Journal Home > Volume 16 , Issue 2

Osteoarthritis (OA) is a prevalent chronic inflammatory disease in joints. Current interventions confront systemic toxicity and insufficient bioavailability. The unbalanced microenvironment of OA joints mainly fosters over-expressed reactive oxygen species (ROS), extracellular matrix disintegration, and apoptosis of chondrocytes. In this study, a kind of ROS-scavenging, biodegradable and drug-free nanoparticles (PP NPs) were constructed by the crosslinking of poly(propylene fumarate) (PPF) and ROS-scavenging poly(thioketal) (PTK). The high content of PTK and high crosslinking density of PPF and PTK innovatively endowed the NPs with slow degradation and prolonged ROS-elimination ability. The NPs were further surface-modified with chondroitin sulfate (CS), one of the dietary supplements for osteoarthritis. The intrinsic properties of resultant PP-CS NPs were excavated in vitro and in vivo. The PP-CS NPs could desirably consume 1,10-diphenyl-2-picrylhydrazyl (DPPH) radicals without toxicity to RAW264.7 cells in vitro. With an average diameter of ~ 300 nm, the PP-CS NPs could be intra-articular administrated in OA rats and showed prolonged joint retention time, allowing only one injection per month. Moreover, the PP-CS NPs possessed a prolonged ROS depletion and M2 macrophage induction effect, down-regulated inflammatory cytokines, and reduced glycosaminoglycans loss. Consequently, the PP-CS NPs protected articular surface erosion, inhibited uneven cartilage matrix, and attenuated OA progression.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Reactive oxygen species-scavenging nanoparticles coated with chondroitin sulfate protect cartilage against osteoarthritis in vivo

Show Author's information Zhaoyi Wang1,§Hao Xiong2,5,§Zihe Zhai1Yuejun Yao1Tong Zhou1Haolan Zhang1Cunyi Fan2,5( )Changyou Gao1,3,4( )
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312035, China
Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China

§ Zhaoyi Wang and Hao Xiong contributed equally to this work.

Abstract

Osteoarthritis (OA) is a prevalent chronic inflammatory disease in joints. Current interventions confront systemic toxicity and insufficient bioavailability. The unbalanced microenvironment of OA joints mainly fosters over-expressed reactive oxygen species (ROS), extracellular matrix disintegration, and apoptosis of chondrocytes. In this study, a kind of ROS-scavenging, biodegradable and drug-free nanoparticles (PP NPs) were constructed by the crosslinking of poly(propylene fumarate) (PPF) and ROS-scavenging poly(thioketal) (PTK). The high content of PTK and high crosslinking density of PPF and PTK innovatively endowed the NPs with slow degradation and prolonged ROS-elimination ability. The NPs were further surface-modified with chondroitin sulfate (CS), one of the dietary supplements for osteoarthritis. The intrinsic properties of resultant PP-CS NPs were excavated in vitro and in vivo. The PP-CS NPs could desirably consume 1,10-diphenyl-2-picrylhydrazyl (DPPH) radicals without toxicity to RAW264.7 cells in vitro. With an average diameter of ~ 300 nm, the PP-CS NPs could be intra-articular administrated in OA rats and showed prolonged joint retention time, allowing only one injection per month. Moreover, the PP-CS NPs possessed a prolonged ROS depletion and M2 macrophage induction effect, down-regulated inflammatory cytokines, and reduced glycosaminoglycans loss. Consequently, the PP-CS NPs protected articular surface erosion, inhibited uneven cartilage matrix, and attenuated OA progression.

Keywords: nanoparticles, osteoarthritis, reactive oxygen species, polythioketal, chondroitin sulfate

References(65)

[1]

Martel-Pelletier, J.; Barr, A. J.; Cicuttini, F. M.; Conaghan, P. G.; Cooper, C.; Goldring, M. B.; Goldring, S. R.; Jones, G.; Teichtahl, A. J.; Pelletier, J. P. Osteoarthritis. Nat. Rev. Dis. Primers 2016, 2, 16072.

