Journal Home > Volume 16 , Issue 2

Iron plays a crucial role in improving the oxygen evolution reaction (OER) activity of hydroxide materials. Increasing the number of iron active sites at the solid–liquid interface is beneficial to enhancing the OER performance of catalysts but still challenging. Here, by systematic exploring the activity trends of M(OH)x and Cu-M(OH)x (M = Mn, Cu, Ni, Fe, and Co), we discover that the Cu doping can promote the deposition of Fe active sites on metal hydroxide and Cu-Co(OH)2 shows the most favorable iron adsorption capacity. When loaded on a conductive substrate (cobalt foam (CF), the M-Cu-Co(OH)2/CF (Co(OH)2 prepared by molten salt method) exhibits an attractive low overpotential of 337 mV at 1,000 mA·cm−2. Using in anion exchange membrane (AEM) water electrolyzer, the single cell with M-Cu-Co (OH)2/CF as anode catalyst performs a stable cell voltage of 2.02 V to reach 1,000 mA·cm−2 over 24 h, indicating a great application potential for actual electrolytic water. Therefore, the promoted adsorption of copper on iron provides a new perspective for further enhancing the OER activity of other metal hydroxides.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Iron adsorption engineering facilitated by Cu doping on cobalt hydroxide host with enhanced oxygen evolution reaction

Show Author's information Xinyu Zhang1Yiwen Dong1Huiying Wang1Ziyi Zhao1Wenchun Jiang2Bin Dong1( )Han Hu1Chenguang Liu1Yongming Chai1( )
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
College of New Energy, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Iron plays a crucial role in improving the oxygen evolution reaction (OER) activity of hydroxide materials. Increasing the number of iron active sites at the solid–liquid interface is beneficial to enhancing the OER performance of catalysts but still challenging. Here, by systematic exploring the activity trends of M(OH)x and Cu-M(OH)x (M = Mn, Cu, Ni, Fe, and Co), we discover that the Cu doping can promote the deposition of Fe active sites on metal hydroxide and Cu-Co(OH)2 shows the most favorable iron adsorption capacity. When loaded on a conductive substrate (cobalt foam (CF), the M-Cu-Co(OH)2/CF (Co(OH)2 prepared by molten salt method) exhibits an attractive low overpotential of 337 mV at 1,000 mA·cm−2. Using in anion exchange membrane (AEM) water electrolyzer, the single cell with M-Cu-Co (OH)2/CF as anode catalyst performs a stable cell voltage of 2.02 V to reach 1,000 mA·cm−2 over 24 h, indicating a great application potential for actual electrolytic water. Therefore, the promoted adsorption of copper on iron provides a new perspective for further enhancing the OER activity of other metal hydroxides.

Keywords: oxygen evolution reaction, copper doping, promoted Fe adsorption, industrial-level current density, anion exchange membrane water electrolyzer

References(41)

[1]

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

[2]

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

[3]

Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.

[4]

Zhang, B. W.; Li, C. J.; Hu, J.; Peng, D. D.; Huang, K.; Wu, J. S.; Chen, Z.; Huang, Y. Z. Cobalt tungsten phosphide with tunable W-doping as highly efficient electrocatalysts for hydrogen evolution reaction. Nano Res. 2021, 14, 4073–4078.

[5]

Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 2017, 7, 7196–7225.

[6]

Zhao, X.; Zhang, H. T.; Yan, Y.; Cao, J. H.; Li, X. Q.; Zhou, S. M.; Peng, Z. M.; Zeng, J. Engineering the electrical conductivity of lamellar silver-doped cobalt(Ⅱ) selenide nanobelts for enhanced oxygen evolution. Angew. Chem., Int. Ed. 2017, 56, 328–332.

[7]

Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe–Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.

[8]

Hao, J. H.; Luo, W.; Wang, S. S.; Zhao, K.; Hou, J. W.; Li, L. H.; Ge, B. X.; Yang, W. S.; Shi, W. D. Discharge-induced enhancement of the oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 20042–20048.

[9]

Xue, H. Y.; Meng, A.; Zhang, H. Q.; Lin, Y. S.; Li, Z. J.; Wang, C. S. 3D urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting. Nano Res. 2021, 14, 4173–4181.

[10]

Zhou, Y. C.; López, N. The role of fe species on NiOOH in oxygen evolution reactions. ACS Catal. 2020, 10, 6254–6261.

[11]

Sun, Z.; Curto, A.; Rodríguez Fernández, J.; Wang, Z.; Parikh, A.; Fester, J.; Dong, M.; Vojvodic, A.; Lauritsen, J. V. The effect of Fe dopant location in Co(Fe)OOHx nanoparticles for the oxygen evolution reaction. ACS Nano 2021, 15, 18226–18236.

