Journal Home > Volume 16 , Issue 2

Designing efficient and stable electrocatalysts to improve the oxygen evolution reaction (OER) with slow reaction kinetics is essential to improve hydrogen production from electrochemical water splitting. This research has prepared a series of FeOOH/Ni(HCO3)2 heterostructured materials (denoted as FeOOHx/Ni(HCO3)2) by a one-pot solvothermal method. The OER performance of the catalysts was maximized by finely tuning the content of different components, heterogeneous interfaces, and electronic structures. Specifically, the obtained FeOOH0.60/Ni(HCO3)2 heterostructured nanosheets had the lowest overpotential of 216 mV at a current density of 10 mA·cm−2 and were stable at a high current density of 100 mA·cm−2 for more than 96 h. The excellent OER activity and stability were still maintained in alkaline natural seawater (1 M KOH + seawater). When FeOOH0.60/Ni(HCO3)2 was used as the anode for water splitting, the electrolyzer provided a current density of 10 mA·cm−2 at a very low cell voltage of 1.51 V (1.56 V at 1 M KOH + seawater) and exhibited superior stability. The outstanding OER performance is ascribed to the synergistic effect of FeOOH and Ni(HCO3)2 upon heterostructure formation, as well as the altered electronic structure between the heterogeneous interfaces and the suitable hierarchical nanosheet morphology facilitating many active sites. This work provides a promising direction for improving the electrocatalytic activity of nickel-based catalysts in seawater splitting, which has important implications for both hydrogen economy and environmental remediation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Engineering active sites on hierarchical transition bimetal oxyhydride/bicarbonate heterostructure for oxygen evolution catalysis in seawater splitting

Show Author's information Meihong Lin1Yang Yang1Yunhua Song1Donggang Guo2( )Liping Yang1( )Lu Liu1( )
Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
Shanxi Laboratory for Yellow River, College of Environment and Resource, Shanxi University, Taiyuan 030006, China

Abstract

Designing efficient and stable electrocatalysts to improve the oxygen evolution reaction (OER) with slow reaction kinetics is essential to improve hydrogen production from electrochemical water splitting. This research has prepared a series of FeOOH/Ni(HCO3)2 heterostructured materials (denoted as FeOOHx/Ni(HCO3)2) by a one-pot solvothermal method. The OER performance of the catalysts was maximized by finely tuning the content of different components, heterogeneous interfaces, and electronic structures. Specifically, the obtained FeOOH0.60/Ni(HCO3)2 heterostructured nanosheets had the lowest overpotential of 216 mV at a current density of 10 mA·cm−2 and were stable at a high current density of 100 mA·cm−2 for more than 96 h. The excellent OER activity and stability were still maintained in alkaline natural seawater (1 M KOH + seawater). When FeOOH0.60/Ni(HCO3)2 was used as the anode for water splitting, the electrolyzer provided a current density of 10 mA·cm−2 at a very low cell voltage of 1.51 V (1.56 V at 1 M KOH + seawater) and exhibited superior stability. The outstanding OER performance is ascribed to the synergistic effect of FeOOH and Ni(HCO3)2 upon heterostructure formation, as well as the altered electronic structure between the heterogeneous interfaces and the suitable hierarchical nanosheet morphology facilitating many active sites. This work provides a promising direction for improving the electrocatalytic activity of nickel-based catalysts in seawater splitting, which has important implications for both hydrogen economy and environmental remediation.

Keywords: heterostructure, oxygen evolution reaction, synergistic effect, nickel bicarbonate, iron oxyhydroxide

References(49)

[1]

Li, H. L.; Yu, K.; Tang, Z.; Zhu, Z. Q. Experimental and first-principles investigation of MoWS2 with high hydrogen evolution performance. ACS Appl. Mater. Interfaces 2016, 8, 29442–29451.