[2]

van Oostrom, S. H.; Picavet, H. S. J.; de Bruin, S. R.; Stirbu, I.; Korevaar, J. C.; Schellevis, F. G.; Baan, C. A. Multimorbidity of chronic diseases and health care utilization in general practice. BMC Fam. Pract. 2014, 15, 61.

[3]

Hiligsmann, M.; Cooper, C.; Arden, N.; Boers, M.; Branco, J. C.; Brandi, M. L.; Bruyere, O.; Guillemin, F.; Hochberg, M. C.; Hunter, D. J. et al. Health economics in the field of osteoarthritis: An expert’s consensus paper from the European society for clinical and economic aspects of osteoporosis and osteoarthritis (ESCEO). Semin. Arthritis Rheum. 2013, 43, 303–313.

[4]

Maudens, P.; Jordan, O.; Allemann, E. Recent advances in intra-articular drug delivery systems for osteoarthritis therapy. Drug Discov. Today 2018, 23, 1761–1775.

[5]

Kumar, S.; Adjei, I. M.; Brown, S. B.; Liseth, O.; Sharma, B. Manganese dioxide nanoparticles protect cartilage from inflammation-induced oxidative stress. Biomaterials 2019, 224, 119467.

[6]

Portal-Núñez, S.; Esbrit, P.; Alcaraz, M. J.; Largo, R. Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis. Biochem. Pharmacol. 2016, 108, 1–10.

[7]

Wang, Z. Y.; Wang, S. Q.; Wang, K.; Wu, X. Y.; Tu, C. X.; Gao, C. Y. Stimuli-sensitive nanotherapies for the treatment of osteoarthritis. Macromol. Biosci. 2021, 21, 2100280.

[8]

Lepetsos, P.; Papavassiliou, A. G. ROS/oxidative stress signaling in osteoarthritis. Biochim. Biophys. Acta Mol. Basis Dis. 2016, 1862, 576–591.

[9]

Lepetsos, P.; Papavassiliou, K. A.; Papavassiliou, A. G. Redox and NF-κB signaling in osteoarthritis. Free Radic. Biol. Med. 2019, 132, 90–100.

[10]

Zhou, T.; Xiong, H.; Wang, S. Q.; Zhang, H. L.; Zheng, W. W.; Gou, Z. R.; Fan, C. Y.; Gao, C. Y. An injectable hydrogel dotted with dexamethasone acetate-encapsulated reactive oxygen species-scavenging micelles for combinatorial therapy of osteoarthritis. Mater. Today Nano 2022, 17, 100164.

[11]

Liu, X. Z.; Xu, Y.; Chen, S. J.; Tan, Z. F.; Xiong, K.; Li, Y.; Ye, Y.; Luo, Z. P.; He, F.; Gong, Y. H. Rescue of proinflammatory cytokine-inhibited chondrogenesis by the antiarthritic effect of melatonin in synovium mesenchymal stem cells via suppression of reactive oxygen species and matrix metalloproteinases. Free Radic. Biol. Med. 2014, 68, 234–246.

[12]

Yao, H.; Xu, J. K.; Wang, J. L.; Zhang, Y. F.; Zheng, N. Y.; Yue, J.; Mi, J.; Zheng, L. Z.; Dai, B. Y.; Huang, W. H. et al. Combination of magnesium ions and vitamin C alleviates synovitis and osteophyte formation in osteoarthritis of mice. Bioact. Mater. 2021, 6, 1341–1352.

[13]

Frischholz, S.; Berberich, O.; Böck, T.; Meffert, R. H.; Blunk, T. Resveratrol counteracts IL-1β-mediated impairment of extracellular matrix deposition in 3D articular chondrocyte constructs. J. Tissue Eng. Regen. Med. 2020, 14, 897–908.

[14]

Evans, C. H.; Kraus, V. B.; Setton, L. A. Progress in intra-articular therapy. Nat. Rev. Rheumatol. 2014, 10, 11–22.

