Journal Home > Volume 16 , Issue 2

Bio-inspired superhydrophobic magnesium (Mg) alloy surfaces are of increasing interest in corrosion protection due to superior barrier and shielding effects. However, superhydrophobic (SHB) anti-corrosion surfaces are susceptible to damage, which limit their extensive applications. To this end, a micro/nano structure-functional molecule SHB composite coating with self-healing and active anti-corrosion dual-function properties was designed on Mg alloys substrate. The dual-function SHB composite anti-corrosion coating based on lauric acid (La) intercalated and modified hydrotalcite (La-LDH) consisted of three-layer structure, namely La-LDH powder/polydimethylsiloxane (PDMS)/La-LDH film. The anti-corrosion performance of as-prepared coatings was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results indicate that the SHB coating shows excellent active corrosion resistance. Moreover, we also examined the self-healing and anti-corrosion properties of SHB coating upon physical damage and explained the healing mechanism. After heat treatment, the damaged SHB coating regain its surface microstructure and corrosion protection property. This work expands new insights for the wide application of Mg alloys and the research in the field of metal protection.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bio-inspired superhydrophobic magnesium alloy surfaces with active anti-corrosion and self-healing properties

Show Author's information Qiang Li1Xudong Zhang1Shuang Ben1Zhihong Zhao1Yuzhen Ning2( )Kesong Liu1( )Lei Jiang1
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology School of Chemistry, Beihang University, Beijing 100191, China
School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China

Abstract

Bio-inspired superhydrophobic magnesium (Mg) alloy surfaces are of increasing interest in corrosion protection due to superior barrier and shielding effects. However, superhydrophobic (SHB) anti-corrosion surfaces are susceptible to damage, which limit their extensive applications. To this end, a micro/nano structure-functional molecule SHB composite coating with self-healing and active anti-corrosion dual-function properties was designed on Mg alloys substrate. The dual-function SHB composite anti-corrosion coating based on lauric acid (La) intercalated and modified hydrotalcite (La-LDH) consisted of three-layer structure, namely La-LDH powder/polydimethylsiloxane (PDMS)/La-LDH film. The anti-corrosion performance of as-prepared coatings was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results indicate that the SHB coating shows excellent active corrosion resistance. Moreover, we also examined the self-healing and anti-corrosion properties of SHB coating upon physical damage and explained the healing mechanism. After heat treatment, the damaged SHB coating regain its surface microstructure and corrosion protection property. This work expands new insights for the wide application of Mg alloys and the research in the field of metal protection.

Keywords: superhydrophobic, self-healing, magnesium alloys, anti-corrosion coating, active anti-corrosion property

References(44)

[1]

Luo, Q.; Guo, Y. L.; Liu, B.; Feng, Y. J.; Zhang, J. Y.; Li, Q.; Chou, K. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review. J. Mater. Sci. Technol. 2020, 44, 171–190.

[2]

Song, M. S.; Zeng, R. C.; Ding, Y. F.; Li, R. W.; Easton, M.; Cole, I.; Birbilis, N.; Chen, X. B. Recent advances in biodegradation controls over Mg alloys for bone fracture management: A review. J. Mater. Sci. Technol. 2019, 35, 535–544.

[3]

Zheng, Q. Y.; Li, J.; Yuan, W.; Liu, X. M.; Tan, L.; Zheng, Y. F.; Yeung, K. W. K.; Wu, S. L. Metal–organic frameworks incorporated polycaprolactone film for enhanced corrosion resistance and biocompatibility of Mg alloy. ACS Sustainable Chem. Eng. 2019, 7, 18114–18124.

[4]

Wang, Y. C.; Liu, B. Y.; Zhao, X. A.; Zhang, X. H.; Miao, Y. C.; Yang, N.; Yang, B.; Zhang, L. Q.; Kuang, W. J.; Li, J. et al. Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2. Nat. Commun. 2018, 9, 4058.

[5]

Xu, T. C.; Yang, Y.; Peng, X. D.; Song, J. F.; Pan, F. S. Overview of advancement and development trend on magnesium alloy. J. Magnes. Alloys 2019, 7, 536–544.

