Journal Home > Volume 16 , Issue 2

Gallium antimonide (GaSb)-based nanostructures have been reported via various vapor-phase synthetic routes while there is not a report on the growth of GaSb nanostructures via a complete one-step solution-phase synthetic strategy. Herein we report the design and synthesis of tadpole-like Ga/GaSb nanostructures by a one-step solution-phase synthetic route typically from the precursors of commercial triphenyl antimony (Sb(Ph)3) and trimethylaminogallium (Ga(NMe2)3) at 260 °C in 1-octadecene. The GaSb nanocrystals are grown based on a solution–liquid–solid (SLS) mechanism with zinc blende phase, and their size and shape can be controlled in the procedures via manipulating the reaction conditions. Meanwhile, the tadpole-like Ga/GaSb nanostructures can be applied for the fabrication of a GaSb/Si nanostructured heterojunction-like photodetector over silicon wafer, which demonstrates excellent photoresponse and detection performances from wavelength of 405 to 1,064 nm with high photoresponding rate. Typically, the photodetector exhibits a high responsivity of 18.9 A·W−1, a superior detectivity of 1.1 × 1013 Jones, and an ultrafast response speed of 44 ns. The present work provides a new strategy to group III–V antimonide-based semiconducting nanostructures that are capable for the fabrication of photodetector with broadband, high-detectivity, and high-speed photodetecting performances.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ga/GaSb nanostructures: Solution-phase growth for high-performance infrared photodetection

Show Author's information Huanran Li1Su You1Yongqiang Yu2Lin Ma1Li Zhang1Qing Yang1,3( )
Hefei National Research Center of Physical Sciences at the Microscale, Department of Chemistry, Laboratory of Nanomaterials for Energy Conversion (LNEC), University of Science and Technology of China (USTC), Hefei 230026, China
Micro Electromechanical System Research Center of Engineering and Technology of Anhui Province School of Electrical Science and Applied Physics, Hefei University of Technology (HFUT), Hefei 230009, China
Nano Science and Technology Institute, University of Science and Technology of China (USTC), Suzhou 215123, China

Abstract

Gallium antimonide (GaSb)-based nanostructures have been reported via various vapor-phase synthetic routes while there is not a report on the growth of GaSb nanostructures via a complete one-step solution-phase synthetic strategy. Herein we report the design and synthesis of tadpole-like Ga/GaSb nanostructures by a one-step solution-phase synthetic route typically from the precursors of commercial triphenyl antimony (Sb(Ph)3) and trimethylaminogallium (Ga(NMe2)3) at 260 °C in 1-octadecene. The GaSb nanocrystals are grown based on a solution–liquid–solid (SLS) mechanism with zinc blende phase, and their size and shape can be controlled in the procedures via manipulating the reaction conditions. Meanwhile, the tadpole-like Ga/GaSb nanostructures can be applied for the fabrication of a GaSb/Si nanostructured heterojunction-like photodetector over silicon wafer, which demonstrates excellent photoresponse and detection performances from wavelength of 405 to 1,064 nm with high photoresponding rate. Typically, the photodetector exhibits a high responsivity of 18.9 A·W−1, a superior detectivity of 1.1 × 1013 Jones, and an ultrafast response speed of 44 ns. The present work provides a new strategy to group III–V antimonide-based semiconducting nanostructures that are capable for the fabrication of photodetector with broadband, high-detectivity, and high-speed photodetecting performances.

Keywords: Ga/GaSb nanostructure, metal-semiconductor heterojunction, narrow bandgap semiconductor, solution–liquid–solid (SLS) growth model, GaSb/Si heterojunction photodetector, hybrid nanostructured photodetector, infrared photodetection

References(63)

[1]

Sasaki, A. Effective-mass superlattice. Phys. Rev. B 1984, 30, 7016–7020.

[2]

Borg, M.; Schmid, H.; Gooth, J.; Rossell, M. D.; Cutaia, D.; Knoedler, M.; Bologna, N.; Wirths, S.; Moselund, K. E.; Riel, H. High-mobility GaSb nanostructures cointegrated with InAs on Si. ACS Nano 2017, 11, 2554–2560.

[3]

Yang, Z. X.; Han, N.; Fang, M.; Lin, H.; Cheung, H. Y.; Yip, S.; Wang, E. J.; Hung, T.; Wong, C. Y.; Ho, J. C. Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires. Nat. Commun. 2014, 5, 5249.

