Journal Home > Volume 16 , Issue 2

Separation of propane from natural gas is of great importance to industry. However, in light of size-based separation, there still lacks effective method to directly separate propane from natural gas, due to the comparable physical properties for these light alkanes (C1–C4) and the middle size of propane. In this work, we found that a new Th-metal-organic framework (MOF) could be an ideal solution for this issue. The Th-MOF takes UiO-66-type structure, but with the pocket sealed by six-fold imide groups; this not only precisely reduces the size of pocket to exactly match propane, but also enhances the host–guest interactions through multiple (C)H(δ+)∙∙∙(δ−)O(C) interactions. As a result, highly selective adsorption of propane over methane, ethane, and butane was observed, implying unique middle-size separation. The actual separation was confirmed by breakthrough experiments of simulated natural gas, confirming its superior application in direct separation of propane from natural gas. The separation mechanism, as unveiled by both theoretical calculation and comparative experiments, is due to the six-fold imide-sealed pocket that could effectively distinguish propane from other light alkanes through both size effect and host–guest interactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Th-MOF showing six-fold imide-sealed pockets for middle-size-separation of propane from natural gas

Show Author's information Li Wang1Wenhui Zhang1Jie Ding1Lele Gong1Rajamani Krishna2Youyuan Ran1Lan Chen1Feng Luo1( )
Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, China
Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

Abstract

Separation of propane from natural gas is of great importance to industry. However, in light of size-based separation, there still lacks effective method to directly separate propane from natural gas, due to the comparable physical properties for these light alkanes (C1–C4) and the middle size of propane. In this work, we found that a new Th-metal-organic framework (MOF) could be an ideal solution for this issue. The Th-MOF takes UiO-66-type structure, but with the pocket sealed by six-fold imide groups; this not only precisely reduces the size of pocket to exactly match propane, but also enhances the host–guest interactions through multiple (C)H(δ+)∙∙∙(δ−)O(C) interactions. As a result, highly selective adsorption of propane over methane, ethane, and butane was observed, implying unique middle-size separation. The actual separation was confirmed by breakthrough experiments of simulated natural gas, confirming its superior application in direct separation of propane from natural gas. The separation mechanism, as unveiled by both theoretical calculation and comparative experiments, is due to the six-fold imide-sealed pocket that could effectively distinguish propane from other light alkanes through both size effect and host–guest interactions.

Keywords: selectivity, natural gas, Th-metal-organic framework (MOF), intermediate-size-separation

References(45)

[1]

Zhang, Y. B.; Yang, L. F.; Wang, L. Y.; Cui, X. L.; Xing, H. B. Pillar iodination in functional boron cage hybrid supramolecular frameworks for high performance separation of light hydrocarbons. J. Mater. Chem. A 2019, 7, 27560–27566.

[2]

Wu, Y. F.; Sun, Y. W.; Xiao, J.; Wang, X.; Li, Z. Glycine-modified HKUST-1 with simultaneously enhanced moisture stability and improved adsorption for light hydrocarbons separation. ACS Sustainable Chem. Eng. 2019, 7, 1557–1563.

[3]

Wang, J.; Krishna, R.; Yang, T.; Deng, S. G. Nitrogen-rich microporous carbons for highly selective separation of light hydrocarbons. J. Mater. Chem. A 2016, 4, 13957–13966.

[4]

He, Y. B.; Krishna, R.; Chen, B. L. Metal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ. Sci. 2012, 5, 9107–9120.

[5]

Peng, Y. L.; Wang, T.; Jin, C. N.; Li, P. F.; Suepaul, S.; Beemer, G.; Chen, Y.; Krishna, R.; Cheng, P.; Pham, T. et al. A robust heterometallic ultramicroporous MOF with ultrahigh selectivity for propyne/propylene separation. J. Mater. Chem. A 2021, 9, 2850–2856.

[6]

Borah, B.; Zhang, H. D.; Snurr, R. Q. Diffusion of methane and other alkanes in metal-organic frameworks for natural gas storage. Chem. Eng. Sci. 2015, 124, 135–143.

[7]

Wu, Y. Q.; Weckhuysen, B. M. Separation and purification of hydrocarbons with porous materials. Angew. Chem., Int. Ed. 2021, 60, 18930–18949.

