stretchable and self-healing graphene oxide-polymer composite hydrogels: A dual-network design. Chem. Mater. 2013, 25, 3357–3362.

[102]

Shang, T. X.; Lin, Z. F.; Qi, C. S.; Liu, X. C.; Li, P.; Tao, Y.; Wu, Z. T.; Li, D. W.; Simon, P.; Yang, Q. H. 3D Macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 2019, 29, 1903960.

[103]

Li, C.; Shi, G. Q. Functional gels based on chemically modified graphenes. Adv. Mater. 2014, 26, 3992–4012.

[104]

Wang, M.; Duan, X. D.; Xu, Y. X.; Duan, X. F. Functional three-dimensional graphene/polymer composites. ACS Nano 2016, 10, 7231–7247.

[105]

Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

[106]

Wang, Z. Y.; Shen, X.; Akbari Garakani, M.; Lin, X. Y.; Wu, Y.; Liu, X.; Sun, X. Y.; Kim, J. K. Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. ACS Appl. Mater. Interfaces 2015, 7, 5538–5549.

[107]

Lai, D. G.; Chen, X. X.; Wang, G.; Xu, X. H.; Wang, Y. Arbitrarily reshaping and instantaneously self-healing graphene composite hydrogel with molecule polarization-enhanced ultrahigh electromagnetic interference shielding performance. Carbon 2022, 188, 513–522.

[108]

Yang, W. X.; Shao, B. W.; Liu, T. Y.; Zhang, Y. Y.; Huang, R.; Chen, F.; Fu, Q. Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2018, 10, 8245–8257.

[109]

Zhu, Y. Y.; Liu, J.; Guo, T.; Wang, J. J.; Tang, X. Z.; Nicolosi, V. Multifunctional Ti3C2Tx MXene Composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 2021, 15, 1465–1474.

[110]

Zhou, C. X.; Yuan, S. W.; Dai, T. W.; Zhou, S. T.; Zou, H. W.; Liu, P. B. Environment-adaptable PAM/PVA semi-IPN hydrogels reinforced by GO for high electromagnetic shielding performance. Polymer 2022, 253, 125028.

[111]

Dai, Y.; Wu, X. Y.; Li, L. L.; Zhang, Y.; Deng, Z. M.; Yu, Z. Z.; Zhang, H. B. 3D Printing of resilient, lightweight and conductive MXene/reduced graphene oxide architectures for broadband electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 11375–11385.

[112]

Ghaffarkhah, A.; Kamkar, M.; Dijvejin, Z. A.; Riazi, H.; Ghaderi, S.; Golovin, K.; Soroush, M.; Arjmand, M. High-resolution extrusion printing of Ti3C2-based inks for wearable human motion monitoring and electromagnetic interference shielding. Carbon 2022, 191, 277–289.

[113]

Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962.

[114]

Chizari, K.; Arjmand, M.; Liu, Z.; Sundararaj, U.; Therriault, D. Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Mater. Today Commun. 2017, 11, 112–118.

[115]

Liu, S. J.; Bastola, A. K.; Li, L. A 3D printable and mechanically robust hydrogel based on alginate and graphene oxide. ACS Appl. Mater. Interfaces 2017, 9, 41473–41481.

[116]

Moyano, J. J.; Gómez-Gómez, A.; Pérez-Coll, D.; Belmonte, M.; Miranzo, P.; Osendi, M. I. Filament printing of graphene-based inks into self-supported 3D architectures. Carbon 2019, 151, 94–102.

[117]

Yao, Y. G.; Fu, K. K.; Yan, C. Y.; Dai, J. Q.; Chen, Y. N.; Wang, Y. B.; Zhang, B. L.; Hitz, E.; Hu, L. B. Three-dimensional printable high-temperature and high-rate heaters. ACS Nano 2016, 10, 5272–5279.

[118]

Gao, T. T.; Yang, Z.; Chen, C. J.; Li, Y. J.; Fu, K.; Dai, J. Q.; Hitz, E. M.; Xie, H.; Liu, B. Y.; Song, J. W. et al. Three-dimensional printed thermal regulation textiles. ACS Nano 2017, 11, 11513–11520.

[119]

Zhang, M. C.; Wang, Y. L.; Jian, M. Q.; Wang, C. Y.; Liang, X. P.; Niu, J. L.; Zhang, Y. Y. Spontaneous alignment of graphene oxide in hydrogel during 3D printing for multistimuli-responsive actuation. Adv. Sci. 2020, 7, 1903048.

