Journal Home > Volume 16 , Issue 2

Prussian blue (PB) is an anodic coloring candidate in the wide area of electrochromic (EC) applications. However, the co-influence of weak adhesion and low electrical conductivity leads to the poor stability and slow switching speed. To tackle this bottleneck, a novel TiO2/Au/PB nanorod array is designed through hydrothermal and electrodeposition approaches on fluorine-doped tin oxide (FTO) glass. Such a designed ternary array structure could not only increase reactive site and conductivity, but also improve ion storage capacity and promote charge transfer, attributed to the synergistic effect of TiO2/Au/PB core–shell heterostructure and the localized surface plasmon resonance (LSPR) effect of Au nanoparticles. Besides, density functional theory (DFT) calculation confirms the strong interaction between rutile TiO2 and FTO substrate, which contributes to the improvement of EC cycle stability. Benefiting from these effects, the TiO2/Au/PB film shows a fast coloration/bleaching response of 1.08/2.01 s (2.17/4.48 s, PB film) and ultra-stable EC performance of 86.8% after 20,000 cycles (50% after 600 cycles, PB film). Furthermore, the high-intensity light source can be shot clearly by the designed and assembled EC iris device (ECID) with TiO2/Au/PB film as an EC layer, while the photograph without an ECID is blurry, confirming the feasibility of the material in portable digital products.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Designing TiO2/Au/Prussian blue heterostructures nanorod arrays for ultra-stable cycle and ultra-fast response electrochromism

Show Author's information Miao Xu1Kang Li2Shen Wang1Shengyu Zhou1Hulin Zhang3Hongbo Xu1Jiupeng Zhao1( )Yao Li3( )
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
School of Physics, Southeast University, Nanjing 211189, China
Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China

Abstract

Prussian blue (PB) is an anodic coloring candidate in the wide area of electrochromic (EC) applications. However, the co-influence of weak adhesion and low electrical conductivity leads to the poor stability and slow switching speed. To tackle this bottleneck, a novel TiO2/Au/PB nanorod array is designed through hydrothermal and electrodeposition approaches on fluorine-doped tin oxide (FTO) glass. Such a designed ternary array structure could not only increase reactive site and conductivity, but also improve ion storage capacity and promote charge transfer, attributed to the synergistic effect of TiO2/Au/PB core–shell heterostructure and the localized surface plasmon resonance (LSPR) effect of Au nanoparticles. Besides, density functional theory (DFT) calculation confirms the strong interaction between rutile TiO2 and FTO substrate, which contributes to the improvement of EC cycle stability. Benefiting from these effects, the TiO2/Au/PB film shows a fast coloration/bleaching response of 1.08/2.01 s (2.17/4.48 s, PB film) and ultra-stable EC performance of 86.8% after 20,000 cycles (50% after 600 cycles, PB film). Furthermore, the high-intensity light source can be shot clearly by the designed and assembled EC iris device (ECID) with TiO2/Au/PB film as an EC layer, while the photograph without an ECID is blurry, confirming the feasibility of the material in portable digital products.

Keywords: heterojunction, Prussian blue, Au nanoparticle, TiO2 nanorod array, electrochromic

References(68)

[1]

Li, H. Z.; Zhang, W.; Elezzabi, A. Y. Transparent zinc-mesh electrodes for solar-charging electrochromic windows. Adv. Mater. 2020, 32, 2003574.

[2]

Ling, H.; Wu, J. C.; Su, F. Y.; Tian, Y. Q.; Liu, Y. J. Automatic light-adjusting electrochromic device powered by perovskite solar cell. Nat. Commun. 2021, 12, 1010.

[3]

Wang, Z.; Wang, X. Y.; Cong, S.; Geng, F. X.; Zhao, Z. G. Fusing electrochromic technology with other advanced technologies: A new roadmap for future development. Mat. Sci. Eng. R Rep. 2020, 140, 100524.

[4]

Mandal, J.; Du, S. C.; Dontigny, M.; Zaghib, K.; Yu, N. F.; Yang, Y. Li4Ti5O12: A visible-to-infrared broadband electrochromic material for optical and thermal management. Adv. Funct. Mater. 2018, 28, 1802180.

[5]

Xiao, L. L.; Lv, Y.; Dong, W. J.; Zhang, N.; Liu, X. Y. Dual-functional WO3 nanocolumns with broadband antireflective and high-performance flexible electrochromic properties. ACS Appl. Mater. Interfaces 2016, 8, 27107–27114.

