Journal Home > Volume 16 , Issue 2

It is of great value to synchronously resolve the critical issues of the polysulfide shuttle and dendrite growth in lithium-sulfur (Li-S) batteries. Herein, a bifunctional Al-based Material of Institute Lavoisier-53 (MIL-53(Al))/carbon nanotube (MIL-53/CNT) composite is reported for this matter, which was constructed by growing an ordered MIL-53(Al) nanorods array on the CNT film. For the sulfur cathode, the proposed structure serves as a multifunctional interlayer to block polysulfides and accelerate their catalytic conversion, thus efficaciously inhibiting the shuttle effect. Meanwhile, when applied as the anode host material (Li@MIL-53/CNT), the flexible CNT film serves as a self-standing framework to accommodate Li metal and alleviate the volume expansion, while the uniform ion channels built by the MIL-53(Al) nanorods array along with the abundant oxygen groups can homogenize Li ion diffusion, enabling a steady Li plating/stripping behavior and limiting the dendrite growth. Not surprisingly, Li-S full battery with MIL-53/CNT interlayer and Li@MIL-53/CNT anode delivers an appreciable specific capacity of 735 mAh·g–1 and excellent cycle durability at 5 C, presenting a limited capacity decay of 0.03% per cycle in 500 cycles. Besides, an impressive cycle stability and rate capability are also achieved at high-sulfur loading and lean electrolyte conditions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

An orderly arranged dual-role MIL-53(Al) nanorods array rooted on carbon nanotube film for long-life and stable lithium-sulfur batteries

Show Author's information Feichao Wu1( )Quanqing Li1Gaofeng Jin1Yuhong Luo1Xiaohang Du1Jingde Li1( )Zisheng Zhang1,2
Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada

Abstract

It is of great value to synchronously resolve the critical issues of the polysulfide shuttle and dendrite growth in lithium-sulfur (Li-S) batteries. Herein, a bifunctional Al-based Material of Institute Lavoisier-53 (MIL-53(Al))/carbon nanotube (MIL-53/CNT) composite is reported for this matter, which was constructed by growing an ordered MIL-53(Al) nanorods array on the CNT film. For the sulfur cathode, the proposed structure serves as a multifunctional interlayer to block polysulfides and accelerate their catalytic conversion, thus efficaciously inhibiting the shuttle effect. Meanwhile, when applied as the anode host material (Li@MIL-53/CNT), the flexible CNT film serves as a self-standing framework to accommodate Li metal and alleviate the volume expansion, while the uniform ion channels built by the MIL-53(Al) nanorods array along with the abundant oxygen groups can homogenize Li ion diffusion, enabling a steady Li plating/stripping behavior and limiting the dendrite growth. Not surprisingly, Li-S full battery with MIL-53/CNT interlayer and Li@MIL-53/CNT anode delivers an appreciable specific capacity of 735 mAh·g–1 and excellent cycle durability at 5 C, presenting a limited capacity decay of 0.03% per cycle in 500 cycles. Besides, an impressive cycle stability and rate capability are also achieved at high-sulfur loading and lean electrolyte conditions.

Keywords: lithium-sulfur batteries, interlayer, nanorods array, MIL-53(AL), anode host material

References(67)

[1]

Cheng, M. H.; Yan, R.; Yang, Z.; Tao, X. F.; Ma, T.; Cao, S. J.; Ran, F.; Li, S.; Yang, W.; Cheng, C. Polysulfide catalytic materials for fast-kinetic metal-sulfur batteries: Principles and active centers. Adv. Sci. (Weinh. ) 2022, 9, 2102217.

[2]

Zhang, J.; You, C. Y.; Lin, H. Z.; Wang, J. Electrochemical kinetic modulators in lithium-sulfur batteries: From defect-rich catalysts to single atomic catalysts. Energy Environ. Mater. 2022, 5, 731–750.

[3]

Xiao, J. J.; Lin, S. X.; Cai, Z. H.; Muhmood, T.; Hu, X. B. Ultra-high conductive 3D aluminum photonic crystal as sulfur immobilizer for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 4776–4782.