[15]

Kavanaugh, T. E.; Werfel, T. A.; Cho, H.; Hasty, K. A.; Duvall, C. L. Particle-based technologies for osteoarthritis detection and therapy. Drug Deliv. Transl. Res. 2016, 6, 132–147.

[16]

Chen, W. H.; Chen, Q. W.; Chen, Q.; Cui, C. Y.; Duan, S.; Kang, Y. Y.; Liu, Y.; Liu, Y.; Muhammad, W.; Shao, S. Q. et al. Biomedical polymers: Synthesis, properties, and applications. Sci. China Chem. 2022, 65, 1010–1075.

[17]

Chung, M. F.; Chia, W. T.; Wan, W. L.; Lin, Y. J.; Sung, H. W. Controlled release of an anti-inflammatory drug using an ultrasensitive ROS-responsive gas-generating carrier for localized inflammation inhibition. J. Am. Chem. Soc. 2015, 137, 12462–12465.

[18]

Yang, G. Z.; Fan, M. N.; Zhu, J. W.; Ling, C.; Wu, L. H.; Zhang, X.; Zhang, M.; Li, J. Y.; Yao, Q. Q.; Gu, Z. W. et al. A multifunctional anti-inflammatory drug that can specifically target activated macrophages, massively deplete intracellular H2O2, and produce large amounts CO for a highly efficient treatment of osteoarthritis. Biomaterials 2020, 255, 120155.

[19]

O'Grady, K. P.; Kavanaugh, T. E.; Cho, H.; Ye, H. R.; Gupta, M. K.; Madonna, M. C.; Lee, J.; O'Brien, C. M.; Skala, M. C.; Hasty, K. A. et al. Drug-free ROS sponge polymeric microspheres reduce tissue damage from ischemic and mechanical injury. ACS Biomater. Sci. Eng. 2018, 4, 1251–1264.

[20]

Hou, W. D.; Ye, C. Y.; Chen, M.; Gao, W.; Xie, X.; Wu, J. R.; Zhang, K.; Zhang, W.; Zheng, Y. Y.; Cai, X. J. Excavating bioactivities of nanozyme to remodel microenvironment for protecting chondrocytes and delaying osteoarthritis. Bioact. Mater. 2021, 6, 2439–2451.

[21]

Kang, C. S.; Jung, E.; Hyeon, H.; Seon, S.; Lee, D. Acid-activatable polymeric curcumin nanoparticles as therapeutic agents for osteoarthritis. Nanomed. Nanotechnol. Biol. Med. 2020, 23, 102104.

[22]

Maldonado, M.; Nam, J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. BioMed Res. Int. 2013, 2013, 284873.

[23]

Pérez-Garcia, S.; Carrión, M.; Gutiérrez-Cañas, I.; Villanueva-Romero, R.; Castro, D.; Martínez, C.; González-Álvaro, I.; Blanco, F. J.; Juarranz, Y.; Gomariz, R. P. Profile of matrix-remodeling proteinases in osteoarthritis: Impact of fibronectin. Cells 2020, 9, 40.

[24]

Muzzarelli, R. A. A.; Greco, F.; Busilacchi, A.; Sollazzo, V.; Gigante, A. Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: A review. Carbohydr. Polym. 2012, 89, 723–739.

[25]

du Souich, P.; García, A. G.; Vergés, J.; Montell, E. Immunomodulatory and anti-inflammatory effects of chondroitin sulphate. J. Cell. Mol. Med. 2009, 13, 1451–1463.

[26]

Ma, Y. D.; Yang, H. Y.; Zong, X. Q.; Wu, J. P.; Ji, X.; Liu, W.; Yuan, P. F.; Chen, X. J.; Yang, C. Q.; Li, X. D. et al. Artificial M2 macrophages for disease-modifying osteoarthritis therapeutics. Biomaterials 2021, 274, 120865.

[27]

Agrawal, P.; Pramanik, K. Enhanced chondrogenic differentiation of human mesenchymal stem cells in silk fibroin/chitosan/glycosaminoglycan scaffolds under dynamic culture condition. Differentiation 2019, 110, 36–48.

