Journal Home > Volume 16 , Issue 2

Combination therapy is one of the potential strategies for tackling complicated tumor treatments like drug resistance. In this work, we have generated a therapeutic cisplatin-crosslinked albumin hydrogel (BC-Gel) that allows the local release of L-Buthionine-sulfoximine (BSO), cisplatin, and glucose oxidase (GOx) with distinct release kinetics. The BC-Gel with favorable biostimuli degradability and injectability could release therapeutic agents in a programmed manner within the tumor microenvironment (TME). The preferentially released BSO significantly suppressed the glutathione (GSH)-related cisplatin resistance and sensitized the tumor cells to cisplatin by inhibiting the γ-glutamylcysteine synthetase. Meanwhile, cisplatin achieved a sequential release and long-term treatment following the bioresponsive gel degradation under the combined action of chloride ions (Cl) and proteinase in the body. In addition, the overproduced H2O2 of GOx-catalyzed glucose oxidation accelerated the depletion of existed GSH within cells and further weakened the cisplatin resistance, achieving enhanced tumor treatment together with a strong cell-killing effect. The above sequential drug release strategy based on the dual GSH depletion effect breaks the balance of the GSH-mediated redox TME and enhances the sensitivity of A549 cells to cisplatin forcefully, and provides a promising way for temporal control of drug release as well as efficient cancer combination therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bioresponsive cisplatin crosslinked albumin hydrogel served for efficient cancer combination therapy

Show Author's information An Yan1Zherui Zhang1,3Jiamei Gu1Xiaoran Ding1Yongchen Chen1Jingjing Du1Shu Wei2( )Hongcheng Sun1Jiayun Xu1Shuangjiang Yu1( )Junqiu Liu1
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou 311121, China
College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China

Abstract

Combination therapy is one of the potential strategies for tackling complicated tumor treatments like drug resistance. In this work, we have generated a therapeutic cisplatin-crosslinked albumin hydrogel (BC-Gel) that allows the local release of L-Buthionine-sulfoximine (BSO), cisplatin, and glucose oxidase (GOx) with distinct release kinetics. The BC-Gel with favorable biostimuli degradability and injectability could release therapeutic agents in a programmed manner within the tumor microenvironment (TME). The preferentially released BSO significantly suppressed the glutathione (GSH)-related cisplatin resistance and sensitized the tumor cells to cisplatin by inhibiting the γ-glutamylcysteine synthetase. Meanwhile, cisplatin achieved a sequential release and long-term treatment following the bioresponsive gel degradation under the combined action of chloride ions (Cl) and proteinase in the body. In addition, the overproduced H2O2 of GOx-catalyzed glucose oxidation accelerated the depletion of existed GSH within cells and further weakened the cisplatin resistance, achieving enhanced tumor treatment together with a strong cell-killing effect. The above sequential drug release strategy based on the dual GSH depletion effect breaks the balance of the GSH-mediated redox TME and enhances the sensitivity of A549 cells to cisplatin forcefully, and provides a promising way for temporal control of drug release as well as efficient cancer combination therapy.

Keywords: hydrogel, programmed drug release, dual glutathione (GSH) depletion, cisplatin resistance, cancer combination therapy

References(45)

[1]

Mao, J. J.; Pillai, G. G.; Andrade, C. J.; Ligibel, J. A.; Basu, P.; Cohen, L.; Khan, I. A.; Mustian, K. M.; Puthiyedath, R.; Dhiman, K. S. et al. Integrative oncology: Addressing the global challenges of cancer prevention and treatment. CA A Cancer J. Clin. 2022, 72, 144–164.

[2]

Bourzac, K. Biology: Three known unknowns. Nature 2014, 509, S69–S71.

[3]

Ward, R. A.; Fawell, S.; Floc'h, N.; Flemington, V.; McKerrecher, D.; Smith, P. D. Challenges and opportunities in cancer drug resistance. Chem. Rev. 2021, 121, 3297–3351.