[2]

Yang, M. Y.; Zhao, M. X.; Yuan, J.; Luo, J. X.; Zhang, J. J.; Lu, Z. G.; Chen, D. Z.; Fu, X. Z.; Wang, L.; Liu, C. Oxygen vacancies and interface engineering on amorphous/crystalline CrOx-Ni3N heterostructures toward high-durability and kinetically accelerated water splitting. Small 2022, 18, 2106554.

[3]

Zhu, L.; Ma, C. L.; Wang, Z. Q.; Gong, X. Q.; Cao, L. M.; Yang, J. Tuning the hybridization state of Ir-O to improve the OER activity and stability of iridium pyrochlore via Zn doping. Appl. Surf. Sci. 2022, 576, 151840.

[4]

Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S. H.; Shao, Z. P.; Lim, J. Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 2020, 49, 9154–9196.

[5]

Liu, X. L.; Lv, X. S.; Wang, P.; Zhang, Q. Q.; Huang, B. B.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K.; Dai, Y. Improving the HER activity of Ni3FeN to convert the superior OER electrocatalyst to an efficient bifunctional electrocatalyst for overall water splitting by doping with molybdenum. Electrochim. Acta 2020, 333, 135488.

[6]

Chen, T.; Tan, Y. W. Hierarchical CoNiSe2 nano-architecture as a high-performance electrocatalyst for water splitting. Nano Res. 2018, 11, 1331–1344.

[7]

Zhao, Y. Q.; Jin, B.; Zheng, Y.; Jin, H. Y.; Jiao, Y.; Qiao, S. Z. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Adv. Energy Mater. 2018, 8, 1801926.

[8]

Zang, W. J.; Sun, T.; Yang, T.; Xi, S. B.; Waqar, M.; Kou, Z. K.; Lyu, Z.; Feng, Y. P.; Wang, J.; Pennycook, S. J. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis. Adv. Mater. 2021, 33, 2003846.

[9]

Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933–942.

[10]

Tu, Q. Q.; Liu, W. W.; Jiang, M.; Wang, W. J.; Kang, Q.; Wang, P. C.; Zhou, W. J.; Zhou, F. M. Preferential adsorption of hydroxide ions onto partially crystalline NiFe-layered double hydroxides leads to efficient and selective OER in alkaline seawater. ACS Appl. Energy Mater. 2021, 4, 4630–4637.

[11]

You, H. H.; Wu, D. S.; Si, D. H.; Cao, M. N.; Sun, F. F.; Zhang, H.; Wang, H. M.; Liu, T. F.; Cao, R. Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting. J. Am. Chem. Soc. 2022, 144, 9254–9263.

[12]

Zhang, F. H.; Yu, L.; Wu, L. B.; Luo, D.; Ren, Z. F. Rational design of oxygen evolution reaction catalysts for seawater electrolysis. Trends Chem. 2021, 3, 485–498.

[13]

Li, Y. Y.; Zou, Q. M.; Li, Z. J.; Xie, D.; Niu, Y.; Zou, J. Z.; Zeng, X. R.; Huang, J. F. MOF derived Ni-Fe based alloy carbon materials for efficient bifunctional electrocatalysts applied in Zn-air battery. Appl. Surf. Sci. 2022, 572, 151286.

[14]

Lin, C.; Zhang, P. J.; Wang, S. Y.; Zhou, Q. L.; Na, B.; Li, H. Q.; Tian, J. Y.; Zhang, Y.; Deng, C.; Meng, L. Q. et al. Engineered porous Co-Ni alloy on carbon cloth as an efficient bifunctional electrocatalyst for glucose electrolysis in alkaline environment. J. Alloys Compd. 2020, 823, 153784.

[15]

Tan, Q. R.; Xiong, T. Z.; Yang, F.; Huang, P.; Adekoya, D.; Huang, Y. C.; Balogun, M. S. Ni0.58Al0.42 alloy growth on various conductive substrates and their use as advanced self-supportive electrocatalysts for boosted oxygen evolution catalysis. J. Alloys Compd. 2021, 858, 157729.

