Journal Home > Volume 16 , Issue 2

Developing a biocompatible and multifunctional adhesive hydrogel with injectability and self-healing ability for promoting wound healing is highly anticipated in various clinical applications. In this paper, we present a novel natural biopolymer-derived hydrogel based on the aldehyde-modified oxidized guar gum (OGG) and the carboxymethyl chitosan (CMCS) for efficiently improving wound healing with the encapsulation of vascular endothelial growth factor (VEGF). As the hydrogels are synthesized via the dynamically reversible Schiff base linkages, it is imparted with excellent self-healing ability and good shear thinning behavior, which make the hydrogel be easily and conveniently injected through a needle. Besides, the physiochemical properties, including porous structure, mechanical strength and swelling ratio of the hydrogel can be well controlled by regulating the concentrations of the OGG. Moreover, the hydrogel can attain strong adhesion to the tissues at physiological temperature based on the Schiff base between the aldehyde group on the hydrogel and the amino group on the tissue. Based on these features, we have demonstrated that the VEGF encapsulated hydrogel can adhere tightly to the defect tissue and improve wound repair in the rat model of defected skin by promoting cell proliferation, angiogenesis, and collagen secretion. These results indicate that the multifunctional hydrogel is with great scientific significance and broad clinical application prospects.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Natural biopolymers derived hydrogels with injectable, self-healing, and tissue adhesive abilities for wound healing

Show Author's information Bin Kong1,2Rui Liu1Yi Cheng1Xiaodong Cai2Junying Liu2Dagan Zhang1( )Hui Tan2( )Yuanjin Zhao1,3( )
Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
Respiratory department, Shenzhen Children's Hospital, Shenzhen 518038, China
Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China

Abstract

Developing a biocompatible and multifunctional adhesive hydrogel with injectability and self-healing ability for promoting wound healing is highly anticipated in various clinical applications. In this paper, we present a novel natural biopolymer-derived hydrogel based on the aldehyde-modified oxidized guar gum (OGG) and the carboxymethyl chitosan (CMCS) for efficiently improving wound healing with the encapsulation of vascular endothelial growth factor (VEGF). As the hydrogels are synthesized via the dynamically reversible Schiff base linkages, it is imparted with excellent self-healing ability and good shear thinning behavior, which make the hydrogel be easily and conveniently injected through a needle. Besides, the physiochemical properties, including porous structure, mechanical strength and swelling ratio of the hydrogel can be well controlled by regulating the concentrations of the OGG. Moreover, the hydrogel can attain strong adhesion to the tissues at physiological temperature based on the Schiff base between the aldehyde group on the hydrogel and the amino group on the tissue. Based on these features, we have demonstrated that the VEGF encapsulated hydrogel can adhere tightly to the defect tissue and improve wound repair in the rat model of defected skin by promoting cell proliferation, angiogenesis, and collagen secretion. These results indicate that the multifunctional hydrogel is with great scientific significance and broad clinical application prospects.

Keywords: hydrogel, wound healing, self-healing, tissue adhesive, injectability

References(41)

[1]

Chen, H. H.; Cheng, Y. H.; Tian, J. R.; Yang, P. Z.; Zhang, X. R.; Chen, Y. H.; Hu, Y. Q.; Wu, J. H. Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes. Sci. Adv. 2020, 6, eaba4311.

[2]

Blacklow, S. O.; Li, J.; Freedman, B. R.; Zeidi, M.; Chen, C.; Mooney, D. J. Bioinspired mechanically active adhesive dressings to accelerate wound closure. Sci. Adv. 2019, 5, eaaw3963.

[3]

Zhang, J.; Zheng, Y. J.; Lee, J.; Hua, J. Y.; Li, S. L.; Panchamukhi, A.; Yue, J. P.; Gou, X. W.; Xia, Z. F.; Zhu, L. Y. et al. A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing. Nat. Commun. 2021, 12, 1670.