[4]

Gao, G. K.; Wang, Y. R.; Wang, S. B.; Yang, R. X.; Chen, Y. F.; Zhang, Y.; Jiang, C.; Wei, M. J.; Ma, H. Y. Lan, Y. Q. Stepped channels integrated lithium-sulfur separator via photoinduced multidimensional fabrication of metal-organic frameworks. Angew. Chem., Int. Ed. 2021, 60, 10147–10154.

[5]

Wang, J.; Zhang, J.; Cheng, S.; Yang, J.; Xi, Y. L.; Hou, X. G.; Xiao, Q. B.; Lin, H. Z. Long-life dendrite-free lithium metal electrode achieved by constructing a single metal atom anchored in a diffusion modulator layer. Nano Lett. 2021, 21, 3245–3253.

[6]

He, Y. B.; Chang, Z.; Wu, S. C.; Qiao, Y.; Bai, S. Y.; Jiang, K. Z.; He, P.; Zhou, H. S. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. Adv. Energy Mater. 2018, 8, 1802130.

[7]

He, J. R.; Manthiram, A. 3D CoSe@C aerogel as a host for dendrite-free lithium-metal anode and efficient sulfur cathode in Li-S full cells. Adv. Energy Mater. 2020, 10, 2002654.

[8]

Jeong, Y. C.; Kim, J. H.; Nam, S.; Park, C. R.; Yang, S. J. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries. Adv. Funct. Mater. 2018, 28, 1707411.

[9]

Wang, J. N.; Yi, S. S.; Liu, J. W.; Sun, S. Y.; Liu, Y. P.; Yang, D. W.; Xi, K.; Gao, G. X.; Abdelkader A.; Yan W. et al. Suppressing the shuttle effect and dendrite growth in lithium-sulfur batteries. ACS Nano. 2020, 14, 9819–9831.

[10]

Wang, J.; Yang, J.; Xiao, Q. B.; Zhang, J.; Li, T.; Jia, L. J.; Wang, Z. L.; Cheng, S.; Li, L. G.; Liu, M. N. et al. In situ self-assembly of ordered organic/inorganic dual-layered interphase for achieving long-life dendrite-free Li metal anodes in LiFSI-based electrolyte. Adv. Funct. Mater. 2021, 31, 2007434.

[11]

Ye, H. L.; Li, Y. G. Towards practical lean-electrolyte Li–S batteries: Highly solvating electrolytes or sparingly solvating electrolytes? Nano Res. Energy 2022, 1: e9120012.

[12]

Wu, X.; Liu, N. N.; Guo, Z. K.; Wang, M. X.; Qiu, Y.; Tian, D.; Guan, B.; Fan, L. S.; Zhang, N. Q. Constructing multi-functional Janus separator toward highly stable lithium batteries. Energy Storage Mater. 2020, 28, 153–159.

[13]

Wang, J.; Jia, L. J.; Zhong, J.; Xiao, Q. B.; Wang, C.; Zang, K. T.; Liu, H. T.; Zheng, H. C.; Luo, J.; Yang, J. et al. Single-atom catalyst boosts electrochemical conversion reactions in batteries. Energy Storage Mater. 2019, 18, 246–252.

[14]

Wang, J.; Jia, L. J.; Duan, S. R.; Liu, H. T.; Xiao, Q. B.; Li, T.; Fan, H. Y.; Feng, K.; Yang, J.; Wang, Q. et al. Single atomic cobalt catalyst significantly accelerates lithium ion diffusion in high mass loading Li2S cathode. Energy Storage Mater. 2020, 28, 375–382.

[15]

Wang, J.; Jia, L. J.; Lin, H. Z.; Zhang, Y. G. Single-atomic catalysts embedded on nanocarbon supports for high energy density lithium-sulfur batteries. ChemSusChem 2020, 13, 3404–3411.