[120]

Ling, J. Q.; Zhai, W. T.; Feng, W. W.; Shen, B.; Zhang, J. F.; Zheng, W. G. Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2013, 5, 2677–2684.

[121]

Xia, S. H.; Wei, C. L.; Tang, J. C.; Yan, J. H. Tensile stress-gated electromagnetic interference shielding fabrics with real-time adjustable shielding efficiency. ACS Sustainable Chem. Eng. 2021, 9, 13999–14005.

[122]

Zhu, R. Q.; Li, Z. Y.; Deng, G.; Yu, Y. H.; Shui, J. L.; Yu, R. H.; Pan, C. F.; Liu, X. F. Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 2022, 92, 106700.

[123]

Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484–3489.

[124]

Cao, M. S.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Wen, B.; Yuan, J. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 2018, 14, 1800987.

[125]

Lv, H. L.; Yang, Z. H.; Ong, S. J. H.; Wei, C.; Liao, H. B.; Xi, S. B.; Du, Y. H.; Ji, G. B.; Xu, Z. J. A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 2019, 29, 1900163.

[126]

Wang, Y. N.; Cheng, X. D.; Song, W. L.; Ma, C. J.; Bian, X. M.; Chen, M. J. Hydro-sensitive sandwich structures for self-tunable smart electromagnetic shielding. Chem. Eng. J. 2018, 344, 342–352.

[127]

Liu, X. F.; Li, Y.; Sun, X.; Tang, W. K.; Deng, G.; Liu, Y. J.; Song, Z. M.; Yu, Y. H.; Yu, R. H.; Dai, L. M. et al. Off/on switchable smart electromagnetic interference shielding aerogel. Matter 2021, 4, 1735–1747.

[128]

Zhu, M.; Yan, X. X.; Xu, H. L.; Xu, Y. J.; Kong, L. Ultralight, compressible, and anisotropic MXene@wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions. Carbon 2021, 182, 806–814.

[129]

Chen, J. L.; Shen, B.; Jia, X. C.; Liu, Y. F.; Zheng, W. G. Lightweight and compressible anisotropic honeycomb-like graphene composites for highly tunable electromagnetic shielding with multiple functions. Mater. Today Phys. 2022, 24, 100695.

[130]

Li, H. L.; Jing, L.; Ngoh, Z. L.; Tay, R. Y.; Lin, J. J.; Wang, H.; Tsang, S. H.; Teo, E. H. T. Engineering of high-density thin-layer graphite foam-based composite architectures with superior compressibility and excellent electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 2018, 10, 41707–41716.

[131]

Wu, X. Y.; Han, B. Y.; Zhang, H. B.; Xie, X.; Tu, T. X.; Zhang, Y.; Dai, Y.; Yang, R.; Yu, Z. Z. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122622.

[132]

Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng, W. G. Construction of compressible polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 2021, 173, 932–940.

[133]

Yang, B. Q.; Dai, K. R.; Bi, L.; Zhang, W. L.; Li, C. S.; Zhang, J. M.; Yu, D.; Wang, J.; Zhang, H. Superior electromagnetic shielding and mechanical buffering achieved by alternating conductive and porous supramolecular networks. Adv. Eng. Mater. 2022, 24, 2101511.

[134]

Zhang, Y.; Fang, X. X.; Wen, B. Y. Asymmetric Ni/PVC films for high-performance electromagnetic interference shielding. Chin. J. Polym. Sci. 2015, 33, 899–907.

[135]

Wang, H. Y.; Li, T. T.; Wu, L. W.; Lou, C. W.; Lin, J. H. Multifunctional, polyurethane-based foam composites reinforced by a fabric structure: Preparation, mechanical, acoustic, and EMI shielding properties. Materials 2018, 11, 2085.

[136]

Mei, H.; Lu, M. Y.; Zhou, S. X.; Cheng, L. F. Enhanced impact resistance and electromagnetic interference shielding of carbon nanotubes films composites. J. Appl. Polym. Sci. 2021, 138, 50033.

[137]
Yang, W.; Bai, H. X.; Jiang, B.; Wang, C. N.; Ye, W. M.; Li, Z. X.; Xu, C.; Wang, X. B.; Li, Y. F. Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding. Nano Res., in press, https://doi.org/10.1007/s12274-022-4414-3.
[138]

Shen, X.; Kim, J. K. 3D graphene and boron nitride structures for nanocomposites with tailored thermal conductivities: Recent advances and perspectives. Funct. Compos. Struct. 2020, 2, 022001.