[28]

Martin, J. R.; Gupta, M. K.; Page, J. M.; Yu, F.; Davidson, J. M.; Guelcher, S. A.; Duvall, C. L. A porous tissue engineering scaffold selectively degraded by cell-generated reactive oxygen species. Biomaterials 2014, 35, 3766–3776.

[29]

Hu, B.; Ye, C.; Gao, C. Y. Synthesis and characterization of biodegradable polyurethanes with unsaturated carbon bonds based on poly(propylene fumarate). J. Appl. Polym. Sci. 2015, 132, 42065.

[30]

Zhang, H. L.; Xiong, H.; Ahmed, W.; Yao, Y. J.; Wang, S. Q.; Fan, C. Y.; Gao, C. Y. Reactive oxygen species-responsive and scavenging polyurethane nanoparticles for treatment of osteoarthritis in vivo. Chem. Eng. J. 2021, 409, 128147.

[31]

Feng, X.; Zhou, T.; Xu, P. F.; Ye, J.; Gou, Z. R.; Gao, C. Y. Enhanced regeneration of osteochondral defects by using an aggrecanase-1 responsively degradable and N-cadherin mimetic peptide-conjugated hydrogel loaded with BMSCs. Biomater. Sci. 2020, 8, 2212–2226.

[32]

Tan, R. Z.; Wang, C.; Deng, C.; Zhong, X.; Yan, Y.; Luo, Y.; Lan, H. Y.; He, T.; Wang, L. Quercetin protects against cisplatin-induced acute kidney injury by inhibiting Mincle/Syk/NF-κB signaling maintained macrophage inflammation. Phytother. Res. 2020, 34, 139–152.

[33]

Schmitz, N.; Laverty, S.; Kraus, V. B.; Aigner, T. Basic methods in histopathology of joint tissues. Osteoarthritis Cartilage 2010, 18, S113–S116.

[34]

Pritzker, K. P. H.; Gay, S.; Jimenez, S. A.; Ostergaard, K.; Pelletier, J. P.; Revell, P. A.; Salter, D.; van den Berg, W. B. Osteoarthritis cartilage histopathology: Grading and staging. Osteoarthritis Cartilage 2006, 14, 13–29.

[35]

Vasile, E.; Pandele, A. M.; Andronescu, C.; Selaru, A.; Dinescu, S.; Costache, M.; Hanganu, A.; Raicopol, M. D.; Teodorescu, M. Hema-functionalized graphene oxide: A versatile nanofiller for poly(propylene fumarate)-based hybrid materials. Sci. Rep. 2019, 9, 18685.

[36]

Salarian, M.; Xu, W. Z.; Biesinger, M. C.; Charpentier, P. A. Synthesis and characterization of novel TiO2-poly(propylene fumarate) nanocomposites for bone cementation. J. Mater. Chem. B 2014, 2, 5145–5156.

[37]

Wang, W.; Chen, J. R.; Li, M.; Jia, H. Z.; Han, X. X.; Zhang, J. X.; Zou, Y.; Tan, B. Y.; Liang, W.; Shang, Y. Y. et al. Rebuilding postinfarcted cardiac functions by injecting TIIA@PDA nanoparticle-cross-linked ROS-sensitive hydrogels. ACS Appl. Mater. Interfaces 2019, 11, 2880–2890.

[38]

Ajisaka, K.; Oyanagi, Y.; Miyazaki, T.; Suzuki, Y. Effect of the chelation of metal cation on the antioxidant activity of chondroitin sulfates. Biosci. Biotechnol. Biochem. 2016, 80, 1179–1185.

[39]

Campo, G. M.; Avenoso, A.; Campo, S.; Ferlazzo, A. M.; Calatroni, A. Antioxidant activity of chondroitin sulfate. Adv. Pharmacol. 2006, 53, 417–431.

[40]

Shim, M. S.; Xia, Y. N. A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew. Chem., Int. Ed. 2013, 52, 6926–6929.

