Journal Home > Volume 16 , Issue 2

The environmental micro-energy harvested by the triboelectric–electromagnetic hybrid generator (TEHG) can power sensors and Internet of Things (IoT) nodes in smart agriculture. However, the separation structure of traditional TEHG raises the complexity of form and material, which is harmful to the miniaturization of the device. Herein, a single-material-substrated triboelectric–electromagnetic hybrid generator (SMS-TEHG) based on the flexible magnets is designed to achieve the structural integration of triboelectric nanogenerator (TENG) and electromagnetic generator (EMG). The flexible magnets serve as the electropositive triboelectric materials for TENG and the magnetic materials for EMG, simplifying the structural complexity of TEHG. The open-circuit voltage (VOC) of the TENG and EMG are 187.2 and 9.0 V at 300 rpm, respectively. After 30,000 cycles of stability testing, the VOC of the TENG and EMG retain about 95.6% and 99.3%, respectively. Additionally, the self-powered applications driven by SMS-TEHG in intelligent greenhouse have been successfully demonstrated, such as crop light supplementation, rain monitoring, and wireless temperature and humidity sensing. This work provides a new design for TEHG and possibilities for applying TEHG and IoT in smart agriculture.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Single-material-substrated triboelectric–electromagnetic hybrid generator for self-powered multifunctional sensing in intelligent greenhouse

Show Author's information Baosen Zhang1,2Wenbo Li1,2Jianwei Ge1Chenggen Chen1Xin Yu1Zhong Lin Wang1,2,3( )Tinghai Cheng1,2( )
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA

Abstract

The environmental micro-energy harvested by the triboelectric–electromagnetic hybrid generator (TEHG) can power sensors and Internet of Things (IoT) nodes in smart agriculture. However, the separation structure of traditional TEHG raises the complexity of form and material, which is harmful to the miniaturization of the device. Herein, a single-material-substrated triboelectric–electromagnetic hybrid generator (SMS-TEHG) based on the flexible magnets is designed to achieve the structural integration of triboelectric nanogenerator (TENG) and electromagnetic generator (EMG). The flexible magnets serve as the electropositive triboelectric materials for TENG and the magnetic materials for EMG, simplifying the structural complexity of TEHG. The open-circuit voltage (VOC) of the TENG and EMG are 187.2 and 9.0 V at 300 rpm, respectively. After 30,000 cycles of stability testing, the VOC of the TENG and EMG retain about 95.6% and 99.3%, respectively. Additionally, the self-powered applications driven by SMS-TEHG in intelligent greenhouse have been successfully demonstrated, such as crop light supplementation, rain monitoring, and wireless temperature and humidity sensing. This work provides a new design for TEHG and possibilities for applying TEHG and IoT in smart agriculture.

Keywords: self-powered, wind energy harvesting, triboelectric–electromagnetic hybrid generator, single-material-substrated, smart agriculture

References(36)

[1]

Basso, B.; Antle, J. Digital agriculture to design sustainable agricultural systems. Nat. Sustain. 2020, 3, 254–256.

[2]

Yin, H. Y.; Cao, Y. T.; Marelli, B.; Zeng, X. Q.; Mason, A. J.; Cao, C. Y. Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 2021, 33, 2007764.

[3]

Araújo, S. O.; Peres, R. S.; Barata, J.; Lidon, F.; Ramalho, J. C. Characterising the agriculture 4.0 landscape—Emerging trends, challenges and opportunities. Agronomy 2021, 11, 667.

[4]

Zhao, X.; Askari, H.; Chen, J. Nanogenerators for smart cities in the era of 5G and internet of things. Joule 2021, 5, 1391–1431.

[5]

Lan, L. Y.; Xiong, J. Q.; Gao, D. C.; Li, Y.; Chen, J.; Lv, J.; Ping, J. F.; Ying, Y. B.; Lee, P. S. Breathable nanogenerators for an on-plant self-powered sustainable agriculture system. ACS Nano 2021, 15, 5307–5315.