[16]

Li, X. G.; Zhou, J. H.; Liu, C.; Xu, L.; Lu, C. L.; Yang, J.; Pang, H.; Hou, W. H. Encapsulation of Janus-structured Ni/Ni2P nanoparticles within hierarchical wrinkled N-doped carbon nanofibers: Interface engineering induces high-efficiency water oxidation. Appl. Catal. B Environ. 2021, 298, 120578.

[17]

Manjunatha, C.; Srinivasa, N.; Chaitra, S. K.; Sudeep, M.; Chandra Kumar, R.; Ashoka, S. Controlled synthesis of nickel sulfide polymorphs: Studies on the effect of morphology and crystal structure on OER performance. Mater. Today Energy 2020, 16, 100414.

[18]

Guo, R. K.; Shi, W.; Liu, W. Z.; Yang, X.; Xie, Y.; Yang, T.; Xiao, J. F. Ultralow noble metals doping enables metal-organic framework derived Ni(OH)2 nanocages as efficient water oxidation electrocatalysts. Chem. Eng. J. 2022, 429, 132478.

[19]

Kong, X. K.; Zhang, C. L.; Hwang, S. Y.; Chen, Q. W.; Peng, Z. M. Free-standing holey Ni(OH)2 nanosheets with enhanced activity for water oxidation. Small 2017, 13, 1700334.

[20]

Yang, Y.; Song, Y. H.; Mo, S. D.; Liu, M. Y. Efficient and durable FeCoNi-(Oxy)hydroxide anode: Stoichiometric ration regulated morphology-, defect- and valence-dependent water oxidation performance. Chem. Eng. J. 2021, 417, 127934.

[21]

Dai, S. G.; Zhang, Z. F.; Xu, J. M.; Shen, W. X.; Zhang, Q. B.; Yang, X. G.; Xu, T. T.; Dang, D.; Hu, H.; Zhao, B. T. et al. In situ Raman study of nickel bicarbonate for high-performance energy storage device. Nano Energy 2019, 64, 103919.

[22]

Lao, M. M.; Rui, K.; Zhao, G. Q.; Cui, P. X.; Zheng, X. S.; Dou, S. X.; Sun, W. P. Platinum/nickel bicarbonate heterostructures towards accelerated hydrogen evolution under alkaline conditions. Angew. Chem., Int. Ed. 2019, 58, 5432–5437.

[23]

Wu, A. P.; Xie, Y.; Ma, H.; Tian, C. G.; Gu, Y.; Yan, H. J.; Zhang, X. M.; Yang, G. Y.; Fu, H. G. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy 2018, 44, 353–363.

[24]

Wen, T.; Zhao, Y. L.; Jiao, X. K.; Zhang, Q. W.; Zhang, T. T.; Zhang, X.; Qu, J.; Dong, Y.; Song, S. X. High-performance nickel/iron catalysts for oxygen evolution in pH-near-neutral borate electrolyte synthesized by mechanochemical approach. J. Alloys Compd. 2022, 898, 162845.

[25]

Li, M.; Pan, X. C.; Jiang, M. Q.; Zhang, Y. F.; Tang, Y. W.; Fu, G. T. Interface engineering of oxygen-vacancy-rich CoP/CeO2 heterostructure boosts oxygen evolution reaction. Chem. Eng. J. 2020, 395, 125160.

[26]

Zhang, B.; Shan, J. W.; Wang, W. L.; Tsiakaras, P.; Li, Y. Y. Oxygen vacancy and core–shell heterojunction engineering of anemone-like CoP@CoOOH bifunctional electrocatalyst for efficient overall water splitting. Small 2022, 18, 2106012.

[27]

Song, Y. H.; Yang, Y.; Mo, S. D.; Guo, D. G.; Liu, L. Fast construction of (Fe2O3)x@Ni-MOF heterostructure nanosheets as highly active catalyst for water oxidation. J. Alloys Compd. 2022, 892, 162149.