[41]

Ma, S.; Song, W. T.; Xu, Y. D.; Si, X. H.; Lv, S. X.; Zhang, Y.; Tang, Z. H.; Chen, X. S. Rationally designed polymer conjugate for tumor-specific amplification of oxidative stress and boosting antitumor immunity. Nano Lett. 2020, 20, 2514–2521.

[42]

Zhang, Y. X.; Zhang, H. L.; Mao, Z. W.; Gao, C. Y. ROS-responsive nanoparticles for suppressing the cytotoxicity and immunogenicity caused by PM2.5 particulates. Biomacromolecules 2019, 20, 1777–1788.

[43]

Zhang, P.; Zhang, Y.; Ding, X. Y.; Shen, W.; Li, M. Q.; Wagner, E.; Xiao, C. S.; Chen, X. S. A multistage cooperative nanoplatform enables intracellular co-delivery of proteins and chemotherapeutics for cancer therapy. Adv. Mater. 2020, 32, 2000013.

[44]

Ummarino, A.; Gambaro, F. M.; Kon, E.; Torres Andón, F. Therapeutic manipulation of macrophages using nanotechnological approaches for the treatment of osteoarthritis. Nanomaterials 2020, 10, 1562.

[45]

Lin, F.; Wang, Z.; Xiang, L.; Deng, L. F.; Cui, W. G. Charge-guided micro/nano-hydrogel microsphere for penetrating cartilage matrix. Adv. Funct. Mater. 2021, 31, 2107678.

[46]

Wan, W. L.; Lin, Y. J.; Shih, P. C.; Bow, Y. R.; Cui, Q. H.; Chang, Y.; Chia, W. T.; Sung, H. W. An in situ depot for continuous evolution of gaseous H2 mediated by a magnesium passivation/activation cycle for treating osteoarthritis. Angew. Chem., Int. Ed. 2018, 57, 9875–9879.

[47]

Culemann, S.; Grüneboom, A.; Nicolás-Ávila, J. Á.; Weidner, D.; Lämmle, K. F.; Rothe, T.; Quintana, J. A.; Kirchner, P.; Krljanac, B.; Eberhardt, M. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 2019, 572, 670–675.

[48]

Zhang, H.; Cai, D.; Bai, X. Macrophages regulate the progression of osteoarthritis. Osteoarthritis Cartilage 2020, 28, 555–561.

[49]

Fahy, N.; de Vries-van Melle, M. L.; Lehmann, J.; Wei, W.; Grotenhuis, N.; Farrell, E.; van der Kraan, P. M.; Murphy, J. M.; Bastiaansen-Jenniskens, Y. M.; van Osch, G. J. V. M. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Osteoarthritis Cartilage 2014, 22, 1167–1175.

[50]

Fernandes, T. L.; Gomoll, A. H.; Lattermann, C.; Hernandez, A. J.; Bueno, D. F.; Amano, M. T. Macrophage: A potential target on cartilage regeneration. Front. Immunol. 2020, 11, 111.

[51]

Dai, M. L.; Sui, B. Y.; Xue, Y.; Liu, X.; Sun, J. Cartilage repair in degenerative osteoarthritis mediated by squid type II collagen via immunomodulating activation of M2 macrophages, inhibiting apoptosis and hypertrophy of chondrocytes. Biomaterials 2018, 180, 91–103.

[52]

Kapoor, M.; Martel-Pelletier, J.; Lajeunesse, D.; Pelletier, J. P.; Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 2011, 7, 33–42.

[53]

Mehana, E. S. E.; Khafaga, A. F.; El-Blehi, S. S. The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review. Life Sci. 2019, 234, 116786.

[54]

Glasson, S. S.; Askew, R.; Sheppard, B.; Carito, B.; Blanchet, T.; Ma, H. L.; Flannery, C. R.; Peluso, D.; Kanki, K.; Yang, Z. Y. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 2005, 434, 644–648.