[4]

Ma, W.; Chen, Q. L.; Xu, W. G.; Yu, M.; Yang, Y. Y.; Zou, B. H.; Zhang, Y. S.; Ding, J. X.; Yu, Z. Q. Self-targeting visualizable hyaluronate nanogel for synchronized intracellular release of doxorubicin and cisplatin in combating multidrug-resistant breast cancer. Nano Res. 2021, 14, 846–857.

[5]

Liu, C. F.; Zhou, S. J.; Bai, W. B.; Shi, L.; Li, X. L. Protective effect of food derived nutrients on cisplatin nephrotoxicity and its mechanism. Food Funct. 2022, 13, 4839–4860.

[6]

He, S. S.; Li, C.; Zhang, Q. F.; Ding, J. X.; Liang, X. J.; Chen, X. S.; Xiao, H. H.; Chen, X. Y.; Zhou, D. F.; Huang, Y. B. Tailoring Platinum(IV) amphiphiles for self-targeting all-in-one assemblies as precise multimodal theranostic nanomedicine. ACS Nano 2018, 12, 7272–7281.

[7]

Rottenberg, S.; Disler, C.; Perego, P. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer 2021, 21, 37–50.

[8]

Li, S. Y.; Li, C.; Jin, S. B.; Liu, J.; Xue, X. D.; Eltahan, A. S.; Sun, J. D.; Tan, J. J.; Dong, J. C.; Liang, X. J. Overcoming resistance to cisplatin by inhibition of glutathione S-transferases (GSTs) with ethacraplatin micelles in vitro and in vivo. Biomaterials 2017, 144, 119–129.

[9]

Shi, F. H.; Ding, J. X.; Xiao, C. S.; Zhuang, X. L.; He, C. L.; Chen, L.; Chen, X. S. Intracellular microenvironment responsive PEGylated polypeptide nanogels with ionizable cores for efficient doxorubicin loading and triggered release. J. Mater. Chem. 2012, 22, 14168–14179.

[10]

Lv, Q.; Yu, S. J.; Quan, F. L.; He, C. L.; Chen, X. S. Thermosensitive polypeptide hydrogels Co-loaded with two anti-tumor agents to reduce multi-drug resistance and enhance local tumor treatment. Adv. Therap. 2020, 3, 1900165.

[11]

Liu, J. F.; Gefen, O.; Ronin, I.; Bar-Meir, M.; Balaban, N. Q. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 2020, 367, 200–204.

[12]

Jiang, L.; Ding, Y.; Xue, X. L.; Zhou, S. S.; Li, C.; Zhang, X. K.; Jiang, X. Q. Entrapping multifunctional dendritic nanoparticles into a hydrogel for local therapeutic delivery and synergetic immunochemotherapy. Nano Res. 2018, 11, 6062–6073.

[13]

Wang, W. M.; Kryczek, I.; Dostál, L.; Lin, H.; Tan, L. J.; Zhao, L. L.; Lu, F. J.; Wei, S.; Maj, T.; Peng, D. J. et al. Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell 2016, 165, 1092–1105.

[14]

Wu, F.; Du, Y. Q.; Yang, J. N.; Shao, B. Y.; Mi, Z. S.; Yao, Y. F.; Cui, Y.; He, F.; Zhang, Y. Q.; Yang, P. P. Peroxidase-like active nanomedicine with dual glutathione depletion property to restore oxaliplatin chemosensitivity and promote programmed cell death. ACS Nano 2022, 16, 3647–3663.

[15]

Lu, S. C. Regulation of glutathione synthesis. Mol. Aspects Med. 2009, 30, 42–59.

[16]

Dong, Z. L.; Feng, L. Z.; Hao, Y.; Li, Q. G.; Chen, M. C.; Yang, Z. J.; Zhao, H.; Liu, Z. Synthesis of CaCO3-based nanomedicine for enhanced sonodynamic therapy via amplification of tumor oxidative stress. Chem 2020, 6, 1391–1407.

