Journal Home > Volume 16 , Issue 2

Organic-inorganic layered perovskites are two-dimensional quantum well layers in which the layers of lead halide octahedra are stacked between the organic cation layers. The packing geometry of the soft organic molecules and the stiff ionic crystals induce structural deformation of the inorganic octahedra, generating complex lattice dynamics. Especially, the dielectric confinement and ionic sublattice lead to strong coupling between the photogenerated excitons and the phonons from the polar lattice which intensively affects the properties for device applications. The anharmonicity and dynamic disorder from the organic cations participate in the relaxation dynamics coupled with excitations. However, a detailed understanding of this underlying mechanism remains obscure. This work investigates the electron–optical phonon coupling dynamics by employing ultrafast pump-probe transient absorption spectroscopy. The activated different optical phonon modes are observed via systematic studies of (PEA)2PbBr4 perovskite films on the ultrafast lattice vibrational dynamics. The experimental results indicate that solvent engineering has a significant influence on lattice vibrational modes and coherent phonon dynamics. This work provides fresh insights into electron-optical phonon coupling for emergent optoelectronics development based on layered perovskites.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tuning coherent phonon dynamics in two-dimensional phenylethylammonium lead bromide perovskites

Show Author's information Minghuan Cui1,§Chaochao Qin1,§( )Zhongpo Zhou1Yuanzhi Jiang2Shichen Zhang1Zeye Yuan1Mingjian Yuan2Kun Yu1Yuhai Jiang3( )Yufang Liu1( )
Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
Center for Transformative Science and School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

§ Minghuan Cui and Chaochao Qin contributed equally to this work.

Abstract

Organic-inorganic layered perovskites are two-dimensional quantum well layers in which the layers of lead halide octahedra are stacked between the organic cation layers. The packing geometry of the soft organic molecules and the stiff ionic crystals induce structural deformation of the inorganic octahedra, generating complex lattice dynamics. Especially, the dielectric confinement and ionic sublattice lead to strong coupling between the photogenerated excitons and the phonons from the polar lattice which intensively affects the properties for device applications. The anharmonicity and dynamic disorder from the organic cations participate in the relaxation dynamics coupled with excitations. However, a detailed understanding of this underlying mechanism remains obscure. This work investigates the electron–optical phonon coupling dynamics by employing ultrafast pump-probe transient absorption spectroscopy. The activated different optical phonon modes are observed via systematic studies of (PEA)2PbBr4 perovskite films on the ultrafast lattice vibrational dynamics. The experimental results indicate that solvent engineering has a significant influence on lattice vibrational modes and coherent phonon dynamics. This work provides fresh insights into electron-optical phonon coupling for emergent optoelectronics development based on layered perovskites.

Keywords: transient absorption, two-dimensional perovskites, electron–optical phonon coupling, ultrafast dynamics

References(60)

[1]

Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M. Conducting tin halides with a layered organic-based perovskite structure. Nature 1994, 369, 467–469.

[2]

Fu, Y. P.; Zhu, H. M.; Chen, J.; Hautzinger, M. P.; Zhu, X. Y.; Jin, S. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 2019, 4, 169–188.

[3]

Cui, M. H.; Qin, C. C.; Jiang, Y. Z.; Yuan, M. J.; Xu, L. H.; Song, D. D.; Jiang, Y. H.; Liu, Y. F. Direct observation of competition between amplified spontaneous emission and auger recombination in quasi-two-dimensional perovskites. J. Phys. Chem. Lett. 2020, 11, 5734–5740.

[4]

Jiang, Y. Z.; Cui, M. H.; Li, S. S.; Sun, C. J.; Huang, Y. M.; Wei, J. L.; Zhang, L.; Lv, M.; Qin, C. C.; Liu, Y. F. et al. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun. 2021, 12, 336.

[5]

Jiang, Y. Z.; Qin, C. C.; Cui, M. H.; He, T. W.; Liu, K. K.; Huang, Y. M.; Luo, M. H.; Zhang, L.; Xu, H. Y.; Li, S. S. et al. Spectra stable blue perovskite light-emitting diodes. Nat. Commun. 2019, 10, 1868.