[6]

Zhang, J. L.; Gu, C. D.; Tu, J. P. Robust slippery coating with superior corrosion resistance and anti-icing performance for AZ31B Mg alloy protection. ACS Appl. Mater. Interfaces 2017, 9, 11247–11257.

[7]

Liu, H. G.; Cao, F. Y.; Song, G. L.; Zheng, D. J.; Shi, Z. M.; Dargusch, M. S.; Atrens, A. Review of the atmospheric corrosion of magnesium alloys. J. Mater. Sci. Technol. 2019, 35, 2003–2016.

[8]

Li, Y. L.; Luong, D. X.; Zhang, J. B.; Tarkunde, Y. R.; Kittrell, C.; Sargunaraj, F.; Ji, Y.; Arnusch, C. J.; Tour, J. M. Laser-induced graphene in controlled atmospheres: From superhydrophilic to superhydrophobic surfaces. Adv. Mater. 2017, 29, 1700496.

[9]

Zaffora, A.; Di Franco, F.; Virtù, D.; Carfì Pavia, F.; Ghersi, G.; Virtanen, S.; Santamaria, M. Tuning of the Mg Alloy AZ31 anodizing process for biodegradable implants. ACS Appl. Mater. Interfaces 2021, 13, 12866–12876.

[10]

Zhu, Y. J.; Sun, F. L.; Qian, H. J.; Wang, H. Y.; Mu, L. W.; Zhu, J. H. A biomimetic spherical cactus superhydrophobic coating with durable and multiple anti-corrosion effects. Chem. Eng. J. 2018, 338, 670–679.

[11]

Zhao, S. Y.; Yang, X. T.; Xu, Y. Y.; Weng, Z. Z.; Liao, L.; Wang, X. L. A sprayable superhydrophobic dental protectant with photo-responsive anti-bacterial, acid-resistant, and anti-fouling functions. Nano Res. 2022, 15, 5245–5255.

[12]

Liu, Y. J.; Guo, Y. J.; Zhang, X. Q.; Gao, G. Q.; Shi, C. Q.; Huang, G. Z.; Li, P. L.; Kang, Q.; Huang, X. Y.; Wu, G. N. Self-cleaning of superhydrophobic nanostructured surfaces at low humidity enhanced by vertical electric field. Nano Res. 2022, 15, 4732–4738.

[13]
Zhang, X.; Wang, Q.; Zou, R. P.; Song, B.; Yan, C. Z.; Shi, Y. S.; Su, B. 3D-printed superhydrophobic and magnetic device that can self-powered sense a tiny droplet impact. Engineering, in press, DOI: https://doi.org/10.1016/j.eng.2022.04.009.
[14]

Ma, Z.; Wang, Q.; Wu, Z. H.; Chen, D. Z.; Yan, C. Z.; Shi, Y. S.; Dickey, M. D.; Su, B. A superconducting-material-based maglev generator used for outer-space. Adv. Mater. 2022, 32, 2203814.

[15]

Ma, Z.; Ai, J. W.; Shi, Y. S.; Wang, K.; Su, B. A superhydrophobic droplet-based magnetoelectric hybrid system to generate electricity and collect water simultaneously. Adv. Mater. 2020, 32, 2006839.

[16]

Lu, Y.; Sathasivam, S.; Song, J. L.; Crick, C. R.; Carmalt, C. J.; Parkin, I. P. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 2015, 347, 1132–1135.

[17]

Zhou, H. M.; Chen, R. R.; Liu, Q.; Liu, J. Y.; Yu, J.; Wang, C.; Zhang, M. L.; Liu, P. L.; Wang, J. Fabrication of ZnO/epoxy resin superhydrophobic coating on AZ31 magnesium alloy. Chem. Eng. J. 2019, 368, 261–272.

[18]

Hollamby, M. J.; Fix, D.; Dönch, I.; Borisova, D.; Möhwald, H.; Shchukin, D. Hybrid polyester coating incorporating functionalized mesoporous carriers for the holistic protection of steel surfaces. Adv. Mater. 2011, 23, 1361–1365.