[6]

Seidel, J.; Luo, W.; Suresha, S. J.; Nguyen, P. K.; Lee, A. S.; Kim, S. Y.; Yang, C. H.; Pennycook, S. J.; Pantelides, S. T.; Scott, J. F. et al. Prominent electrochromism through vacancy-order melting in a complex oxide. Nat. Commun. 2012, 3, 799.

[7]

Madasamy, K.; Velayutham, D.; Suryanarayanan, V.; Kathiresan, M.; Ho, K. C. Viologen-based electrochromic materials and devices. J. Mater. Chem. C 2019, 7, 4622–4637.

[8]

Choi, J.; Kang, B.; Kim, H. O.; Suh, J. S.; Haam, S.; Yang, J. Bandgap-controlled hollow polyaniline nanostructures synthesized by Mn-dependent nano-confined polymerization. Nanoscale 2019, 11, 2434–2438.

[9]

Pande, G. K.; Choi, J. H.; Lee, J. E.; Kim, Y. E.; Choi, J. H.; Choi, H. W.; Chae, H. G.; Park, J. S. Octa-viologen substituted polyhedral oligomeric silsesquioxane exhibiting outstanding electrochromic performances. Chem. Eng. J. 2020, 393, 124690.

[10]

Moreira, T.; Laia, C. A. T.; Zangoli, M.; Antunes, M.; Di Maria, F.; De Monte, S.; Liscio, F.; Parola, A. J.; Barbarella, G. Semicrystalline polythiophene-based nanoparticles deposited from water on flexible PET/ITO substrates as a sustainable approach toward long-lasting solid-state electrochromic devices. ACS Appl. Polym. Mater 2020, 2, 3301–3309.

[11]

Wang, S.; Xu, H. B.; Hao, T. T.; Wang, P. Y.; Zhang, X.; Zhang, H. M.; Xue, J. Y.; Zhao, J. P.; Li, Y. In situ XRD and operando spectra-electrochemical investigation of tetragonal WO3−x nanowire networks for electrochromic supercapacitors. NPG Asia. Mater 2021, 13, 51.

[12]

Liang, Y.; Cao, S.; Wei, Q. L.; Zeng, R. S.; Zhao, J. L.; Li, H. Z.; Yu, W. W.; Zou, B. S. Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows. Nano-Micro Lett. 2021, 13, 196.

[13]

Prasad, A. K.; Park, J. Y.; Kang, S. H.; Ahn, K. S. Electrochemically co-deposited WO3-V2O5 composites for electrochromic energy storage applications. Electrochim. Acta 2022, 422, 140340.

[14]

Kim, K. H.; Jeong, S. J.; Koo, B. R.; Ahn, H. J. Surface amending effect of N-doped carbon-embedded NiO films for multirole electrochromic energy-storage devices. Appl. Surf. Sci. 2021, 537, 147902.

[15]

Wang, Z.; Zhang, Q. Z.; Cong, S.; Chen, Z. G.; Zhao, J. X.; Yang, M.; Zheng, Z. H.; Zeng, S.; Yang, X. W.; Geng, F. X. et al. Using intrinsic intracrystalline tunnels for near-infrared and visible-light selective electrochromic modulation. Adv. Opt. Mater. 2017, 5, 1700194.

[16]

Ishizaki, M.; Ando, H.; Yamada, N.; Tsumoto, K.; Ono, K.; Sutoh, H.; Nakamura, T.; Nakao, Y.; Kurihara, M. Redox-coupled alkali-metal ion transport mechanism in binder-free films of Prussian blue nanoparticles. J. Mater. Chem. A 2019, 7, 4777–4787.

[17]

Kong, B.; Selomuly, C.; Zheng, G. F.; Zhao, D. Y. New faces of porous Prussian blue: Interfacial assembly of integrated hetero-structures for sensing applications. Chem. Soc. Rev. 2015, 44, 7997–8018.

[18]

Liu, Z. X.; Yang, J. Y.; Leftheriotis, G.; Huang, H.; Xia, Y.; Gan, Y. P.; Zhang, W. K.; Zhang, J. A solar-powered multifunctional and multimode electrochromic smart window based on WO3/Prussian blue complementary structure. Sustain. Mater. Technol. 2022, 31, e00372.