[4]

Castaño, O.; Pérez-Amodio, S.; Navarro-Requena, C.; Mateos-Timoneda, M. Á.; Engel, E. Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms. Adv. Drug Deliv. Rev. 2018, 129, 95–117.

[5]

Mao, J. Y.; Chen, L.; Cai, Z. W.; Qian, S. T.; Liu, Z. M.; Zhao, B. F.; Zhang, Y. G.; Sun, X. M.; Cui, W. G. Advanced biomaterials for regulating polarization of macrophages in wound healing. Adv. Funct. Mater. 2022, 32, 2111003.

[6]

Kong, B.; Sun, L. Y.; Liu, R.; Chen, Y.; Shang, Y. X.; Tan, H.; Zhao, Y. J.; Sun, L. Y. Recombinant human collagen hydrogels with hierarchically ordered microstructures for corneal stroma regeneration. Chem. Eng. J. 2022, 428, 131012.

[7]

Chen, T. Y.; Wen, T. K.; Dai, N. T.; Hsu, S. H. Cryogel/hydrogel biomaterials and acupuncture combined to promote diabetic skin wound healing through immunomodulation. Biomaterials 2021, 269, 120608.

[8]

Cui, C. J.; Sun, S. B.; Wu, S. H.; Chen, S. J.; Ma, J. W.; Zhou, F. Electrospun chitosan nanofibers for wound healing application. Eng. Regener. 2021, 2, 82–90.

[9]

Liang, Y. P.; He, J. H.; Guo, B. L. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021, 15, 12687–12722.

[10]

Yu, Y. R.; Chen, G. P.; Guo, J. H.; Liu, Y. X.; Ren, J. N.; Kong, T. T.; Zhao, Y. J. Vitamin metal-organic framework-laden microfibers from microfluidics for wound healing. Mater. Horiz. 2018, 5, 1137–1142.

[11]

Liu, H.; Wang, C. Y.; Li, C.; Qin, Y. G.; Wang, Z. H.; Yang, F.; Li, Z. H.; Wang, J. C. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 2018, 8, 7533–7549.

[12]

Kong, B.; Chen, Y.; Liu, R.; Liu, X.; Liu, C. Y.; Shao, Z. W.; Xiong, L. M.; Liu, X. N.; Sun, W.; Mi, S. L. Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma. Nat. Commun. 2020, 11, 1435.

[13]

Sharma, P. K.; Singh, Y. Glyoxylic hydrazone linkage-based PEG hydrogels for covalent entrapment and controlled delivery of doxorubicin. Biomacromolecules 2019, 20, 2174–2184.

[14]

Dong, R. N.; Zhao, X.; Guo, B. L.; Ma, P. X. Self-healing conductive injectable hydrogels with antibacterial activity as cell delivery carrier for cardiac cell therapy. ACS Appl. Mater. Interfaces 2016, 8, 17138–17150.

[15]

Kharkar, P. M.; Kiick, K. L.; Kloxin, A. M. Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem. Soc. Rev. 2013, 42, 7335–7372.

[16]

Zhou, L.; Dai, C.; Fan, L.; Jiang, Y. H.; Liu, C.; Zhou, Z. N.; Guan, P. F.; Tian, Y.; Xing, J.; Li, X. J. et al. Injectable self-healing natural biopolymer-based hydrogel adhesive with thermoresponsive reversible adhesion for minimally invasive surgery. Adv. Funct. Mater. 2021, 31, 2007457.

[17]

Hong, Y.; Zhou, F. F.; Hua, Y. J.; Zhang, X. Z.; Ni, C. Y.; Pan, D. H.; Zhang, Y. Q.; Jiang, D. M.; Yang, L.; Lin, Q. N. et al. A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds. Nat. Commun. 2019, 10, 2060.