[19]

Haase, M. F.; Grigoriev, D. O.; Möhwald, H.; Shchukin, D. G. Development of nanoparticle stabilized polymer nanocontainers with high content of the encapsulated active agent and their application in water-borne anticorrosive coatings. Adv. Mater. 2012, 24, 2429–2435.

[20]

Shchukin, D.; Möhwald, H. A coat of many functions: Smart coatings are designed to be sensitive to various external and internal stimuli, thereby enhancing the surface functionality of materials. Science 2013, 341, 1458–1459.

[21]

Son, G. C.; Hwang, D. K.; Jang, J.; Chee, S. S.; Cho, K.; Myoung, J. M.; Ham, M. H. Solution-processed highly adhesive graphene coatings for corrosion inhibition of metals. Nano Res. 2019, 12, 19–23.

[22]

Yang, K.; Duan, Y. X.; Liu, G. C.; Ma, G. Y.; Fu, H.; Chen, X. Y.; Wang, M. X.; Zhu, G. Q.; Yang, W.; Shen, Y. D. Smart ZnS@C filler for super-anticorrosive self-healing zinc-rich epoxy coating. Nano Res. 2022, 15, 4756–4764.

[23]

Zhao, X.; Wei, J. F.; Li, B. C.; Li, S. B.; Tian, N.; Jing, L. Y.; Zhang, J. P. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy. J. Colloid Interf. Sci. 2020, 575, 140–149.

[24]

Li, Y. B.; Li, B. C.; Zhao, X.; Tian, N.; Zhang, J. P. Totally waterborne, nonfluorinated, mechanically robust, and self-healing superhydrophobic coatings for actual anti-icing. ACS Appl. Mater. Interfaces 2018, 10, 39391–39399.

[25]

Wang, Y. K.; Liu, Y. P.; Li, J.; Chen, L. W.; Huang, S. L.; Tian, X. L. Fast self-healing superhydrophobic surfaces enabled by biomimetic wax regeneration. Chem. Eng. J. 2020, 390, 124311.

[26]

Fan, F.; Zhou, C. Y.; Wang, X.; Szpunar, J. Layer-by-layer assembly of a self-healing anticorrosion coating on magnesium alloys. ACS Appl. Mater. Interfaces 2015, 7, 27271–27278.

[27]

Huang, L.; Li, J.; Yuan, W.; Liu, X. M.; Li, Z. Y.; Zheng, Y. F.; Liang, Y. Q.; Zhu, S. L.; Cui, Z. D.; Yang, X. J. et al. Near-infrared light controlled fast self-healing protective coating on magnesium alloy. Corros. Sci. 2020, 163, 108257.

[28]

Cao, Y. H.; Zheng, D. J.; Li, X. L.; Lin, J. Y.; Wang, C.; Dong, S. G.; Lin, C. J. Enhanced corrosion resistance of superhydrophobic layered double hydroxide films with long-term stability on Al substrate. ACS Appl. Mater. Interfaces 2018, 10, 15150–15162.

[29]

Ding, C. D.; Tai, Y.; Wang, D.; Tan, L. H.; Fu, J. J. Superhydrophobic composite coating with active corrosion resistance for AZ31B magnesium alloy protection. Chem. Eng. J. 2019, 357, 518–532.

[30]

Wang, X.; Jing, C.; Chen, Y. X.; Wang, X. S.; Zhao, G.; Zhang, X.; Wu, L.; Liu, X. Y.; Dong, B. Q.; Zhang, Y. X. Active corrosion protection of super-hydrophobic corrosion inhibitor intercalated Mg–Al layered double hydroxide coating on AZ31 magnesium alloy. J. Magnes. Alloys 2020, 8, 291–300.

[31]

Tedim, J.; Zheludkevich, M. L.; Bastos, A. C.; Salak, A. N.; Lisenkov, A. D.; Ferreira, M. G. S. Influence of preparation conditions of Layered Double Hydroxide conversion films on corrosion protection. Electrochim. Acta 2014, 117, 164–171.