[16]
WangX. B.ZhaoY.WuF. C.LiuS. M.ZhangZ. S.TanZ. Y.DuX. H.LiJ. D. ZIF-7@carbon composites as multifunctional interlayer for rapid and durable Li-S performanceJ. Energy Chem.2021571927

Wang, X. B.; Zhao, Y.; Wu, F. C.; Liu, S. M.; Zhang, Z. S.; Tan, Z. Y.; Du, X. H.; Li, J. D. ZIF-7@carbon composites as multifunctional interlayer for rapid and durable Li-S performance. J. Energy Chem. 2021, 57, 19–27.

[17]

Deng, N. P.; Liu, Y.; Li, Q. X.; Yan, J.; Lei, W. W.; Wang, G.; Wang, L. Y.; Liang, Y. Y.; Kang, W. M.; Cheng, B. W. Functional mechanism analysis and customized structure design of interlayers for high performance Li-S battery. Energy Storage Mater. 2019, 23, 314–349.

[18]

Zheng, Z. J.; Ye, H.; Guo, Z. P. Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium-sulfur batteries. Energy Environ. Sci. 2021, 14, 1835–1853.

[19]

Hao, A. H.; Wan, X.; Liu, X. F.; Yu, R. H.; Shui, J. L. Inorganic microporous membranes for hydrogen separation: challenges and solutions. Nano Res. Energy 2022, 1: e9120013.

[20]

Wang, X. Y.; Wang, Y. N.; Wu, F. C.; Jin, G. F.; Li, J. D.; Zhang, Z. S. Continuous zirconium-based MOF-808 membranes for polysulfide shuttle suppression in lithium-sulfur batteries. Appl. Surf. Sci. 2022, 596, 153628.

[21]

Noh, J.; Chen, W. M.; Wu, P.; Huang, Y. T.; Tan, J.; Zhou, H. C.; Yu, C. Large cumulative capacity enabled by regulating lithium plating with metal-organic framework layers on porous carbon nanotube scaffolds. Adv. Funct. Mater. 2021, 31, 2104899.

[22]

Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2018, 2, 764–777.

[23]

Gao, Y.; Yan, Z. F.; Gray, J. L.; He, X.; Wang, D. W.; Chen, T. H.; Huang, Q. Q.; Li, Y. C.; Wang, H. Y.; Kim, S. H. et al. Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Mater. 2019, 18, 384–389.

[24]

Wang, G.; Chen, C.; Chen, Y. H.; Kang, X. W.; Yang, C. H.; Wang, F.; Liu, Y.; Xiong, X. H. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode. Angew. Chem., Int. Ed. 2020, 59, 2055–2060.

[25]

Tian, Y. D.; Chen, S.; He, Y. L.; Chen, Q. W.; Zhang, L. L.; Zhang, J. T. A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy 2022, 1: e9120025.

[26]

Xu, T. T.; Shehzad, M. A.; Wang, X.; Wu, B.; Ge, L.; Xu, T. W. Engineering leaf-like UiO-66-SO3H membranes for selective transport of cations. Nano-Micro Lett. 2020, 12, 51.

[27]

Cai, G. R.; Zhang, W.; Jiao, L.; Yu, S. H.; Jiang, H. L. Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem 2017, 2, 791–802.

[28]

Wang, Y. C.; Ban, Y. J.; Hu, Z. Y.; Zhao, Y.; Zheng, M. Y.; Yang, W. S.; Zhang, T. Hetero-lattice intergrown and robust MOF membranes for polyol upgrading. Angew. Chem., Int. Ed. 2022, 61, e202114479.

[29]

Wu, X.; Fan, L. S.; Qiu, Y.; Wang, M. X.; Cheng, J. H.; Guan, B.; Guo, Z. K.; Zhang, N. Q.; Sun, K. N. Ion-selective Prussian-blue-modified celgard separator for high-performance lithium-sulfur battery. ChemSusChem 2018, 11, 3345–3351.

[30]

Yang, D. W.; Liang, Z. F.; Tang, P. Y.; Zhang, C. Q.; Tang, M. X.; Li, Q. Z.; Biendicho, J. J.; Li, J. S.; Heggen, M.; Dunin-Borkowski, R. E. et al. A high conductivity 1D π-d conjugated metal-organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium-sulfur batteries. Adv. Mater. 2022, 34, 2108835.