[8]

Wang, Y. T.; Fan, W. D.; Wang, X.; Han, Y. F.; Zhang, L. L.; Liu, D.; Dai, F. N.; Sun, D. F. Solvent-induced framework-interpenetration isomers of Cu MOFs for efficient light hydrocarbon separation. Inorg. Chem. Front. 2018, 5, 2408–2412.

[9]

Li, L.; Yin, Q.; Li, H. F.; Liu, T. F.; Cao, R. Rational design of phosphonocarboxylate metal-organic frameworks for light hydrocarbon separations. Mater. Chem. Front. 2018, 2, 1436–1440.

[10]

Chen, Y. W.; Qiao, Z. W.; Lv, D. F.; Wu, H. X.; Shi, R. F.; Xia, Q. B.; Wang, H. H.; Zhou, J.; Li, Z. Selective adsorption of light alkanes on a highly robust indium based metal-organic framework. Ind. Eng. Chem. Res. 2017, 56, 4488–4495.

[11]
Chen, J. J. In-depth Report on Propylene Industry: Downstream Domestic Substitution Accelerates, Propylene Profits May Increase [Online]. Northeast Securities Co., Ltd., 2021; pp 31–32. https://www.vzkoo.com/read/92d998da7fa309e2d6020c667c9de79e.html.
[12]

Geng, D. T.; Zhang, M.; Hang, X. X.; Xie, W. J.; Qin, Y. C.; Li, Q.; Bi, Y. F.; Zheng, Z. P. A 2D metal-thiacalix[4]arene porous coordination polymer with 1D channels: Gas absorption/separation and frequency response. Dalton Trans. 2018, 47, 9008–9013.

[13]

Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.

[14]

Wu, T. Y.; Shu, C. J.; Liu, S.; Xu, B. S.; Zhong, S. L.; Zhou, R. F. Separation performance of Si-CHA zeolite membrane for a binary H2/CH4 mixture and ternary and quaternary mixtures containing impurities. Energy Fuels 2020, 34, 11650–11659.

[15]

Lin, J. Y. S. Molecular sieves for gas separation. Science 2016, 353, 121–122.

[16]

Shi, R. F.; Lv, D. F.; Chen, Y. W.; Wu, H. X.; Liu, B. Y.; Xia, Q. B.; Li, Z. Highly selective adsorption separation of light hydrocarbons with a porphyrinic zirconium metal-organic framework PCN-224. Sep. Purif. Technol. 2018, 207, 262–268.

[17]

Wang, Y.; Huang, N. Y.; Zhang, X. W.; He, H.; Huang, R. K.; Ye, Z. M.; Li, Y.; Zhou, D. D.; Liao, P. Q.; Chen, X. M. et al. Selective aerobic oxidation of a metal-organic framework boosts thermodynamic and kinetic propylene/propane selectivity. Angew. Chem., Int. Ed. 2019, 131, 7774–7778.

[18]

Cadiau, A.; Adil, K.; Bhatt, P. M.; Belmabkhout, Y.; Eddaoudi, M. A metal-organic framework-based splitter for separating propylene from propane. Science 2016, 353, 137–140.

[19]

Zeng, H.; Xie, M.; Wang, T.; Wei, R. J.; Xie, X. J.; Zhao, Y. F.; Lu, W. G.; Li, D. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. Nature 2021, 595, 542–548.

[20]

Zhou, D. D.; Chen, P.; Wang, C.; Wang, S. S.; Du, Y. F.; Yan, H.; Ye, Z. M.; He, C. T.; Huang, R. K.; Mo, Z. W. et al. Intermediate-sized molecular sieving of styrene from larger and smaller analogues. Nat. Mater. 2019, 18, 994–998.

[21]

Furukawa, S.; Reboul, J.; Diring, S.; Sumida, K.; Kitagawa, S. Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 2014, 43, 5700–5734.

[22]

Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M. Gas/vapour separation using ultra-microporous metal-organic frameworks: Insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402–3430.

[23]

Duan, J. G.; Pan, Y. C.; Liu, G. P.; Jin, W. Q. Metal-organic framework adsorbents and membranes for separation applications. Curr. Opin. Chem. Eng. 2018, 20, 122–131.