[32]

Zeng, R. C.; Liu, Z. G.; Zhang, F.; Li, S. Q.; Cui, H. Z.; Han, E. H. Corrosion of molybdate intercalated hydrotalcite coating on AZ31 Mg alloy. J. Mater. Chem. A 2014, 2, 13049–13057.

[33]

Skorb, E. V.; Skirtach, A. G.; Sviridov, D. V.; Shchukin, D. G.; Möhwald, H. Laser-controllable coatings for corrosion protection. ACS Nano 2009, 3, 1753–1760.

[34]

Bereket, G.; Yurt, A. The inhibition effect of amino acids and hydroxy carboxylic acids on pitting corrosion of aluminum alloy 7075. Corros. Sci. 2001, 43, 1179–1195.

[35]

Song, Y. H.; Tang, Y.; Fang, L.; Wu, F.; Zeng, X. G.; Hu, J.; Zhang, S. F.; Jiang, B.; Luo, H. J. Enhancement of corrosion resistance of AZ31 Mg alloys by one-step in situ synthesis of ZnAl-LDH films intercalated with organic anions (ASP, La). J. Magnes. Alloys 2021, 9, 658–667.

[36]

Chen, J.; Song, Y. W.; Shan, D. Y.; Han, E. H. Modifications of the hydrotalcite film on AZ31 Mg alloy by phytic acid: The effects on morphology, composition and corrosion resistance. Corros. Sci. 2013, 74, 130–138.

[37]

Yan, D. S.; Wang, Y. L.; Liu, J. L.; Song, D. L.; Zhang, T.; Liu, J. Y.; He, F.; Zhang, M.; Wang, J. Self-healing system adapted to different pH environments for active corrosion protection of magnesium alloy. J. Alloys Compd. 2020, 824, 153918.

[38]

Tu, K.; Wang, X. Q.; Kong, L. Z.; Guan, H. Facile preparation of mechanically durable, self-healing and multifunctional superhydrophobic surfaces on solid wood. Mater. Des. 2018, 140, 30–36.

[39]

Zhang, F. Z.; Zhao, L. L.; Chen, H. Y.; Xu, S. L.; Evans, D. G.; Duan, X. Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum. Angew. Chem. Int. Ed. 2008, 47, 2466–2469.

[40]

Yarger, M. S.; Steinmiller, E. M. P.; Choi, K. S. Electrochemical synthesis of Zn–Al layered double hydroxide (LDH) films. Inorg. Chem. 2008, 47, 5859–5865.

[41]

Afshari, M.; Mohammadloo, H. E.; Sarabi, A. A.; Roshan, S. Modification of hydroxyapatite-based coating in the presence of polyvinylalcohol (PVA) for implant application: Corrosion, structure and surface study. Corros. Sci. 2021, 192, 109859.

[42]

Chen, H. Y.; Wang, F. F.; Fan, H. Z.; Hong, R. Y.; Li, W. H. Construction of MOF-based superhydrophobic composite coating with excellent abrasion resistance and durability for self-cleaning, corrosion resistance, anti-icing, and loading-increasing research. Chem. Eng. J. 2021, 408, 127343.

[43]

Long, M. Y.; Peng, S.; Deng, W. S.; Miao, X. R.; Wen, N.; Zhou, Q. N.; Yang, X. J.; Deng, W. L. A robust superhydrophobic PDMS@ZnSn(OH)6 coating with under-oil self-cleaning and flame retardancy. J. Mater. Chem. A 2017, 5, 22761–22771.

[44]

Li, B. C.; Zhang, J. P. Durable and self-healing superamphiphobic coatings repellent even to hot liquids. Chem. Commun. 2016, 52, 2744–2747.

File
12274_2022_4937_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 July 2022
Revised: 08 August 2022
Accepted: 18 August 2022
Published: 17 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the Fundamental Research Fund (No. 2020-JCJQ-JJ-008), the National Natural Science Foundation of China (No. 21871020), and the Postdoctoral Research Foundation of China (Nos. 2021TQ0023, 2020M680296, 2022T150035 and 2022TQ0022).

Return