[19]

Liang, H.; Li, R.; Li, C.; Hou, C. Y.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Regulation of carbon content in MOF-derived hierarchical-porous NiO@C films for high-performance electrochromism. Mater. Horiz. 2019, 6, 571–579.

[20]

Guo, Q. F.; Li, J. J.; Zhang, B.; Nie, G. M.; Wang, D. B. High-performance asymmetric electrochromic-supercapacitor device based on poly(indole-6-carboxylicacid)/TiO2 nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 6491–6501.

[21]

Chen, Y. B.; Li, X. M.; Bi, Z. J.; He, X. L.; Xu, X. K.; Gao, X. D. Core–shell nanorod arrays of crystalline/amorphous TiO2 constructed by layer-by-layer method for high-performance electrochromic electrodes. Electrochim. Acta 2017, 251, 546–553.

[22]

Cai, G. F.; Tu, J. P.; Zhou, D.; Zhang, J. H.; Xiong, Q. Q.; Zhao, X. Y.; Wang, X. L.; Gu, C. D. Multicolor electrochromic film based on TiO2@polyaniline core/shell nanorod array. J. Phys. Chem. C, 2013, 117, 15967–15975.

[23]

Cai, G. F.; Zhou, D.; Xiong, Q. Q.; Zhang, J. H.; Wang, X. L.; Gu, C. D.; Tu, J. P. Efficient electrochromic materials based on TiO2@WO3 core/shell nanorod arrays. Sol. Energy Mater. Sol. Cells 2013, 117, 231–238.

[24]

Qian, J. H.; Ma, D. Y.; Xu, Z. P.; Li, D.; Wang, J. M. Electrochromic properties of hydrothermally grown Prussian blue film and device. Sol. Energy Mater. Sol. Cells 2018, 177, 9–14.

[25]

Ma, D. Y.; Eh, A. L. S.; Cao, S.; Lee, P. S.; Wang, J. M. Wide-spectrum modulated electrochromic smart windows based on MnO2/PB films. ACS Appl. Mater. Interfaces 2022, 14, 1443–1451.

[26]

Xu, H. B.; Gong, L. T.; Zhou, S. Y.; Cao, K. L.; Wang, S.; Zhao, J. P.; Li, Y. Enhancing the electrochromic stability of Prussian blue based on TiO2 nanorod arrays. New. J. Chem. 2020, 44, 2236–2240.

[27]

Yu, X.; Jin, X.; Chen, X. Y.; Wang, A. Z.; Zhang, J. M.; Zhang, J.; Zhao, Z. H.; Gao, M. M.; Razzari, L.; Liu, H. A microorganism bred TiO2/Au/TiO2 heterostructure for whispering gallery mode resonance assisted plasmonic photocatalysis. ACS Nano 2020, 14, 13876–13885.

[28]

Yang, Y. J.; Hu, S. S. Electrodeposited MnO2/Au composite film with improved electrocatalytic activity for oxidation of glucose and hydrogen peroxide. Electrochim. Acta 2010, 55, 3471–3476.

[29]

Kim, K.; Park, J.; Kim, H.; Jung, G. Y.; Kim, M. G. Solid-phase photocatalysts: Physical vapor deposition of Au nanoislands on porous TiO2 films for millimolar H2O2 production within a few minutes. ACS Catal. 2019, 9, 9206–9211.

[30]

He, T.; Ma, Y.; Cao, Y. A.; Yang, W. S.; Yao, J. N. Enhanced electrochromism of WO3 thin film by gold nanoparticles. J. Electroanal. Chem. 2001, 514, 129–132.

[31]

Chen, Z. F.; Zu, Y. B. Gold nanoparticle-modified ITO electrode for electrogenerated chemiluminescence: Well-preserved transparency and highly enhanced activity. Langmuir 2007, 23, 11387–11390.

[32]

Liu, S. P.; Zhang, X. T.; Sun, P. P.; Wang, C. H.; Wei, Y. A.; Liu, Y. C. Enhanced electrochromic properties of a TiO2 nanowire array via decoration with anatase nanoparticles. J. Mater. Chem. C 2014, 2, 7891–7896.

[33]

Xu, M.; Wang, S.; Zhou, S. Y.; Sun, W. H.; Ding, Z. M.; Zhang, X.; Zhao, J. P.; Li, Y. Construction of TiO2@C@Prussian Blue core–shell nanorod arrays for enhanced electrochromic switching speed and cycle stability. J. Alloys Compd. 2022, 908, 164410.