[12]

Yan, M. L.; Zhao, Z. Y.; Cui, P. X.; Mao, K.; Chen, C.; Wang, X. Z.; Wu, Q.; Yang, H.; Yang, L. J.; Hu, Z. Construction of hierarchical FeNi3@(Fe, Ni)S2 core–shell heterojunctions for advanced oxygen evolution. Nano Res. 2021, 14, 4220–4226.

[13]

Han, W. J.; Lin, H. W.; Fang, F.; Zhang, Y. Q.; Zhang, K.; Yu, X.; Chang, K. The effect of Fe(Ⅲ) ions on oxygen-vacancy-rich BiVO4 on the photocatalytic oxygen evolution reaction. Catal. Sci. Technol. 2021, 11, 7598–7607.

[14]

Chung, D. Y.; Lopes, P. P.; Martins, P. F. B. D.; He, H. Y.; Kawaguchi, T.; Zapol, P.; You, H.; Tripkovic, D.; Strmcnik, D.; Zhu, Y. S. et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy 2020, 5, 222–230.

[15]

Garcia, A. C.; Touzalin, T.; Nieuwland, C.; Perini, N.; Koper, M. T. M. Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte alkali cations. Angew. Chem., Int. Ed. 2019, 58, 12999–13003.

[16]

Feng, C.; Wang, F. Z.; Liu, Z.; Nakabayashi, M.; Xiao, Y. Q.; Zeng, Q. G.; Fu, J.; Wu, Q. B.; Cui, C. H.; Han, Y. F. et al. A self-healing catalyst for electrocatalytic and photoelectrochemical oxygen evolution in highly alkaline conditions. Nat. Commun. 2021, 12, 5980.

[17]

Liu, M.; Kong, L. J.; Wang, X. M.; He, J.; Zhang, J. J.; Zhu, J.; Bu, X. H. Deciphering of advantageous electrocatalytic water oxidation behavior of metal–organic framework in alkaline media. Nano Res. 2021, 14, 4680–4688.

[18]

Strmcnik, D.; Kodama, K.; van der Vliet, D.; Greeley, J.; Stamenkovic, V. R.; Marković, N. M. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat. Chem. 2009, 1, 466–472.

[19]

Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 2011, 334, 1256–1260.

[20]

Zaffran, J.; Stevens, M. B.; Trang, C. D. M.; Nagli, M.; Shehadeh, M.; Boettcher, S. W.; Caspary Toroker, M. Influence of electrolyte cations on Ni(Fe)OOH catalyzed oxygen evolution reaction. Chem. Mater. 2017, 29, 4761–4767.

[21]

Nabi, G.; Rafique, R.; Majid, A.; Raza, W.; Alharbi, T.; Al-Habardi, M. Controlled transformation of V-doped Co(OH)2 hexagonal nanosheets towards enhanced electrochemical performance. J. Energy Storage 2022, 48, 103995.

[22]

Jian, X. W.; Zhu, Y. J.; Li, W. H.; Zhao, T. Q. Synthesis, characterization, and electrochemical behavior of Al/Yb/Co/Mn-doped α-Ni(OH)2. J. Mater. Eng. Perform. 2017, 26, 2162–2169.

[23]

Wang, H.; Lu, L.; Subramanian, P.; Ji, S.; Kannan, P. Co, Fe-ions intercalated Ni(OH)2 network-like nanosheet arrays as highly efficient non-noble catalyst for electro-oxidation of urea. Int. J. Hydrogen Energy 2021, 46, 34318–34332.

[24]

Hu, E. L.; Yao, Y.; Chen, Y.; Cui, Y. J.; Wang, Z. Y.; Qian, G. D. Boosting hydrogen generation by anodic oxidation of iodide over Ni-Co(OH)2 nanosheet arrays. Nanoscale Adv. 2021, 3, 604–610.

[25]

Wang, M. H.; Wu, Y.; Li, N.; Zhao, F.; Zhao, Q.; Li, J. P.; Liu, G. Synergistic assembly of a CoS@NiFe/Ni foam heterostructure electrocatalyst for efficient water oxidation catalysis at large current densities. Chem. —Asian J. 2020, 15, 1484–1492.

[26]

Liang, C. W.; Zou, P. C.; Nairan, A.; Zhang, Y. Q.; Liu, J. X.; Liu, K. W.; Hu, S. Y.; Kang, F. Y.; Fan, H. J.; Yang, C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95.

[27]

Zhang, X. Y.; Yu, W. L.; Zhao, J.; Dong, B.; Liu, C. G.; Chai, Y. M. Recent development on self-supported transition metal-based catalysts for water electrolysis at large current density. Appl. Mater. Today 2021, 22, 100913.