[6]

Giraldo, J. P.; Wu, H. H.; Newkirk, G. M.; Kruss, S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 2019, 14, 541–553.

[7]

Zhang, P.; Guo, Z. L.; Ullah, S.; Melagraki, G.; Afantitis, A.; Lynch, I. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nat. Plants 2021, 7, 864–876.

[8]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[9]

Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

[10]

Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 2014, 26, 3580–3591.

[11]

Wang, Z. L. On maxwell's displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

[12]

Wang, Z. L.; Wang, A. C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51.

[13]

Wang, Z. L. Triboelectric nanogenerator (TENG)—Sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.

[14]

Yang, Z. B.; Zhou, S. X.; Zu, J.; Inman, D. High-performance piezoelectric energy harvesters and their applications. Joule 2018, 2, 642–697.

[15]

Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

[16]

Liang, X.; Jiang, T.; Liu, G. X.; Feng, Y. W.; Zhang, C.; Wang, Z. L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 2020, 13, 277–285.

[17]

Zhang, B. S.; Tang, Y. J.; Dai, R. R.; Wang, H. Y.; Sun, X. P.; Qin, C.; Pan, Z. F.; Liang, E. J.; Mao, Y. C. Breath-based human–machine interaction system using triboelectric nanogenerator. Nano Energy 2019, 64, 103953.

[18]

Zhang, N.; Qin, C.; Feng, T. X.; Li, J.; Yang, Z. R.; Sun, X. P.; Liang, E. J.; Mao, Y. C.; Wang, X. D. Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics. Nano Res. 2020, 13, 1903–1907.

[19]

Ning, C.; Tian, L.; Zhao, X. Y.; Xiang, S. X.; Tang, Y. J.; Liang, E. J.; Mao, Y. C. Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics. J. Mater. Chem. A 2018, 6, 19143–19150.

[20]

Xie, L. J.; Zhai, N. N.; Liu, Y. N.; Wen, Z.; Sun, X. H. Hybrid triboelectric nanogenerators: From energy complementation to integration. Research 2021, 2021, 9143762.

[21]

Wang, L. Y.; Wang, Y.; Wang, H.; Xu, G. Q.; Döring, A.; Daoud, W. A.; Xu, J. B.; Rogach, A. L.; Xi, Y.; Zi, Y. L. Carbon dot-based composite films for simultaneously harvesting raindrop energy and boosting solar energy conversion efficiency in hybrid cells. ACS Nano 2020, 14, 10359–10369.

[22]

Xu, L. Y.; Xu, L.; Luo, J. J.; Yan, Y.; Jia, B. E.; Yang, X. D.; Gao, Y. H.; Wang, Z. L. Hybrid all-in-one power source based on high-performance spherical triboelectric nanogenerators for harvesting environmental energy. Adv. Energy Mater. 2020, 10, 2001669.

[23]

Zhai, N. N.; Wen, Z.; Chen, X. P.; Wei, A. M.; Sha, M.; Fu, J. J.; Liu, Y. N.; Zhong, J.; Sun, X. H. Blue energy collection toward all-hours self-powered chemical energy conversion. Adv. Energy Mater. 2020, 10, 2001041.

[24]

Ye, C. Y.; Dong, K.; An, J.; Yi, J.; Peng, X.; Ning, C.; Wang, Z. L. A triboelectric–electromagnetic hybrid nanogenerator with broadband working range for wind energy harvesting and a self-powered wind speed sensor. ACS Energy Lett. 2021, 6, 1443–1452.

[25]

Zhang, B. S.; Zhang, S.; Li, W. B.; Gao, Q.; Zhao, D.; Wang, Z. L.; Cheng, T. H. Self-powered sensing for smart agriculture by electromagnetic–triboelectric hybrid generator. ACS Nano 2021, 15, 20278–20286.