[34]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[35]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[36]

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

[37]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[38]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[39]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[40]

Li, J.; Qiu, J. D.; Xu, J. J.; Chen, H. Y.; Xia, X. H. The synergistic effect of Prussian-blue-grafted carbon nanotube/poly(4-vinylpyridine) composites for amperometric sensing. Adv. Funct. Mater. 2007, 17, 1574–1580.

[41]

Shen, L.; Wang, Z. X.; Chen, L. Q. Prussian blues as a cathode material for lithium ion batteries. Chem.—Eur. J. 2014, 20, 12559–12562.

[42]

Zhang, S. H.; Chen, S.; Yang, F.; Hu, F.; Yan, B.; Gu, Y. C.; Jiang, H.; Cao, Y.; Xiang, M. High-performance electrochromic device based on novel polyaniline nanofibers wrapped antimony-doped tin oxide/TiO2 nanorods. Org. Electron. 2019, 65, 341–348.

[43]

Li, Y. G.; Wang, R. R.; Li, H. J.; Wei, X. L.; Feng, J.; Liu, K. Q.; Dang, Y. Q.; Zhou, A. N. Efficient and stable photoelectrochemical seawater splitting with TiO2@g-C3N4 nanorod arrays decorated by Co-Pi. J. Phys. Chem. C 2015, 119, 20283–20292.

[44]

Qiu, M. J.; Zhou, F. W.; Sun, P.; Chen, X. B.; Zhao, C. X.; Mai, W. Unveiling the electrochromic mechanism of Prussian Blue by electronic transition analysis. Nano Energy 2020, 78, 105148.

[45]

Bang, J. H.; Kamat, P. V. Solar cells by design: Photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe. Adv. Funct. Mater. 2010, 20, 1970–1976.

[46]

Khashan, S.; Dagher, S.; Tit, N.; Alazzam, A.; Obaidat, I. Novel method for synthesis of Fe3O4@TiO2 core/shell nanoparticles. Surf. Coat. Technol. 2017, 322, 92–98.

[47]

Cai, G. F.; Tu, J. P.; Zhou, D.; Li, L.; Zhang, J. H.; Wang, X. L.; Gu, C. D. Constructed TiO2/NiO core/shell nanorod array for efficient electrochromic application. J. Phys. Chem. C 2014, 118, 6690–6696.

[48]

Bhandari, S.; Deepa, M.; Sharma, S. N.; Joshi, A. G.; Srivastava, A. K.; Kant, R. Charge transport and electrochromism in novel nanocomposite films of poly(3,4-ethylenedioxythiophene)-Au nanoparticles CdSe quantum dots. J. Phys. Chem. C 2010, 114, 14606–14613.

[49]

Eyovge, C.; Deenen, C. S.; Ruiz-Zepeda, F.; Bartling, S.; Smirnov, Y.; Morales-Masis, M.; Susarrey-Arce, A.; Gardeniers, H. Color tuning of electrochromic TiO2 nanofibrous layers loaded with metal and metal oxide nanoparticles for smart colored windows. ACS Appl. Nano. Mater. 2021, 4, 8600–8610.

[50]

Bo, G. S.; Wang, X.; Wang, K.; Gao, R. J.; Dong, B. H.; Cao, L. X.; Su, G. Preparation and electrochromic performance of NiO/TiO2 nanorod composite film. J. Alloys Compd. 2017, 728, 878–886.

[51]

Chen, Y. B.; Li, X. M.; Bi, Z. J.; He, X. L.; Li, G. J.; Xu, X. K.; Gao, X. D. Design and construction of hierarchical TiO2 nanorod arrays by combining layer-by-layer and hydrothermal crystallization techniques for electrochromic application. Appl. Surf. Sci. 2018, 440, 217–223.

[52]

Zhang, J. H.; Tu, J. P.; Zhou, D.; Tang, H.; Li, L.; Wang, X. L.; Gu, C. D. Hierarchical SnO2@NiO core/shell nanoflake arrays as energy-saving electrochromic materials. J. Mater. Chem. C 2014, 2, 10409–10417.

[53]

Gao, Z. D.; Han, Y. Y.; Li, Y. C.; Yang, M.; Song, Y. Y. Photocatalytic synthesis and synergistic effect of Prussian blue-decorated Au nanoparticles/TiO2 nanotube arrays for H2O2 amperometric sensing. Electrochim. Acta 2014, 125, 530–535.