[17]

Li, Z. M.; Xu, W. G.; Yang, J. Z.; Wang, J.; Wang, J. L.; Zhu, G.; Li, D.; Ding, J. X.; Sun, T. M. A tumor microenvironments-adapted polypeptide hydrogel/nanogel composite boosts antitumor molecularly targeted inhibition and immunoactivation. Adv. Mater. 2022, 34, 2200449.

[18]

Lang, T. Q.; Liu, Y. R.; Zheng, Z.; Ran, W.; Zhai, Y. H.; Yin, Q.; Zhang, P. C.; Li, Y. P. Cocktail strategy based on spatio-temporally controlled nano device improves therapy of breast cancer. Adv. Mater. 2019, 31, 1806202.

[19]

Ahmadi, S.; Rabiee, N.; Bagherzadeh, M.; Elmi, F.; Fatahi, Y.; Farjadian, F.; Baheiraei, N.; Nasseri, B.; Rabiee, M.; Dastjerd, N. T. et al. Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today 2020, 34, 100914.

[20]

Wang, C.; Wang, J. Q.; Zhang, X. D.; Yu, S. J.; Wen, D.; Hu, Q. Y.; Ye, Y. Q.; Bomba, H.; Hu, X. L.; Liu, Z. et al. In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med. 2018, 10, eaan3682.

[21]

An, F. F.; Zhang, X. H. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics 2017, 7, 3667–3689.

[22]

Hoogenboezem, E. N.; Duvall, C. L. Harnessing albumin as a carrier for cancer therapies. Adv. Drug Deliv. Rev. 2018, 130, 73–89.

[23]

Chen, Q.; Feng, L. Z.; Liu, J. J.; Zhu, W. W.; Dong, Z. L.; Wu, Y. F.; Liu, Z. Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 2016, 28, 7129–7136.

[24]

Karimi, M.; Bahrami, S.; Ravari, S. B.; Zangabad, P. S.; Mirshekari, H.; Bozorgomid, M.; Shahreza, S.; Sori, M.; Hamblin, M. R. Albumin nanostructures as advanced drug delivery systems. Expert Opin. Drug Deliv. 2016, 13, 1609–1623.

[25]

Elzoghby, A. O.; Samy, W. M.; Elgindy, N. A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release 2012, 157, 168–182.

[26]

He, C. X.; Liu, J. H.; Xie, L. Y.; Zhang, Q. L.; Li, C. H.; Gui, D. Y.; Zhang, G. Z.; Wu, C. Activity and thermal stability improvements of glucose oxidase upon adsorption on core−shell PMMA-BSA nanoparticles. Langmuir 2009, 25, 13456–13460.

[27]

Kiraz, S.; İnci, D.; Aydın, R.; Vatan, Ö.; Zorlu, Y.; Cavaş, T. Antiproliferative activity of copper(II) glutamine complexes with N, N-donor ligands: Synthesis, characterization, potentiometric studies and DNA/BSA interactions. J. Mol. Struct. 2019, 1194, 245–255.

[28]

Li, J. B.; Wang, X. Y. Binding of (–)-epigallocatechin-3-gallate with thermally-induced bovine serum albumin/ι-carrageenan particles. Food Chem. 2015, 168, 566–571.

[29]

Xing, R. R.; Liu, K.; Jiao, T. F.; Zhang, N.; Ma, K.; Zhang, R. Y.; Zou, Q. L.; Ma, G. H.; Yan, X. H. An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv. Mater. 2016, 28, 3669–3676.

[30]

Catoira, M. C.; Fusaro, L.; Di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of natural hydrogels for regenerative medicine applications. J. Mater. Sci. Mater. Med. 2019, 30, 115.

[31]

Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 2012, 336, 1124–1128.

[32]

Cui, C. Y.; Liu, W. G. Recent advances in wet adhesives: Adhesion mechanism, design principle and applications. Prog. Polym. Sci. 2021, 116, 101388.

[33]

Chen, Q.; Wang, C.; Zhang, X. Q.; Chen, G. J.; Hu, Q. Y.; Li, H. J.; Wang, J. Q.; Wen, D.; Zhang, Y. Q.; Lu, Y. F. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 2019, 14, 89–97.