[24]

Ying, Y. P.; Zhang, Z. Q.; Peh, S. B.; Karmakar, A.; Cheng, Y. D.; Zhang, J.; Xi, L. F.; Boothroyd, C.; Lam, Y. M.; Zhong, C. L. et al. Pressure-responsive two-dimensional metal-organic framework composite membranes for CO2 separation. Angew. Chem., Int. Ed. 2021, 60, 11318–11325.

[25]

Wang, Y. T.; Hao, C. L.; Fan, W. D.; Fu, M. Y.; Wang, X. K.; Wang, Z. K.; Zhu, L.; Li, Y.; Lu, X. Q.; Dai, F. N. et al. One-step ethylene purification from an acetylene/ethylene/ethane ternary mixture by cyclopentadiene cobalt-functionalized metal-organic frameworks. Angew. Chem., Int. Ed. 2021, 60, 11350–11358.

[26]

Lin, R. B.; Zhang, Z. J.; Chen, B. L. Achieving high performance metal-organic framework materials through pore engineering. Acc. Chem. Res. 2021, 54, 3362–3376.

[27]

Li, B.; Cui, X. L.; O’Nolan, D.; Wen, H. M.; Jiang, M. D.; Krishna, R.; Wu, H.; Lin, R. B.; Chen, Y. S.; Yuan, D. Q. et al. An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity. Adv. Mater. 2017, 29, 1704210.

[28]

Assen, A. H.; Belmabkhout, Y.; Adil, K.; Bhatt, P. M.; Xue, D. X.; Jiang, H.; Eddaoudi, M. Ultra-tuning of the rare-earth fcu-MOF aperture size for selective molecular exclusion of branched paraffins. Angew. Chem., Int. Ed. 2015, 54, 14353–14358.

[29]

Hamon, L.; Llewellyn, P. L.; Devic, T.; Ghoufi, A.; Clet, G.; Guillerm, V.; Pirngruber, G. D.; Maurin, G.; Serre, C.; Driver, G. et al. Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF. J. Am. Chem. Soc. 2009, 131, 17490–17499.

[30]

Lin, R. B.; Li, L. B.; Zhou, H. L.; Wu, H.; He, C. H.; Li, S.; Krishna, R.; Li, J. P.; Zhou, W.; Chen, B. L. Molecular sieving of ethylene from ethane using a rigid metal-organic framework. Nat. Mater. 2018, 17, 1128–1133.

[31]

Liang, B.; Zhang, X.; Xie, Y.; Lin, R. B.; Krishna, R.; Cui, H.; Li, Z. Q.; Shi, Y. S.; Wu, H.; Zhou, W. et al. An ultramicroporous metal-organic framework for high sieving separation of propylene from propane. J. Am. Chem. Soc. 2020, 142, 17795–17801.

[32]

Zhang, Z. Q.; Yang, Q. W.; Cui, X. L.; Yang, L. F.; Bao, Z. B.; Ren, Q. L.; Xing, H. B. Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving. Angew. Chem., Int. Ed. 2017, 56, 16282–16287.

[33]

Ding, Q.; Zhang, Z. Q.; Yu, C.; Zhang, P. X.; Wang, J.; Cui, X. L.; He, C. H.; Deng, S. G.; Xing, H. B. Exploiting equilibrium-kinetic synergetic effect for separation of ethylene and ethane in a microporous metal-organic framework. Sci. Adv. 2020, 6, eaaz4322.

[34]

Chen, X. Y.; Plonka, A. M.; Banerjee, D.; Krishna, R.; Schaef, H. T.; Ghose, S.; Thallapally, P. K.; Parise, J. B. Direct observation of Xe and Kr adsorption in a Xe-selective microporous metal-organic framework. J. Am. Chem. Soc. 2015, 137, 7007–7010.

[35]

Gan, L.; Chidambaram, A.; Fonquernie, P. G.; Light, M. E.; Choquesillo-Lazarte, D.; Huang, H. L.; Solano, E.; Fraile, J.; Vinas, C.; Teixidor, F. et al. A Highly water-stable meta-carborane-based copper metal-organic framework for efficient high-temperature butanol separation. J. Am. Chem. Soc. 2020, 142, 8299–8311.