[4]

Yang, Z. X.; Liu, L. Z.; Yip, S.; Li, D. P.; Shen, L.; Zhou, Z. Y.; Han, N.; Hung, T. F.; Pun, E. Y. B.; Wu, X. et al. Complementary metal oxide semiconductor-compatible, high-mobility, 111-oriented GaSb nanowires enabled by vapor–solid–solid chemical vapor deposition. ACS Nano 2017, 11, 4237–4246.

[5]

Yang, Z. X.; Yip, S.; Li, D.; Han, N.; Dong, G. F.; Liang, X. G.; Shu, L.; Hung, T. F.; Mo, X. L.; Ho, J. C. Approaching the hole mobility limit of GaSb nanowires. ACS Nano 2015, 9, 9268–9275.

[6]

Sun, J. M.; Peng, M.; Zhang, Y. S.; Zhang, L.; Peng, R.; Miao, C. C.; Liu, D.; Han, M. M.; Feng, R. F.; Ma, Y. D. et al. Ultrahigh hole mobility of Sn-catalyzed GaSb nanowires for high speed infrared photodetectors. Nano Lett. 2019, 19, 5920–5929.

[7]

Liu, D.; Liu, F. J.; Liu, Y.; Pang, Z. Y.; Zhuang, X. M.; Yin, Y. X.; Dong, S. P.; He, L. B.; Tan, Y.; Liao, L. et al. Schottky-contacted high-performance GaSb nanowires photodetectors enabled by lead-free all-inorganic perovskites decoration. Small 2022, 18, 2200415.

[8]

Luo, T.; Liang, B.; Liu, Z.; Xie, X. M.; Lou, Z.; Shen, G. Single-GaSb-nanowire-based room temperature photodetectors with broad spectral response. Sci. Bull. 2015, 60, 101–108.

[9]

Dutta, P. S.; Bhat, H. L.; Kumar, V. The physics and technology of gallium Antimonide: An emerging optoelectronic material. J. Appl. Phys. 1997, 81, 5821–5870.

[10]

Del Alamo, J. A. Nanometre-scale electronics with III-V compound semiconductors. Nature 2011, 479, 317–323.

[11]

Cheng, C. W.; Fan, H. J. Branched nanowires: Synthesis and energy applications. Nano Today 2012, 7, 327–343.

[12]

Borg, B. M.; Dick, K. A.; Ganjipour, B.; Pistol, M. E.; Wernersson, L. E.; Thelander, C. InAs/GaSb heterostructure nanowires for tunnel field-effect transistors. Nano Lett. 2010, 10, 4080–4085.

[13]

Hatami, F.; Ledentsov, N. N.; Grundmann, M.; Böhrer, J.; Heinrichsdorff, F.; Beer, M.; Bimberg, D.; Ruvimov, S. S.; Werner, P.; Gösele, U. et al. Radiative recombination in Type-II GaSb/GaAs quantum dots. Appl. Phys. Lett. 1995, 67, 656–658.

[14]

Ma, L.; Hu, W.; Zhang, Q. L.; Ren, P. Y.; Zhuang, X. J.; Zhou, H.; Xu, J. Y.; Li, H. L.; Shan, Z. P.; Wang, X. X. et al. Room-temperature near-infrared photodetectors based on single heterojunction nanowires. Nano Lett. 2014, 14, 694–698.

[15]

Lin, W. H.; Tseng, C. C.; Chao, K. P.; Mai, S. C.; Kung, S. Y.; Wu, S. Y.; Lin, S. Y.; Wu, M. C. High-temperature operation GaSb/GaAs quantum-dot infrared photodetectors. IEEE Photon. Technol. Lett. 2011, 23, 106–108.

[16]

Wang, W.; Yip, S.; Meng, Y.; Wang, W. J.; Wang, F.; Bu, X. M.; Lai, Z. X.; Kang, X. L.; Xie, P. S.; Ho, J. C. et al. Antimony-rich GaAsxSb1−x nanowires passivated by organic sulfides for high-performance transistors and near-infrared photodetectors. Adv. Opt. Mater. 2021, 9, 2101289.

[17]

Pfenning, A.; Hartmann, F.; Weih, R.; Emmerling, M.; Worschech, L.; Höfling, S. p-type doped AlAsSb/GaSb resonant tunneling diode photodetector for the mid-infrared spectral region. Adv. Opt. Mater. 2018, 6, 1800972.