[34]

Li, Y.; Yang, H. Y.; Lee, D. S. Advances in biodegradable and injectable hydrogels for biomedical applications. J. Controlled Release 2021, 330, 151–160.

[35]

Norouzi, M.; Nazari, B.; Miller, D. W. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov. Today 2016, 21, 1835–1849.

[36]

Yu, S. J.; Chen, Z. W.; Zeng, X.; Chen, X. S.; Gu, Z. Advances in nanomedicine for cancer starvation therapy. Theranostics 2019, 9, 8026–8047.

[37]

Li, C. Y.; Wan, Y. L.; Zhang, Y. F.; Fu, L. H.; Blum, N. T.; Cui, R.; Wu, B. D.; Zheng, R.; Lin, J.; Li, Z. M. et al. In situ sprayed starvation/chemodynamic therapeutic gel for post-surgical treatment of IDH1 (R132H) Glioma. Adv. Mater. 2022, 34, 2103980.

[38]

He, X. L.; Hao, Y.; Chu, B. Y.; Yang, Y.; Sun, A.; Shi, K.; Yang, C. L.; Zhou, K.; Qu, Y.; Li, H. et al. Redox-activatable photothermal therapy and enzyme-mediated tumor starvation for synergistic cancer therapy. Nano Today 2021, 39, 101174.

[39]

Wang, M.; Chen, M.; Niu, W.; Winston, D. D.; Cheng, W.; Lei, B. Injectable biodegradation-visual self-healing citrate hydrogel with high tissue penetration for microenvironment-responsive degradation and local tumor therapy. Biomaterials 2020, 261, 120301.

[40]

Niu, B. Y.; Liao, K. X.; Zhou, Y. X.; Wen, T.; Quan, G. L.; Pan, X.; Wu, C. B. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials 2021, 277, 121110.

[41]

Yu, J.; Xiao, H.; Yang, Z.; Qiao, C. Q.; Zhou, B.; Jia, Q.; Wang, Z. D.; Wang, X. F.; Zhang, R. L.; Yang, Y. et al. A potent strategy of combinational blow toward enhanced cancer chemo-photodynamic therapy via sustainable GSH elimination. Small 2022, 18, 2106100.

[42]

Barbosa, R. I.; Guirro, E. C. D. O.; Bachmann, L.; Brandino, H. E.; Guirro, R. R. D. J. Analysis of low-level laser transmission at wavelengths 660, 830 and 904 nm in biological tissue samples. J. Photochem. Photobiol. B Biol. 2020, 209, 111914.

[43]

Salehpour, F.; Cassano, P.; Rouhi, N.; Hamblin, M. R.; De Taboada, L.; Farajdokht, F.; Mahmoudi, J. Penetration profiles of visible and near-infrared lasers and light-emitting diode light through the head tissues in animal and human species: A review of literature. Photobiomodul. Photomed. Laser Surg. 2019, 37, 581–595.

[44]

Kolárová, H.; Ditrichová, D.; Wagner, J. Penetration of the laser light into the skin in vitro. Lasers Surg. Med. 1999, 24, 231–235.

DOI
[45]

Joensen, J.; Øvsthus, K.; Reed, R. K.; Hummelsund, S.; Iversen, V. V.; Lopes-Martins, R. Á.; Bjordal, J. M. Skin penetration time-profiles for continuous 810 nm and Superpulsed 904 nm lasers in a rat model. Photomed. Laser Surg. 2012, 30, 688–694.

File
12274_2022_4925_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 July 2022
Revised: 11 August 2022
Accepted: 15 August 2022
Published: 14 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22075065, 22161142015, and 22001054), the National Key R&D Program of China (Nos. 2020YFA0908500 and 2018YFA0901600), and the Research Start-up Fund from Hangzhou Normal University (Nos. 2019QDL025, 2019QDL026, and 4095C5022121604).

Return