[36]

Li, L. Y.; Guo, L. D.; Zhang, Z. G.; Yang, Q. W.; Yang, Y. W.; Bao, Z. B.; Ren, Q. L.; Li, J. A robust squarate-based metal-organic framework demonstrates record-high affinity and selectivity for xenon over krypton. J. Am. Chem. Soc. 2019, 141, 9358–9364.

[37]

Andreo, J.; Priola, E.; Alberto, G.; Benzi, P.; Marabello, D.; Proserpio, D. M.; Lamberti, C.; Diana, E. Autoluminescent metal-organic frameworks (MOFs): Self-photoemission of a highly stable thorium MOF. J. Am. Chem. Soc. 2018, 140, 14144–14149.

[38]

Xu, H.; Cao, C. S.; Hu, H. S.; Wang, S. B.; Liu, J. C.; Cheng, P.; Kaltsoyannis, N.; Li, J.; Zhao, B. High uptake of ReO4 and CO2 conversion by a radiation-resistant thorium-nickle [Th48Ni6] nanocage-based metal-organic framework. Angew. Chem., Int. Ed. 2019, 58, 6022–6027.

[39]

Roztocki, K.; Formalik, F.; Krawczuk, A.; Senkovska, I.; Kuchta, B.; Kaskel, S.; Matoga, D. Collective breathing in an eightfold interpenetrated metal-organic framework: From mechanistic understanding towards threshold sensing architectures. Angew. Chem., Int. Ed. 2020, 59, 4491–4497.

[40]

Yang, H. J.; Trieu, T. X.; Zhao, X.; Wang, Y. X.; Wang, Y.; Feng, P. Y.; Bu, X. H. Lock-and-key and shape-memory effects in an unconventional synthetic path to magnesium metal-organic frameworks. Angew. Chem., Int. Ed. 2019, 58, 11757–11762.

[41]

Taylor, M. K.; Runčevski, T.; Oktawiec, J.; Gonzalez, M. I.; Siegelman, R. L.; Mason, J. A.; Ye, J. X.; Brown, C. M.; Long, J. R. Tuning the adsorption-induced phase change in the flexible metal-organic framework Co(bdp). J. Am. Chem. Soc. 2016, 138, 15019–15026.

[42]

Luo, F.; Yan, C. S.; Dang, L. L.; Krishna, R.; Zhou, W.; Wu, H.; Dong, X. L.; Han, Y.; Hu, T. L.; O’Keeffe, M. et al. UTSA-74: A MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation. J. Am. Chem. Soc. 2016, 138, 5678–5684.

[43]

Zhang, H. P.; Fan, Y. L.; Krishna, R.; Feng, X. F.; Wang, L.; Luo, F. Robust metal-organic framework with multiple traps for trace Xe/Kr separation. Sci. Bull. 2021, 66, 1073–1079.

[44]

Wang, L.; Yang, L. X.; Gong, L. L.; Krishna, R.; Gao, Z.; Tao, Y.; Yin, W. H.; Xu, Z. Z.; Luo, F. Constructing redox-active microporous hydrogen-bonded organic framework by imide-functionalization: Photochromism, electrochromism, and selective adsorption of C2H2 over CO2. Chem. Eng. J. 2020, 383, 123117.

[45]

Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.

File
12274_2022_4915_MOESM1_ESM.pdf (2.9 MB)
12274_2022_4915_MOESM2_ESM.cif (20.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 June 2022
Revised: 30 July 2022
Accepted: 16 August 2022
Published: 02 September 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We thank the Open Fund of Jiangxi Province Key Laboratory of Synthetic Chemistry (No. JXSC202007), the Foundation of Jiangxi Educational Committee (No. GJJ200734), the Doctoral Scientific Research Start-up Foundation of East China University of Technology (No. DHBK2018044), the National Natural Science Foundation of China (Nos. 21966002 and 21871047), the Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province (No. 20194BCJ22010), the Fuzhou Youth Leading Talent Project (No. 2020ED64), and the Provincial College Students Innovation and Entrepreneurship Training Program (No. S202110405026).

Return