[18]

Juang, B. C.; Chen, A.; Ren, D.; Liang, B. L.; Prout, D. L.; Chatziioannou, A. F.; Huffaker, D. L. Energy-sensitive GaSb/AlAsSb separate absorption and multiplication avalanche photodiodes for X-ray and Gamma-ray detection. Adv. Opt. Mater. 2019, 7, 1900107.

[19]

Nguyen, B. M.; Hoffman, D.; Delaunay, P. Y.; Razeghi, M. Dark current suppression in type II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier. Appl. Phys. Lett. 2007, 91, 163511.

[20]

Schulman, J. N.; Chow, D. H.; Hasenberg, T. C. InAs/antimonide-based resonant tunneling structures with ternary alloy layers. Solid-State Electron. 1994, 37, 981–985.

[21]

Laghumavarapu, R. B.; Moscho, A.; Khoshakhlagh, A.; El-Emawy, M.; Lester, L. F.; Huffaker, D. L. GaSb/GaAs Type II quantum dot solar cells for enhanced infrared spectral response. Appl. Phys. Lett. 2007, 90, 173125.

[22]

Miya, S.; Muramatsu, S.; Kuze, N.; Nagase, K.; Iwabuchi, T.; Ichii, A.; Ozaki, M.; Shibasaki, I. Aigaassb buffer/barrier on GaAs substrate for InAs channel devices with high electron mobility and practical reliability. J. Electron. Mater. 1996, 25, 415–420.

[23]

Li, D. P.; Lan, C. Y.; Manikandan, A.; Yip, S.; Zhou, Z. Y.; Liang, X. G.; Shu, L.; Chueh, Y. L.; Han, N.; Ho, J. C. Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nat. Commun. 2019, 10, 1664.

[24]

LaPierre, R. R.; Robson, M.; Azizur-Rahman, K. M.; Kuyanov, P. A review of III–V nanowire infrared photodetectors and sensors. J. Phys. D Appl. Phys. 2017, 50, 123001.

[25]

Wang, P.; Liu, S. S.; Luo, W. J.; Fang, H. H.; Gong, F.; Guo, N.; Chen, Z. G.; Zou, J.; Huang, Y.; Zhou, X. H. et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 2017, 29, 1604439.

[26]

Ren, Z. H.; Wang, P.; Zhang, K.; Ran, W. H.; Yang, J. H.; Liu, Y. Y.; Lou, Z.; Shen, G. Z.; Wei, Z. M. Short-wave near-infrared polarization sensitive photodetector based on GaSb nanowire. IEEE Electron Device Lett. 2021, 42, 549–552.

[27]

Yin, Y. X.; Guo, Y. N.; Liu, D.; Miao, C. C.; Liu, F. J.; Zhuang, X. M.; Tan, Y.; Chen, F.; Yang, Z. X. Substrate-free chemical vapor deposition of large-scale III–V nanowires for high-performance transistors and broad-spectrum photodetectors. Adv. Opt. Mater. 2022, 10, 2102291.

[28]

Lou, Z.; Li, L. D.; Shen, G. Z. InGaO3(ZnO) superlattice nanowires for high-performance ultraviolet photodetectors. Adv. Electron. Mater. 2015, 1, 1500054.

[29]

You, S.; Zhang, L.; Yu, Y. Q.; Zhang, W. Q.; Li, H. R.; Meng, J.; Li, Q. X.; Yang, Q. Nanoscale AgInTe2/Si truncated quasitetrahedrons for heterostructured photodetectors. ACS Appl. Nano Mater. 2021, 4, 5785–5795.

[30]

You, S.; Zhang, L.; Yang, Q. Unconventionally anisotropic growth of PbSe nanorods: Controllable fabrication under solution-solid-solid regime over Ag2Se catalysis for broadband photodetection. Nano Res. 2021, 14, 3386–3394.

[31]

Dick, K. A.; Caroff, P.; Bolinsson, J.; Messing, M. E.; Johansson, J.; Deppert, K.; Wallenberg, L. R.; Samuelson, L. Control of III–V nanowire crystal structure by growth parameter tuning. Semicond. Sci. Technol. 2010, 25, 024009.