[139]

Yu, S.; Shen, X.; Kim, J. K. Beyond homogeneous dispersion: Oriented conductive fillers for high κ nanocomposites. Mater. Horiz. 2021, 8, 3009–3042.

[140]

Shen, X.; Wang, Z. Y.; Wu, Y.; Liu, X.; He, Y. B.; Kim, J. K. Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett. 2016, 16, 3585–3593.

[141]

Hamidinejad, M.; Salari, M.; Ma, L.; Moghimian, N.; Zhao, B.; Taylor, H. K.; Filleter, T.; Park, C. B. Electrically and thermally graded microcellular polymer/graphene nanoplatelet composite foams and their EMI shielding properties. Carbon 2022, 187, 153–164.

[142]

Du, Y. Q.; Xu, J.; Fang, J. Y.; Zhang, Y. T.; Liu, X. Y.; Zuo, P. Y.; Zhuang, Q. X. Ultralight, highly compressible, thermally stable MXene/aramid nanofiber anisotropic aerogels for electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 6690–6700.

[143]

Liu, C.; Wu, W.; Chen, Q. M.; Wang, Y.; Cui, S. F.; Yang, H. 3D expanded graphite frameworks for dual-functional polymer composites with exceptional thermal conductive and electromagnetic interference shielding capabilities. ACS Appl. Electron. Mater. 2022, 4, 707–717.

[144]

Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

[145]

Li, J. C.; Zhao, X. Y.; Wu, W. J.; Ji, X. W.; Lu, Y. L.; Zhang, L. Q. Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity. Chem. Eng. J. 2021, 415, 129054.

[146]

Li, R. S.; Ding, L.; Gao, Q.; Zhang, H. M.; Zeng, D.; Zhao, B.; Fan, B. B.; Zhang, R. Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene. Chem. Eng. J. 2021, 415, 128930.

[147]

Deng, Z. M.; Tang, P. P.; Wu, X. Y.; Zhang, H. B.; Yu, Z. Z. Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 20539–20547.

[148]

Cheng, Y.; Li, X. Y.; Qin, Y. X.; Fang, Y. T.; Liu, G. L.; Wang, Z. Y.; Matz, J.; Dong, P.; Shen, J. F.; Ye, M. X. Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 2021, 7, eabj1663.

[149]

Xia, B. H.; Zhang, X. H.; Jiang, J.; Wang, Y.; Li, T.; Wang, Z. C.; Chen, M. Q.; Liu, T. X.; Dong, W. F. Facile preparation of high strength, lightweight and thermal insulation polyetherimide/Ti3C2Tx MXenes/Ag nanoparticles composite foams for electromagnetic interference shielding. Compos. Commun. 2022, 29, 101028.

[150]

Zhang, H. M.; Zhang, G. C.; Gao, Q.; Tang, M.; Ma, Z. L.; Qin, J. B.; Wang, M. Y.; Kim, J. K. Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chem. Eng. J. 2020, 379, 122304.

[151]

Qi, F. Q.; Wang, L.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 2021, 21, 100512.

[152]

Shi, H. G.; Zhao, H. B.; Liu, B. W.; Wang, Y. Z. Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 26505–26514.

[153]

Shi, Y. Y.; Xiang, Z.; Cai, L.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Cheng, J.; Jiang, H. J.; Lu, W. Multi-interface assembled N-doped MXene/HCFG/AgNW films for wearable electromagnetic shielding devices with multimodal energy conversion and healthcare monitoring performances. ACS Nano 2022, 16, 7816–7833.

[154]

Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021, 14, 2837–2845.

[155]

Huang, W. C.; Hu, L. P.; Tang, Y. F.; Xie, Z. J.; Zhang, H. Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv. Funct. Mater. 2020, 30, 2005223.

[156]

Chen, Y. A.; Li, Y. H.; Liu, Y.; Chen, P.; Zhang, C. Z.; Qi, H. S. Holocellulose Nanofibril-assisted intercalation and stabilization of Ti3C2Tx MXene inks for multifunctional sensing and EMI shielding applications. ACS Appl. Mater. Interfaces 2021, 13, 36221–36231.

[157]

Zhu, S.; Peng, S. P.; Qiang, Z.; Ye, C. H.; Zhu, M. F. Cryogenic-environment resistant, highly elastic hybrid carbon foams for pressure sensing and electromagnetic interference shielding. Carbon 2022, 193, 258–271.