[28]

Chen, F. Y.; Wu, Z. Y.; Adler, Z.; Wang, H. T. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 2021, 5, 1704–1731.

[29]

Park, D. H.; Kim, M. H.; Lee, H. J.; Lee, W. J.; Byeon, J. H.; Kim, J. H.; Jang, J. S.; Park, K. W. Development of Ni-Ir oxide composites as oxygen catalysts for an anion-exchange membrane water electrolyzer. Adv. Mater. Interfaces 2022, 9, 2102063.

[30]

Mustain, W. E. Understanding how high-performance anion exchange membrane fuel cells were achieved: Component, interfacial, and cell-level factors. Curr. Opin. Electrochem. 2018, 12, 233–239.

[31]

Gottesfeld, S.; Dekel, D. R.; Page, M.; Bae, C.; Yan, Y. S.; Zelenay, P.; Kim, Y. S. Anion exchange membrane fuel cells: Current status and remaining challenges. J. Power Sources 2018, 375, 170–184.

[32]

Xu, D. Y.; Stevens, M. B.; Cosby, M. R.; Oener, S. Z.; Smith, A. M.; Enman, L. J.; Ayers, K. E.; Capuano, C. B.; Renner, J. N.; Danilovic, N. et al. Earth-abundant oxygen electrocatalysts for alkaline anion-exchange-membrane water electrolysis: Effects of catalyst conductivity and comparison with performance in three-electrode cells. ACS Catal. 2019, 9, 7–15.

[33]

Jin M. T.; Zhang S. Z.; Niu S. Z.; Wang Q.; Huang R. Q.; Ling R. H.; Huang J. Q.; Shi R.; Amini A.; Cheng C. Strategies for designing high-performance hydrogen evolution reaction electrocatalysts at large current densities above 1,000 mA·cm−2. ACS Catal. 2022, 16, 11577–11597.

[34]

Wang, F. L.; Li, X. Y.; Dong, Y. W.; Nan, J.; Sun, Y. M.; Yu, H. B.; Zhang, X. Y.; Dong, B.; Chai, Y. M. Strong ion interaction inducing ultrahigh activity of NiCoP nanowires for overall water splitting at large current density. Appl. Surf. Sci. 2022, 589, 152837.

[35]

Sayeed, A.; O'Mullane, A. P. A multifunctional gold doped Co(OH)2 electrocatalyst tailored for water oxidation, oxygen reduction, hydrogen evolution, and glucose detection. J. Mater. Chem. A 2017, 5, 23776–23784.

[36]

Zhou, Y.; Wu, Y. J.; Zhang, P. F.; Chen, J. D.; Qu, B. H.; Li, J. T. Co3O4@(Fe-doped)Co(OH)2 microfibers: Facile synthesis, oriented-assembly, formation mechanism, and high electrocatalytic activity. ACS Appl. Mater. Interfaces 2017, 9, 30880–30890.

[37]

Wang, X. Y.; Zhang, W. Z. Z.; Zhang, J. L.; Zhang, J.; Wu, Z. C. Co(OH)2 nanosheets array doped by Cu2+ ions with optimal electronic structure for urea-assisted electrolytic hydrogen generation. ChemElectroChem 2021, 8, 1881–1891.

[38]

Tang, S. S.; Li, X. G.; Courté, M.; Peng, J. J.; Fichou, D. Hierarchical Cu(OH)2@Co(OH)2 nanotrees for water oxidation electrolysis. ChemCatChem 2020, 12, 4038–4043.

[39]

Tian, Y. S.; Cao, L. J.; Qin, P. P. Bimetal-organic framework derived high-valence-state Cu-doped Co3O4 porous nanosheet arrays for efficient oxygen evolution and water splitting. ChemCatChem 2019, 11, 4420–4426.

[40]

Sun, W.; Song, Y.; Gong, X. Q.; Cao, L. M.; Yang, J. An efficiently tuned d-orbital occupation of IrO2 by doping with cu for enhancing the oxygen evolution reaction activity. Chem. Sci. 2015, 6, 4993–4999.

[41]

Chen, L. S.; Zhang, H. L.; Chen, L.; Wei, X. F.; Shi, J. L.; He, M. Y. Facile synthesis of Cu doped cobalt hydroxide (Cu-Co(OH)2) nano-sheets for efficient electrocatalytic oxygen evolution. J. Mater. Chem. A 2017, 5, 22568–22575.

File
12274_2022_4930_MOESM1_ESM.pdf (1.2 MB)
12274_2022_4930_MOESM2_ESM.pdf (993.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 August 2022
Revised: 15 August 2022
Accepted: 16 August 2022
Published: 22 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 52174283), Innovation Fund Project for Graduate Student of China University of Petroleum (East China) (No. 22CX04026A), and the Fundamental Research Funds for the Central Universities.

Return