[55]

Li, X. X.; Wang, X. Y.; Liu, Q. F.; Yan, J. J.; Pan, D. H.; Wang, L. Z.; Xu, Y. P.; Wang, F.; Liu, Y. H.; Li, X. T. et al. ROS-responsive boronate-stabilized polyphenol-poloxamer 188 assembled dexamethasone nanodrug for macrophage repolarization in osteoarthritis treatment. Adv. Healthc. Mater. 2021, 10, 2100883.

[56]

Kim, K.; Dean, D.; Mikos, A. G.; Fisher, J. P. Effect of initial cell seeding density on early osteogenic signal expression of rat bone marrow stromal cells cultured on cross-linked poly(propylene fumarate) disks. Biomacromolecules 2009, 10, 1810–1817.

[57]

Lovu, M.; Dumais, G.; du Souich, P. Anti-inflammatory activity of chondroitin sulfate. Osteoarthritis Cartilage 2008, 16, S14–S18.

[58]

Zhang, W.; Liang, L. Q.; Yuan, X. W.; Wang, F.; Shan, X. Q.; Li, J. B.; Wang, Z. R.; Yang, X. Intelligent dual responsive modified ZIF-8 nanoparticles for diagnosis and treatment of osteoarthritis. Mater. Des. 2021, 209, 109964.

[59]

Gao, C.; Huang, Q. X.; Liu, C. H.; Kwong, C. H. T.; Yue, L. D.; Wan, J. B.; Lee, S. M. Y.; Wang, R. B. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun. 2020, 11, 2622.

[60]

Ruan, H. T.; Yao, S. Y.; Wang, S. L.; Wang, R. F.; Xie, C.; Guo, H. Y.; Lu, W. Y. Stapled RAP12 peptide ligand of LRP1 for micelles-based multifunctional glioma-targeted drug delivery. Chem. Eng. J. 2021, 403, 126296.

[61]

Ruan, H. T.; Hu, Q. Y.; Wen, D.; Chen, Q.; Chen, G. J.; Lu, Y. F.; Wang, J. Q.; Cheng, H.; Lu, W. Y.; Gu, Z. A dual-bioresponsive drug-delivery depot for combination of epigenetic modulation and immune checkpoint blockade. Adv. Mater. 2019, 31, 1806957.

[62]

Chen, H. M.; Qin, Z. N.; Zhao, J. M.; He, Y.; Ren, E.; Zhu, Y.; Liu, G.; Mao, C. B.; Zheng, L. Cartilage-targeting and dual MMP-13/pH responsive theranostic nanoprobes for osteoarthritis imaging and precision therapy. Biomaterials 2019, 225, 119520.

[63]

Zheng, D. D.; Chen, W.; Ruan, H. T.; Cai, Z. W.; Chen, X. Y.; Chen, T. T.; Zhang, Y. H.; Cui, W. G.; Chen, H.; Shen, H. X. Metformin-hydrogel with glucose responsiveness for chronic inflammatory suppression. Chem. Eng. J. 2022, 428, 131064.

[64]

Zhang, Y.; Du, X. Y.; Liu, S. G.; Yan, H. X.; Ji, J. B.; Xi, Y. W.; Yang, X. Y.; Zhai, G. X. NIR-triggerable ROS-responsive cluster-bomb-like nanoplatform for enhanced tumor penetration, phototherapy efficiency and antitumor immunity. Biomaterials 2021, 278, 121135.

[65]

Kang, L. J.; Yoon, J.; Rho, J. G.; Han, H. S.; Lee, S.; Oh, Y. S.; Kim, H.; Kim, E.; Kim, S. J.; Lim, Y. T. et al. Self-assembled hyaluronic acid nanoparticles for osteoarthritis treatment. Biomaterials 2021, 275, 120967.

File
12274_2022_4934_MOESM1_ESM.pdf (893.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 June 2022
Revised: 16 August 2022
Accepted: 18 August 2022
Published: 22 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work is financially supported by the Key research and development program of Zhejiang Province (No. 2021C03113) and the Natural Science Foundation of Zhejiang Province (No. LD21E030001).

Return