[18]

Chen, G. P.; Yu, Y. R.; Wu, X. W.; Wang, G. F.; Ren, J. N.; Zhao, Y. J. Bioinspired multifunctional hybrid hydrogel promotes wound healing. Adv. Funct. Mater. 2018, 28, 1801386.

[19]

Chen, J. Q.; Yang, J. B.; Wang, L.; Zhang, X. W.; Heng, B. C.; Wang, D. A.; Ge, Z. G. Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration. Bioact. Mater. 2021, 6, 1689–1698.

[20]

Wu, T. L.; Cui, C. Y.; Huang, Y. T.; Liu, Y.; Fan, C. C.; Han, X. X.; Yang, Y.; Xu, Z. Y.; Liu, B.; Fan, G. W. et al. Coadministration of an adhesive conductive hydrogel patch and an injectable hydrogel to treat myocardial infarction. ACS Appl. Mater. Interfaces 2019, 12, 2039–2048.

[21]

Yang, B.; Song, J. L.; Jiang, Y. H.; Li, M.; Wei, J. J.; Qin, J. J.; Peng, W. J.; Lasaosa, F. L.; He, Y. Y.; Mao, H. L. et al. Injectable adhesive self-healing multicross-linked double-network hydrogel facilitates full-thickness skin wound healing. ACS Appl. Mater. Interfaces 2020, 12, 57782–57797.

[22]

Pandit, A. H.; Mazumdar, N.; Ahmad, S. Periodate oxidized hyaluronic acid-based hydrogel scaffolds for tissue engineering applications. Int. J. Biol. Macromol. 2019, 137, 853–869.

[23]

Lueckgen, A.; Garske, D. S.; Ellinghaus, A.; Desai, R. M.; Stafford, A. G.; Mooney, D. J.; Duda, G. N.; Cipitria, A. Hydrolytically-degradable click-crosslinked alginate hydrogels. Biomaterials 2018, 181, 189–198.

[24]

Fan, C. Q.; Xu, K. G.; Huang, Y.; Liu, S.; Wang, T. C.; Wang, W.; Hu, W. C.; Liu, L.; Xing, M.; Yang, S. M. Viscosity and degradation controlled injectable hydrogel for esophageal endoscopic submucosal dissection. Bioact. Mater. 2021, 6, 1150–1162.

[25]

Reakasame, S.; Boccaccini, A. R. Oxidized alginate-based hydrogels for tissue engineering applications: A review. Biomacromolecules 2018, 19, 3–21.

[26]

Li, T.; Song, X. B.; Weng, C. M.; Wang, X.; Sun, L.; Gong, X. Y.; Yang, L.; Chen, C. Self-crosslinking and injectable chondroitin sulfate/pullulan hydrogel for cartilage tissue engineering. Appl. Mater. Today 2018, 10, 173–183.

[27]

Zhou, L.; Fan, L.; Zhang, F. M.; Jiang, Y. H.; Cai, M.; Dai, C.; Luo, Y. A.; Tu, L. J.; Zhou, Z. N.; Li, X. J. et al. Hybrid gelatin/oxidized chondroitin sulfate hydrogels incorporating bioactive glass nanoparticles with enhanced mechanical properties, mineralization, and osteogenic differentiation. Bioact. Mater. 2021, 6, 890–904.

[28]

Yin, X. Y.; Hao, Y. P.; Lu, Y.; Zhang, D. J.; Zhao, Y. D.; Mei, L.; Sui, K. Y.; Zhou, Q. H.; Hu, J. L. Bio-multifunctional hydrogel patches for repairing full-thickness abdominal wall defects. Adv. Funct. Mater. 2021, 31, 2105614.

[29]

Nie, M.; Kong, B.; Chen, G. P.; Xie, Y.; Zhao, Y. J.; Sun, L. Y. MSCs-laden injectable self-healing hydrogel for systemic sclerosis treatment. Bioact. Mater. 2022, 17, 369–378.