[32]

Jeppsson, M.; Dick, K. A.; Nilsson, H. A.; Sköld, N.; Wagner, J. B.; Caroff, P.; Wernersson, L. E. Characterization of GaSb nanowires grown by MOVPE. J. Cryst. Growth 2008, 310, 5119–5122.

[33]

Bennett, B. R.; Magno, R.; Shanabrook, B. V. Molecular beam epitaxial growth of InSb, GaSb, and AlSb nanometer-scale dots on GaAs. Appl. Phys. Lett. 1996, 68, 505–507.

[34]

Perez-Bergquist, A.; Zhu, S.; Sun, K.; Xiang, X.; Zhang, Y. W.; Wang, L. M. Embedded nanofibers induced by high-energy ion irradiation of bulk GaSb. Small 2008, 4, 1119–1124.

[35]

Wu, Y. Y.; Zhang, Y. H.; Zhang, Y.; Zhao, Y. H.; Zhang, Y.; Xu, Y. Q.; Liang, C. Y.; Niu, Z. C.; Shi, Y.; Che, R. C. Dual strategy of modulating growth temperature and inserting ultrathin barrier to enhance the wave function overlap in type-II superlattices. Nano Res. 2022, 15, 5626–5632.

[36]

Chou, Y. C.; Hillerich, K.; Tersoff, J.; Reuter, M. C.; Dick, K. A.; Ross, F. M. Atomic-scale variability and control of III–V nanowire growth kinetics. Science 2014, 343, 281–284.

[37]

Qian, Y. Y.; Yang, Q. Straight indium antimonide nanowires with twinning superlattices via a solution route. Nano Lett. 2017, 17, 7183–7190.

[38]

Kan, S. H.; Mokari, T.; Rothenberg, E.; Banin, U. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods. Nat. Mater. 2003, 2, 155–158.

[39]

Sun, J. W.; Liu, C.; Yang, P. D. Surfactant-free, large-scale, solution–liquid–solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction. J. Am. Chem. Soc. 2011, 133, 19306–19309.

[40]

Jacobsson, D.; Panciera, F.; Tersoff, J.; Reuter, M. C.; Lehmann, S.; Hofmann, S.; Dick, K. A.; Ross, F. M. Interface dynamics and crystal phase switching in GaAs nanowires. Nature 2016, 531, 317–322.

[41]
Haynes, W. M.; Lide, D. R.; Bruno, T. J. CRC Handbook of Chemistry and Physics, 94th ed.; CRC Press: Boca Raton, 2013.
[42]

Wang, F. D.; Dong, A. G.; Buhro, W. E. Solution–liquid–solid synthesis, properties, and applications of one-dimensional colloidal semiconductor nanorods and nanowires. Chem. Rev. 2016, 116, 10888–10933.

[43]

Chen, G. H.; Yu, Y. Q.; Zheng, K.; Ding, T.; Wang, W. L.; Jiang, Y.; Yang, Q. Fabrication of ultrathin Bi2S3 nanosheets for high-performance, flexible, visible-NIR photodetectors. Small 2015, 11, 2848–2855.

[44]

Baldwin, R. A.; Foos, E. E.; Wells, R. L. Facile preparation of nanocrystalline gallium antimonide. Mater. Res. Bull. 1997, 32, 159–163.

[45]

Foos, E. E.; Jouet, R. J.; Wells, R. L.; Rheingold, A. L.; Liable-Sands, L. M. Preparation of single-source precursors to nanocrystalline gallium arsenide and gallium antimonide. X-ray crystal structures of [Et2GaAs(SiMe3)2]2, [Et2GaSb(SiMe3)2]2 and Et2GaAs(SiMe3)2Ga(Et)2Sb(SiMe3)2. J. Organomet. Chem. 1999, 582, 45–52.

[46]

Schulz, S.; Martinez, L.; Ross, J. L. Synthesis and characterisation of gallium antimonide nanoparticles: Reaction between tris (trimethylsilyl)antimonide and gallium trichloride. Adv. Mater. Opt. Electron. 1996, 6, 185–189.

DOI
[47]

Yarema, M.; Wörle, M.; Rossell, M. D.; Erni, R.; Caputo, R.; Protesescu, L.; Kravchyk, K. V.; Dirin, D. N.; Lienau, K.; Von Rohr, F. et al. Monodisperse colloidal gallium nanoparticles: Synthesis, low temperature crystallization, surface plasmon resonance and Li-ion storage. J. Am. Chem. Soc. 2014, 136, 12422–12430.