[26]

Xu, S. H.; Fu, X. P.; Liu, G. X.; Tong, T.; Bu, T. Z.; Wang, Z. L.; Zhang, C. Comparison of applied torque and energy conversion efficiency between rotational triboelectric nanogenerator and electromagnetic generator. iScience 2021, 24, 102318.

[27]

Li, Z. J.; Saadatnia, Z.; Yang, Z. B.; Naguib, H. A hybrid piezoelectric–triboelectric generator for low-frequency and broad-bandwidth energy harvesting. Energy Convers. Manage. 2018, 174, 188–197.

[28]

Wang, S. H.; Wang, Z. L.; Yang, Y. A one-structure-based hybridized nanogenerator for scavenging mechanical and thermal energies by triboelectric–piezoelectric–pyroelectric effects. Adv. Mater. 2016, 28, 2881–2887.

[29]

Kim, S. W.; Yang, U. J.; Lee, J. W.; Kim, F.; Kim, Y.; Lee, G.; Son, J. S.; Baik, J. M. Triboelectric charge-driven enhancement of the output voltage of bisbte-based thermoelectric generators. ACS Energy Lett. 2021, 6, 1095–1103.

[30]

Lee, D.; Kim, I.; Kim, D. Hybrid tribo-thermoelectric generator for effectively harvesting thermal energy activated by the shape memory alloy. Nano Energy 2021, 82, 105696.

[31]

Zhang, T. T.; Wen, Z.; Liu, Y. N.; Zhang, Z. Y.; Xie, Y. L.; Sun, X. H. Hybridized nanogenerators for multifunctional self-powered sensing: Principles, prototypes, and perspectives. iScience 2020, 23, 101813.

[32]

Mu, J. L.; Zou, J.; Song, J. S.; He, J.; Hou, X. J.; Yu, J. B.; Han, X. T.; Feng, C. P.; He, H. C.; Chou, X. J. Hybrid enhancement effect of structural and material properties of the triboelectric generator on its performance in integrated energy harvester. Energy Convers. Manage. 2022, 254, 115151.

[33]

Fang, Y.; Tang, T. Y.; Li, Y. F.; Hou, C.; Wen, F.; Yang, Z.; Chen, T.; Sun, L. N.; Liu, H. C.; Lee, C. A high-performance triboelectric–electromagnetic hybrid wind energy harvester based on rotational tapered rollers aiming at outdoor IoT applications. iScience 2021, 24, 102300.

[34]

Liu, L.; Shi, Q. F.; Lee, C. A hybridized electromagnetic–triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control. Nano Res. 2021, 14, 4227–4235.

[35]

Shao, H. Y.; Cheng, P.; Chen, R. X.; Xie, L. J.; Sun, N.; Shen, Q. Q.; Chen, X. P.; Zhu, Q. Q.; Zhang, Y.; Liu, Y. N. et al. Triboelectric–electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 2018, 10, 54.

[36]

Fan, X. M.; He, J.; Mu, J. L.; Qian, J. C.; Zhang, N.; Yang, C. J.; Hou, X. J.; Geng, W. P.; Wang, X. D.; Chou, X. J. Triboelectric–electromagnetic hybrid nanogenerator driven by wind for self-powered wireless transmission in internet of things and self-powered wind speed sensor. Nano Energy 2020, 68, 104319.

Video
12274_2022_4922_MOESM2_ESM.mp4
12274_2022_4922_MOESM3_ESM.mp4
12274_2022_4922_MOESM4_ESM.mp4
File
12274_2022_4922_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 July 2022
Revised: 01 August 2022
Accepted: 15 August 2022
Published: 08 November 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

The authors are grateful for the support from the National Key Research & Development Project from the Minister of Science and Technology (Nos. 2021YFA1201601 and 2021YFA1201604), and the Beijing Natural Science Foundation (No. 3222023).

Return