[158]

Dai, Y.; Wu, X. Y.; Liu, Z. S.; Zhang, H. B.; Yu, Z. Z. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B:Eng. 2020, 200, 108263.

[159]

Cheng, Y.; Zhu, W. D.; Lu, X. F.; Wang, C. Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing. Nano Energy 2022, 98, 107229.

[160]

Xu, J. D.; Li, R. S.; Ji, S. R.; Zhao, B. C.; Cui, T. R.; Tan, X. C.; Gou, G. Y.; Jian, J. M.; Xu, H. K.; Qiao, Y. C. et al. Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 2021, 15, 8907–8918.

[161]

Zhou, Z. H.; Panatdasirisuk, W.; Mathis, T. S.; Anasori, B.; Lu, C. H.; Zhang, X. X.; Liao, Z. W.; Gogotsi, Y.; Yang, S. Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage. Nanoscale 2018, 10, 6005–6013.

[162]

Hu, L. B.; Pasta, M.; La Mantia, F.; Cui, L. F.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714.

[163]

Liu, L. X.; Chen, W.; Zhang, H. B.; Wang, Q. W.; Guan, F. L.; Yu, Z. Z. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197.

[164]

Zhang, X. S.; Wang, X. F.; Lei, Z. W.; Wang, L. L.; Tian, M. W.; Zhu, S. F.; Xiao, H.; Tang, X. N.; Qu, L. J. Flexible MXene-decorated fabric with interwoven conductive networks for integrated joule heating, electromagnetic interference shielding, and strain sensing performances. ACS Appl. Mater. Interfaces 2020, 12, 14459–14467.

[165]

Zheng, X. H.; Nie, W. Q.; Hu, Q. L.; Wang, X. W.; Wang, Z. Q.; Zou, L. H.; Hong, X. H.; Yang, H. W.; Shen, J. K.; Li, C. L. Multifunctional RGO/Ti3C2Tx MXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection. Mater. Des. 2021, 200, 109442.

[166]

Zhang, D. B.; Yin, R.; Zheng, Y. J.; Li, Q. M.; Liu, H.; Liu, C. T.; Shen, C. Y. Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and joule heating performances. Chem. Eng. J. 2022, 438, 135587.

[167]

Zheng, X. H.; Wang, P.; Zhang, X. S.; Hu, Q. L.; Wang, Z. Q.; Nie, W. Q.; Zou, L. H.; Li, C. L.; Han, X. Breathable, durable and bark-shaped MXene/textiles for high-performance wearable pressure sensors, EMI shielding and heat physiotherapy. Compos. Part A: Appl. Sci. Manuf. 2022, 152, 106700.

[168]

Simon, R. M. EMI shielding through conductive plastics. Polym. Plast. Technol. Eng. 1981, 17, 1–10.

[169]

Ryu, S. H.; Park, B.; Han, Y. K.; Kwon, S. J.; Kim, T.; Lamouri, R.; Kim, K. H.; Lee, S. B. Electromagnetic wave shielding flexible films with near-zero reflection in the 5G frequency band. J. Mater. Chem. A 2022, 10, 4446–4455.

[170]

Ryu, S. H.; Han, Y. K.; Kwon, S. J.; Kim, T.; Jung, B. M.; Lee, S. B.; Park, B. Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem. Eng. J. 2022, 428, 131167.

[171]

Ryu, S. H.; Kim, H.; Park, S. W.; Kwon, S. J.; Kim, S.; Lim, H. R.; Park, B.; Lee, S. B.; Choa, Y. H. Millimeter-scale percolated polyethylene/graphene composites for 5G electromagnetic shielding. ACS Appl. Nano Mater. 2022, 5, 8429–8439.

[172]

Lin, Z. H.; Liu, J.; Peng, W.; Zhu, Y. Y.; Zhao, Y.; Jiang, K.; Peng, M.; Tan, Y. W. Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 2020, 14, 2109–2117.

Publication history
Copyright
Acknowledgements

Publication history

Received: 07 July 2022
Revised: 17 August 2022
Accepted: 18 August 2022
Published: 07 October 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This project was financially supported by the Research Grants Council (GRF Projects: 16205517, 16209917, and 16200720) and the Innovation and Technology Commission (ITS/012/19) of Hong Kong SAR, and start-up fund for new recruits of PolyU (Nos. P0038855 and P0038858). This project was also supported by the Research Institute for Sports Science and Technology of PolyU (No. P0043535).

Return