[31]

Hong, X. J.; Song, C. L.; Yang, Y.; Tan, H. C.; Li, G. H.; Cai, Y. P.; Wang, H. X. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries. ACS Nano 2019, 13, 1923–1931.

[32]

Wang, Y.; Deng, Z.; Huang, J. Y.; Li, H. J.; Li, Z. Y.; Peng, X. S.; Tian, Y.; Lu, J. G.; Tang, H. C.; Chen, L. X. et al. 2D Zr-Fc metal-organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced Li-S battery. Energy Storage Mater. 2021, 36, 466–477.

[33]

Li, J.; Jiao, C. M.; Zhu, J. H.; Zhong, L. B.; Kang, T.; Aslam, S.; Wang, J. Y.; Zhao, S. F.; Qiu, Y. J. Hybrid co-based MOF nanoboxes/CNFs interlayer as microreactors for polysulfides-trapping in lithium-sulfur batteries. J. Energy Chem. 2021, 57, 469–476.

[34]

Sun, Z. W.; Jin, S.; Jin, H. C.; Du, Z. Z.; Zhu, Y. W.; Cao, A. Y.; Ji, H. X.; Wan, L. J. Robust expandable carbon nanotube scaffold for ultrahigh-capacity lithium-metal anodes. Adv. Mater. 2018, 30, 1800884.

[35]

Lin, K.; Qin, X. Y.; Liu, M.; Xu, X. F.; Liang, G. M.; Wu, J. X.; Kang, F. Y.; Chen, G. H.; Li, B. H. Ultrafine titanium nitride sheath decorated carbon nanofiber network enabling stable lithium metal anodes. Adv. Funct. Mater. 2019, 29, 1903229.

[36]

Chin, J. M.; Chen, E. Y.; Menon, A. G.; Tan, H. Y.; Hor, A. T. S.; Schreyer, M. K.; Xu, J. W. Tuning the aspect ratio of NH2-MIL-53(Al) microneedles and nanorods via coordination modulation. CrystEngComm 2013, 15, 654–657.

[37]

Liu, J. F.; Mu, J. C.; Qin, R. X.; Ji, S. F. Pd nanoparticles immobilized on MIL-53(Al) as highly effective bifunctional catalysts for oxidation of liquid methanol to methyl formate. Pet. Sci. 2019, 16, 901–911.

[38]

Rana, M.; Li, M.; Huang, X.; Luo, B.; Gentle, I.; Knibbe, R. Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. J. Mater. Chem. A 2019, 7, 6596–6615.

[39]

He, Y. B.; Qiao, Y.; Chang, Z.; Zhou, H. S. The potential of electrolyte filled MOF membranes as ionic sieves in rechargeable batteries. Energy Environ. Sci. 2019, 12, 2327–2344.

[40]

Imanipoor, J.; Mohammadi, M.; Dinari, M.; Ehsani, M. R. Adsorption and desorption of amoxicillin antibiotic from water matrices using an effective and recyclable MIL-53(Al) metal-organic framework adsorbent. J. Chem. Eng. Data 2021, 66, 389–403.

[41]

Liu, F.; Cao, J.; Yang, Z. H.; Xiong, W. P.; Xu, Z. Y.; Song, P. P.; Jia, M. Y.; Sun, S. W.; Zhang, Y. R.; Zhong, X. X. Heterogeneous activation of peroxymonosulfate by cobalt-doped MIL-53(Al) for efficient tetracycline degradation in water: Coexistence of radical and non-radical reactions. J. Colloid Interface Sci. 2021, 581, 195–204.

[42]

Ma, X. Y.; Tan, J. Y.; Li, Z. H.; Huang, D. G.; Xue, S.; Xu, Y. Q.; Tao, H. S. Fabrication of stable MIL-53(Al) for excellent removal of Rhodamine B. Langmuir 2022, 38, 1158–1169.