[28]

Nai, J. W.; Xu, X. Z.; Xie, Q. F.; Lu, G. X.; Wang, Y.; Luan, D. Y.; Tao, X. Y.; Lou, X. W. Construction of Ni(CN)2/NiSe2 heterostructures by stepwise topochemical pathways for efficient electrocatalytic oxygen evolution. Adv. Mater. 2022, 34, 2104405.

[29]

Gao, J. Y.; Ma, H. Q.; Zhang, L. F.; Luo, X. Y.; Yu, L. Q. Interface engineering of Ni3Se2@FeOOH heterostructure nanoforests for highly-efficient overall water splitting. J. Alloys Compd. 2022, 893, 162244.

[30]

Deng, X. L.; Li, H. J.; Liu, Y.; Huang, J. Z.; Li, Y. B. Amorphous FeOOH decorated hierarchy capillary-liked CoAl LDH catalysts for efficient oxygen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 21289–21297.

[31]
YangY. Y.YangJ. Y.LiangP. J.ZhangZ. Y.LiZ. M.HuZ. V2O3/FeOOH with rich heterogeneous interfaces on Ni foam for efficient oxygen evolution reactionCatal. Commun.202216210639310.1016/j.catcom.2021.106393

Yang, Y. Y.; Yang, J. Y.; Liang, P. J.; Zhang, Z. Y.; Li, Z. M.; Hu, Z. V2O3/FeOOH with rich heterogeneous interfaces on Ni foam for efficient oxygen evolution reaction. Catal. Commun. 2022, 162, 106393.

[32]

Chen, J. D.; Zheng, F.; Zhang, S. J.; Fisher, A.; Zhou, Y.; Wang, Z. Y.; Li, Y. Y.; Xu, B. B.; Li, J. T.; Sun, S. G. Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal. 2018, 8, 11342–11351.

[33]

Liu, J. C.; Qian, G. F.; Zhang, H.; Chen, J. L.; Wang, Y. J.; He, H. B.; Luo, L.; Yin, S. B. Amorphous FeOOH coating stabilizes WO2-NaxWO3 for accelerating oxygen evolution reaction. Chem. Eng. J. 2021, 426, 131253.

[34]

Guan, J. L.; Li, C. F.; Zhao, J. W.; Yang, Y. Z.; Zhou, W.; Wang, Y.; Li, G. R. FeOOH-enhanced bifunctionality in Ni3N nanotube arrays for water splitting. Appl. Catal. B Environ. 2020, 269, 118600.

[35]

Wu, L. B.; Yu, L.; McElhenny, B.; Xing, X. X.; Luo, D.; Zhang, F. H.; Bao, J. M.; Chen, S.; Ren, Z. F. Rational design of core-shell-structured CoPx@FeOOH for efficient seawater electrolysis. Appl. Catal. B Environ. 2021, 294, 120256.

[36]

Zhang, Z. H.; Wang, C. L.; Ma, X. L.; Liu, F.; Xiao, H.; Zhang, J.; Lin, Z.; Hao, Z. P. Engineering ultrafine NiFe-LDH into self-supporting nanosheets: Separation-and-reunion strategy to expose additional edge sites for oxygen evolution. Small 2021, 17, 2103785.

[37]

Shi, Z. X.; Zhao, J. W.; Li, C. F.; Xu, H.; Li, G. R. Fully exposed edge/corner active sites in Fe substituted-Ni(OH)2 tube-in-tube arrays for efficient electrocatalytic oxygen evolution. Appl. Catal. B Environ. 2021, 298, 120558.

[38]

Liang, Y.; Han, Y. F.; Li, J. S.; Wang, J.; Liu, D. P.; Fan, Q. Wettability control in electrocatalyst: A mini review. J. Energy Chem. 2022, 70, 643–655.