[54]

Cai, G. F.; Tu, J. P.; Zhang, J.; Mai, Y. J.; Lu, Y.; Gu, C. D.; Wang, X. L. An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. Nanoscale 2012, 4, 5724–5730.

[55]

Ezhilmaran, B.; Bhat, S. V. Rationally designed bilayer heterojunction electrode to realize multivalent ion intercalation in bifunctional devices: Efficient aqueous aluminum electrochromic supercapacitor with transparent nanostructured TiO2/MoO3. Chem. Eng. J. 2022, 446, 136924.

[56]

Chen, J. Z.; Ko, W. Y.; Yen, Y. C.; Chen, P. H.; Lin, K. J. Hydrothermally processed TiO2 nanowire electrodes with antireflective and electrochromic properties. Acs Nano 2012, 6, 6633–6639.

[57]

Ma, D. Y.; Shi, G. Y.; Wang, H. Z.; Zhang, Q. H.; Li, Y. G. Morphology-tailored synthesis of vertically aligned 1D WO3 nano-structure films for highly enhanced electrochromic performance. J. Mater. Chem. A 2013, 1, 684–691.

[58]

Gao, Z. D.; Liu, H. F.; Li, C. Y.; Song, Y. Y. Biotemplated synthesis of Au nanoparticles-TiO2 nanotube junctions for enhanced direct electrochemistry of heme proteins. Chem. Commun. 2013, 49, 774–776.

[59]

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

[60]

Choi, D.; Lee, M.; Kim, H.; Chu, W. S.; Chun, D. M.; Ahn, S. H.; Lee, C. S. Fabrication of transparent conductive tri-composite film for electrochromic application. Appl. Surf. Sci. 2017, 425, 1006–1013.

[61]

Ha, E. N.; Lee, L. Y. S.; Wang, J. C.; Li, F. H.; Wong, K. Y.; Tsang, S. C. E. Significant enhancement in photocatalytic reduction of water to hydrogen by Au/Cu2ZnSnS4 nanostructure. Adv. Mater. 2014, 26, 3496–3500.

[62]

Nayak, A. K.; Das, A. K.; Pradhan, D. High performance solid-state asymmetric supercapacitor using green synthesized graphene-WO3 nanowires nanocomposite. ACS Sustainable Chem. Eng. 2017, 5, 10128–10138.

[63]

Xue, J. Y.; Xu, H. B.; Wang, S.; Hao, T. T.; Yang, Y.; Zhang, X.; Song, Y.; Li, Y.; Zhao, J. P. Design and synthesis of 2D rGO/NiO heterostructure composites for high-performance electrochromic energy storage. Appl. Surf. Sci. 2021, 565, 150512.

[64]

Yao, J. N.; Yang, Y. A.; Loo, B. H. Enhancement of photochromism and electrochromism in MoO3/Au and MoO3/Pt thin films. J. Phys. Chem. B 1998, 102, 1856–1860.

[65]

Bach, P.; Stratmann, M.; Valencia-Jaime, I.; Romero, A. H.; Renner, F. U. Lithiation and delithiation mechanisms of gold thin film model anodes for lithium ion batteries: Electrochemical characterization. Electrochim. Acta 2015, 164, 81–89.

[66]

Pan, J. B.; Wang, Y.; Zheng, R. Z.; Wang, M. T.; Wan, Z. Q.; Jia, C. Y.; Weng, X. L.; Xie, J. L.; Deng, L. J. Directly grown high-performance WO3 films by a novel one-step hydrothermal method with significantly improved stability for electrochromic applications. J. Mater. Chem. A 2019, 7, 13956–13967.

[67]

Deutschmann, T.; Oesterschulze, E. Integrated electrochromic iris device for low power and space-limited applications. J. Opt. 2014, 16, 075301.

[68]

Deutschmann, T.; Oesterschulze, E. Micro-structured electrochromic device based on poly(3,4-ethylenedioxythiophene). J. Micromech. Microeng. 2013, 23, 065032.

File
12274_2022_4928_MOESM1_ESM.pdf (752.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 July 2022
Revised: 08 August 2022
Accepted: 16 August 2022
Published: 22 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We thank Fundamental Research Funds for the Central Universities (Nos. HIT.OCEF.2021004 and FRFCU5710090220).

Return