[43]

Han, D. D.; Wang, P. F.; Li, P.; Shi, J.; Liu, J.; Chen, P. J.; Zhai, L. P.; Mi, L. W.; Fu, Y. Z. Homogeneous and fast Li-ion transport enabled by a novel metal-organic-framework-based succinonitrile electrolyte for dendrite-free Li deposition. ACS Appl. Mater. Interfaces 2021, 13, 52688–52696.

[44]

Zhang, Q. F.; Wang, Y. P.; Seh, Z. W.; Fu, Z. H.; Zhang, R. F.; Cui, Y. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett. 2015, 15, 3780–3786.

[45]

Wei, Y. H.; Wang, B. Y.; Zhang, Y.; Zhang, M.; Wang, Q.; Zhang, Y.; Wu, H. Rational design of multifunctional integrated host configuration with lithiophilicity-sulfiphilicity toward high-performance Li-S full batteries. Adv. Funct. Mater. 2021, 31, 2006033.

[46]

Jiang, S. X.; Chen, M. F.; Wang, X. Y.; Zhang, Y.; Huang, C.; Zhang, Y. P.; Wang, Y. Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries. Chem. Eng. J. 2019, 355, 478–486.

[47]

Pathak, R.; Chen, K.; Gurung, A.; Reza, K. M.; Bahrami, B.; Pokharel, J.; Baniya, A.; He, W.; Wu, F.; Zhou, Y. et al. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun. 2020, 11, 93.

[48]

Zhang, L.; Liu, Y. C.; Zhao, Z. D.; Jiang, P. L.; Zhang, T.; Li, M. X.; Pan, S. X.; Tang, T. Y.; Wu, T. Q.; Liu, P. Y. et al. Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li-S batteries. ACS Nano 2020, 14, 8495–8507.

[49]

Qian, J.; Wang, F. J.; Li, Y.; Wang, S.; Zhao, Y. Y.; Li, W. L.; Xing, Y.; Deng, L.; Sun, Q.; Li, L. et al. Electrocatalytic interlayer with fast lithium-polysulfides diffusion for lithium-sulfur batteries to enhance electrochemical kinetics under lean electrolyte conditions. Adv. Funct. Mater. 2020, 30, 2000742.

[50]

Zuo, Y. Z.; Zhu, Y. J.; Tang, X. S.; Zhao, M.; Ren, P. J.; Su, W. M.; Tang, Y. F.; Chen, Y. F. MnO2 supported on acrylic cloth as functional separator for high-performance lithium-sulfur batteries. J. Power Sources 2020, 464, 228181.

[51]

Wang, T. Y.; Su, D. W.; Chen, Y.; Yan, K.; Yu, L.; Liu, L.; Zhong, Y. H.; Notten, P. H. L.; Wang, C. Y.; Wang, G. X. Biomimetic 3D Fe/CeO2 decorated N-doped carbon nanotubes architectures for high-performance lithium-sulfur batteries. Chem. Eng. J. 2020, 401, 126079.

[52]

Chu, Z. H.; Gao, X. C.; Wang, C. Y.; Wang, T. Y.; Wang, G. X. Metal-organic frameworks as separators and electrolytes for lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 7301–7316.

[53]

Jiang, B.; Tian, D.; Qiu, Y.; Song, X. Q.; Zhang, Y.; Sun, X.; Huang, H. H.; Zhao, C. H.; Guo, Z. K.; Fan, L. S. et al. High-index faceted nanocrystals as highly efficient bifunctional electrocatalysts for high-performance lithium-sulfur batteries. Nano-Micro Lett. 2021, 14, 40.

[54]

Liu, G. L.; Yuan, C.; Zeng, P.; Cheng, C.; Yan, T. R.; Dai, K. H.; Mao, J.; Zhang, L. Bidirectionally catalytic polysulfide conversion by high-conductive metal carbides for lithium-sulfur batteries. J. Energy Chem. 2022, 67, 73–81.

[55]

Sun, F.; Qu, Z. B.; Wang, H.; Liu, X. Y.; Pei, T.; Han, R.; Gao, J. H.; Zhao, G. B.; Lu, Y. F. Vapor deposition of aluminium oxide into N-rich mesoporous carbon framework as a reversible sulfur host for lithium-sulfur battery cathode. Nano Res. 2020, 14, 131–138.