[39]

Nguyen, D. C.; Luyen Doan, T. L.; Prabhakaran, S.; Tran, D. T.; Kim, D. H.; Lee, J. H.; Kim, N. H. Hierarchical Co and Nb dual-doped MoS2 nanosheets shelled micro-TiO2 hollow spheres as effective multifunctional electrocatalysts for HER, OER, and ORR. Nano Energy 2021, 82, 105750.

[40]

Hu, W. K.; Liu, Q.; Lv, T. X.; Zhou, F.; Zhong, Y. J. Impact of interfacial CoOOH on OER catalytic activities and electrochemical behaviors of bimetallic CoxNi-LDH nanosheet catalysts. Electrochim. Acta 2021, 381, 138276.

[41]

Naderi, A.; Yong, X.; Karamad, M.; Cai, J. Y.; Zang, Y. P.; Gates, I.; Siahrostami, S.; Wang, G. M. Ternary cobalt-iron sulfide as a robust electrocatalyst for water oxidation: A dual effect from surface evolution and metal doping. Appl. Surf. Sci. 2021, 542, 148681.

[42]

Jiang, S. S.; Zhu, L.; Yang, Z. Z.; Wang, Y. G. Morphological-modulated FeNi-based amorphous alloys as efficient alkaline water splitting electrocatalysts. Electrochim. Acta 2021, 389, 138756.

[43]

Li, L.; Guo, C. F.; Ning, J. Q.; Zhong, Y. J.; Chen, D. L.; Hu, Y. Oxygen-vacancy-assisted construction of FeOOH/CdS heterostructure as an efficient bifunctional photocatalyst for CO2 conversion and water oxidation. Appl. Catal. B Environ. 2021, 293, 120203.

[44]

Du, Y. C.; Zhen, S.; Wang, J. S.; Ma, Y. L.; Wu, J. S.; Dai, H. X. FeOOH-MnO2/sepiolite and Fe2O3-MnO2/diatomite: Highly efficient adsorbents for the removal of As(V). Appl. Clay Sci. 2022, 222, 106491.

[45]

Han, X. T.; Niu, Y. Y.; Yu, C.; Liu, Z. B.; Huang, H. W.; Huang, H. L.; Li, S. F.; Guo, W.; Tan, X. Y.; Qiu, J. S. Ultrafast construction of interfacial sites by wet chemical etching to enhance electrocatalytic oxygen evolution. Nano Energy 2020, 69, 104367.

[46]

Lu, X. Y.; Ye, K. H.; Zhang, S. Q.; Zhang, J. N.; Yang, J. D.; Huang, Y. C.; Ji, H. B. Amorphous type FeOOH modified defective BiVO4 photoanodes for photoelectrochemical water oxidation. Chem. Eng. J. 2022, 428, 131027.

[47]

Gao, H. G.; Shi, R.; Shao, Y. T.; Liu, Y. N.; Zhu, Y. F.; Zhang, J. G.; Li, L. Q. Catalysis derived from flower-like Ni MOF towards the hydrogen storage performance of magnesium hydride. Int. J. Hydrogen Energy 2022, 47, 9346–9356.

[48]

Li, J. W.; Zhuang, Q. N.; Xu, P. M.; Zhang, D. W.; Wei, L. C.; Yuan, D. S. Three-dimensional lily-like CoNi2S4 as an advanced bifunctional electrocatalyst for hydrogen and oxygen evolution reaction. Chin. J. Catal. 2018, 39, 1403–1410.

[49]

Chung, D. Y.; Lopes, P. P.; Farinazzo Bergamo Dias Martins, P.; He, H. Y.; Kawaguchi, T.; Zapol, P.; You, H.; Tripkovic, D.; Strmcnik, D.; Zhu, Y. S. et al. Author correction: Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy 2020, 5, 550–550.

File
12274_2022_4920_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 June 2022
Revised: 11 August 2022
Accepted: 16 August 2022
Published: 03 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the Tianjin Science and Technology Support Key Projects (No. 20JCYBJC01420). The authors would like to thank Shiyanjia Lab (www.shiyanjia.com) for supporting XPS and static contact angle tests.

Return