[30]

Li, S. X.; Wang, L.; Zheng, W. F.; Yang, G.; Jiang, X. Y. Rapid fabrication of self‐healing, conductive, and injectable gel as dressings for healing wounds in stretchable parts of the body. Adv. Funct. Mater. 2020, 30, 2002370.

[31]

Nezhad-Mokhtari, P.; Ghorbani, M.; Abdyazdani, N. Reinforcement of hydrogel scaffold using oxidized-guar gum incorporated with curcumin-loaded zein nanoparticles to improve biological performance. Int. J. Biol. Macromol. 2021, 167, 59–65.

[32]

Du, X. C.; Wu, L.; Yan, H. Y.; Jiang, Z. Y.; Li, S. L.; Li, W.; Bai, Y. L.; Wang, H. J.; Cheng, Z. J.; Kong, D. L. et al. Microchannelled alkylated chitosan sponge to treat noncompressible hemorrhages and facilitate wound healing. Nat. Commun. 2021, 12, 4733.

[33]

Pandit, A. H.; Nisar, S.; Imtiyaz, K.; Nadeem, M.; Mazumdar, N.; Rizvi, M. M. A.; Ahmad, S. Injectable, self-healing, and biocompatible N, O-carboxymethyl chitosan/multialdehyde guar gum hydrogels for sustained anticancer drug delivery. Biomacromolecules 2021, 22, 3731–3745.

[34]

Poustchi, F.; Amani, H.; Ahmadian, Z.; Niknezhad, S. V.; Mehrabi, S.; Santos, H. A.; Shahbazi, M. A. Combination therapy of killing diseases by injectable hydrogels: From concept to medical applications. Adv. Healthcare Mater. 2021, 10, 2001571.

[35]

Li, Y. L.; Rodrigues, J.; Tomás, H. Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 2012, 41, 2193–2221.

[36]

Cushing, M. C.; Anseth, K. S. Hydrogel cell cultures. Science 2007, 316, 1133–1134.

[37]

Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23.

[38]

Mao, X. Y.; Cheng, R. Y.; Zhang, H. B.; Bae, J.; Cheng, L. Y.; Zhang, L.; Deng, L. F.; Cui, W. G.; Zhang, Y. G.; Santos, H. A. et al. Self-healing and injectable hydrogel for matching skin flap regeneration. Adv. Sci. 2019, 6, 1801555.

[39]

Qu, J.; Zhao, X.; Liang, Y. P.; Zhang, T. L.; Ma, P. X.; Guo, B. L. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 2018, 183, 185–199.

[40]
Zhu, H. F.; Kong, B.; Nie, M.; Zhao, C.; Liu, R.; Xie, Y.; Zhao, Y. J.; Sun, L. Y. ECM-inspired peptide dendrimer microgels with human MSCs encapsulation for systemic lupus erythematosus treatment. Nano Today 2022, 43, 101454.
[41]

Liu, R.; Kong, B.; Chen, Y.; Liu, X. P.; Mi, S. L. Formation of helical alginate microfibers using different G/M ratios of sodium alginate based on microfluidics. Sens. Actuators B:Chem. 2020, 304, 127069.

File
12274_2022_4936_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 June 2022
Revised: 15 August 2022
Accepted: 18 August 2022
Published: 21 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 82101184 and 82102511), the Shenzhen Fundamental Research Program (Nos. JCYJ20210324102809024, JCYJ20190813152616459 and JCYJ20210324133214038), the Shenzhen PhD Start-up Program (Nos. RCBS20210609103713045, ZDSYS20200811142600003,JCYJ20180228162928828,and JCYJ20190806161409092), the Natural Science Foundation of Guangdong Province (No. 2020A1515110780), the Guangdong Basic and Applied Basic Research Foundation (No. 2021B1515120054), the Natural Science Foundation of Jiangsu (No. BK20210021), and the Research Project of Jiangsu Province Health Committee (No. M2021031).

Return