[56]
Geng, P. B.; Wang, L.; Du, M.; Bai, Y.; Li, W. T.; Liu, Y. F.; Chen, S. Q.; Braunstein, P.; Xu, Q.; Pang, H. MIL-96-Al for Li-S batteries: Shape or size? Adv. Mater. 2022, 34, 2107836.
[57]

Wang, S. H.; Yin, Y. X.; Zuo, T. T.; Dong, W.; Li, J. Y.; Shi, J. L.; Zhang, C. H.; Li, N. W.; Li, C. J.; Guo, Y. G. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Adv. Mater. 2017, 29, 1703729.

[58]

Chen, K. H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 2017, 5, 11671–11681.

[59]

Wang, T. S.; Liu, X. B.; Wang, Y.; Fan, L. Z. High areal capacity dendrite-free Li anode enabled by metal-organic framework-derived nanorod array modified carbon cloth for solid state Li metal batteries. Adv. Funct. Mater. 2021, 31, 2001973.

[60]

Liu, F. F.; Xu, R.; Hu, Z. X.; Ye, S. F.; Zeng, S. F.; Yao, Y.; Li, S. Q.; Yu, Y. Regulating lithium nucleation via CNTs modifying carbon cloth film for stable Li metal anode. Small 2019, 15, 1803734.

[61]

He, Y. S.; Li, M. J.; Zhang, Y. G.; Shan, Z. Z.; Zhao, Y.; Li, J. D.; Liu, G. H.; Liang, C. Y.; Bakenov, Z.; Li, Q. All-purpose electrode design of flexible conductive scaffold toward high-performance Li-S batteries. Adv. Funct. Mater. 2020, 30, 2000613.

[62]

Shi, H. D.; Qin, J. Q.; Huang, K.; Lu, P. F.; Zhang, C. F.; Dong, Y. F.; Ye, M.; Liu, Z. M.; Wu, Z. S. A two-dimensional mesoporous polypyrrole-graphene oxide heterostructure as a dual-functional ion redistributor for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2020, 59, 12147–12153.

[63]

Yang, Y. F.; Wang, W. K.; Li, L. X.; Li, B. C.; Zhang, J. P. Stable cycling of Li-S batteries by simultaneously suppressing Li-dendrite growth and polysulfide shuttling enabled by a bioinspired separator. J. Mater. Chem. A 2020, 8, 3692–3700.

[64]

Wang, M. Q.; Peng, Z.; Luo, W. W.; Ren, F. H.; Li, Z. D.; Zhang, Q.; He, H. Y.; Ouyang, C. Y.; Wang, D. Y. Tailoring lithium deposition via an SEI-functionalized membrane derived from LiF decorated layered carbon structure. Adv. Energy Mater. 2019, 9, 1802912.

[65]

Zhao, H.; Lei, D. N.; He, Y. B.; Yuan, Y. F.; Yun, Q. B.; Ni, B.; Lv, W.; Li, B. H.; Yang, Q. H.; Kang, F. Y. et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector. Adv. Energy Mater. 2018, 8, 1800266.

[66]

Zhai, P. B.; Wang, T. S.; Jiang, H. N.; Wan, J. Y.; Wei, Y.; Wang, L.; Liu, W.; Chen, Q.; Yang, W. W.; Cui, Y. et al. 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures. Adv. Mater. 2021, 33, 2006247.

[67]

Zhao, M.; Li, B. Q.; Peng, H. J.; Yuan, H.; Wei, J. Y.; Huang, J. Q. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem., Int. Ed. 2020, 59, 12636–12652.

File
12274_2022_4933_MOESM1_ESM.pdf (6.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 June 2022
Revised: 02 August 2022
Accepted: 18 August 2022
Published: 12 September 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors thank the financial support from Outstanding Young Talents Project of Hebei High Education Institutions (BJ2021020) and the Natural Science Foundation of Hebei Province (B2019202289).

Return