[48]

Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Solution–liquid–solid growth of crystalline III–V semiconductors: An analogy to vapor–liquid–solid growth. Science 1995, 270, 1791–1794.

[49]

Ley, L.; Pollak, R. A.; McFeely, F. R.; Kowalczyk, S. P.; Shirley, D. A. Total valence-band densities of states of III–V and II–VI compounds from X-ray photoemission spectroscopy. Phys. Rev. B 1974, 9, 600–621.

[50]

Aoki, K.; Anastassakis, E.; Cardona, M. Dependence of Raman frequencies and scattering intensities on pressure in GaSb, InAs, and InSb semiconductors. Phys. Rev. B 1984, 30, 681–687.

[51]

Zhu, Z. T. S.; Svensson, J.; Persson, A. R.; Wallenberg, R.; Gromov, A. V.; Wernersson, L. E. Compressively-strained gasb nanowires with core–shell heterostructures. Nano Res. 2020, 13, 2517–2524.

[52]

Lu, Z. J.; Xu, Y.; Yu, Y. Q.; Xu, K. W.; Mao, J.; Xu, G.; Ma, Y.; Wu, D.; Jie, J. Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater. 2020, 30, 1907951.

[53]

An, X. H.; Liu, F. Z.; Jung, Y. J.; Kar, S. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2013, 13, 909–916.

[54]

Dou, L. T.; Yang, Y.; You, J. B.; Hong, Z. R.; Chang, W. H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.

[55]

Jones, R. C. Detectivity: The reciprocal of noise equivalent input of radiation. Nature. 1952, 170, 937–938.

[56]

Xu, X. Z.; Deng, W.; Zhang, X. J.; Huang, L. M.; Wang, W.; Jia, R. F.; Wu, D.; Zhang, X. H.; Jie, J. S.; Lee, S. T. Dual-band, high-performance phototransistors from hybrid perovskite and organic crystal array for secure communication applications. ACS Nano 2019, 13, 5910–5919.

[57]

Chen, G. H.; Wang, W. L.; Wang, C. D.; Ding, T.; Yang, Q. Controlled synthesis of ultrathin Sb2Se3 nanowires and application for flexible photodetectors. Adv. Sci. 2015, 2, 1500109.

[58]

Michaelson, H. B. The work function of the elements and its periodicity. J. Appl. Phys. 1977, 48, 4729–4733.

[59]

Shafa, M.; Wu, D.; Chen, X.; Alvi, N. U. H.; Pan, Y.; Najar, A. Flexible infrared photodetector based on indium antimonide nanowire arrays. Nanotechnology 2021, 32, 27LT01.

[60]

Tian, H. J.; Liu, Q. L.; Yue, H.; Hu, A. Q.; Guo, X. Hybrid graphene/N-GaAs photodiodes with high specific detectivity and high speed. Chin. Opt. 2021, 14, 206–212.

[61]

Fang, H. H.; Hu, W. D.; Wang, P.; Guo, N.; Luo, W. J.; Zheng, D. S.; Gong, F.; Luo, M.; Tian, H. Z.; Zhang, X. T. et al. Visible light-assisted high-performance mid-infrared photodetectors based on single InAs nanowire. Nano Lett. 2016, 16, 6416–6424.

[62]
Thorlabs. FDS1010 Si Photodoide with Responsivity of 0.725 A/W and Rise/Fall Time (632 nm, 5 V) of 65 ns [Online]. https://www.thorlabschina.cn/thorproduct.cfm?partnumber=FDS1010 (accessed 1 July 2022).
[63]

Yang, J.; Wang, C. D.; Ju, H. X.; Sun, Y.; Xing, S. Q.; Zhu, J. F.; Yang, Q. Integrated quasiplane heteronanostructures of MoSe2/Bi2Se3 hexagonal nanosheets: Synergetic electrocatalytic water splitting and enhanced supercapacitor performance. Adv. Funct. Mater. 2017, 27, 1703864.

File
12274_2022_4931_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 July 2022
Revised: 01 August 2022
Accepted: 17 August 2022
Published: 09 November 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. U1932150 and 21571166) and Anhui Provincial Natural Science Foundation (No. 1908085QB72).

Return