[6]
QinY.ZhongH. J.IntemannJ. J.LengS. F.CuiM. H.QinC. C.XiongM.LiuF.JenA. K. Y.YaoK. 2D perovskites: Coordination engineering of single-crystal precursor for phase control in ruddlesden-popper perovskite solar cells (Adv. Energy Mater. 16/2020)Adv. Energy Mater.2020102070072

Qin, Y.; Zhong, H. J.; Intemann, J. J.; Leng, S. F.; Cui, M. H.; Qin, C. C.; Xiong, M.; Liu, F.; Jen, A. K. Y.; Yao, K. 2D perovskites: Coordination engineering of single-crystal precursor for phase control in ruddlesden-popper perovskite solar cells (Adv. Energy Mater. 16/2020). Adv. Energy Mater. 2020, 10, 2070072.

[7]

Jin, Y.; Wang, Z. K.; Yuan, S.; Wang, Q.; Qin, C. C.; Wang, K. L.; Dong, C.; Li, M.; Liu, Y. F.; Liao, L. S. Synergistic effect of dual ligands on stable blue quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 2020, 30, 1908339.

[8]

Sun, C. J.; Jiang, Y. Z.; Cui, M. H.; Qiao, L.; Wei, J. L.; Huang, Y. M.; Zhang, L.; He, T. W.; Li, S. S.; Hsu, H. Y. et al. High-performance large-area quasi-2D perovskite light-emitting diodes. Nat. Commun. 2021, 12, 2207.

[9]

He, T. W.; Li, S. S.; Jiang, Y. Z.; Qin, C. C.; Cu, M. H.; Qiao, L.; Xu, H. Y.; Yang, J.; Long, R.; Wang, H. H. et al. Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape. Nat. Commun. 2020, 11, 1672.

[10]

Zhang, Y. L.; Wen, J. L.; Xu, Z.; Liu, D. L.; Yang, T. H.; Niu, T. Q.; Luo, T.; Lu, J.; Fang, J. J.; Chang, X. M. et al. Effective phase-alignment for 2D halide perovskites incorporating symmetric diammonium ion for photovoltaics. Adv. Sci. 2021, 8, 2001433.

[11]

Quan, L. N.; Park, Y.; Guo, P. J.; Gao, M. Y.; Jin, J. B.; Huang, J. M.; Copper, J. K.; Schwartzberg, A.; Schaller, R.; Limmer, D. T. et al. Vibrational relaxation dynamics in layered perovskite quantum wells. Proc. Natl. Acad. Sci. USA 2021, 118, e2104425118.

[12]

Lanzillotti-Kimura, N. D.; O'Brien, K. P.; Rho, J.; Suchowski, H.; Yin, X. B.; Zhang, X. Polarization-controlled coherent phonon generation in acoustoplasmonic metasurfaces. Phys. Rev. B 2018, 97, 235403.

[13]

Baldini, E.; Dominguez, A.; Palmieri, T.; Cannelli, O.; Rubio, A.; Ruello, P.; Chergui, M. Exciton control in a room temperature bulk semiconductor with coherent strain pulses. Sci. Adv. 2019, 5, eaax2937.

[14]

Baldini, E.; Palmieri, T.; Dominguez, A.; Ruello, P.; Rubio, A.; Chergui, M. Phonon-driven selective modulation of exciton oscillator strengths in anatase TiO2 nanoparticles. Nano Lett. 2018, 18, 5007–5014.

[15]

Fu, J. H.; Li, M. J.; Solanki, A.; Xu, Q.; Lekina, Y.; Ramesh, S.; Shen, Z. X.; Sum, T. C. Electronic states modulation by coherent optical phonons in 2D halide perovskites. Adv. Mater. 2021, 33, 2006233.

[16]

Zhang, K. N.; Niu, M. S.; Jiang, Z. N.; Chen, Z. H.; Wang, T.; Wei, M. M.; Qin, C. C.; Feng, L.; Qin, W.; So, S. K. et al. Multiple temporal-scale photocarrier dynamics induced by synergistic effects of fluorination and chlorination in highly efficient nonfullerene organic solar cells. Solar RRL 2020, 4, 1900552.

[17]

Wang, T.; Niu, M. S.; Guo, J. J.; Zhang, K. N.; Wen, Z. C.; Liu, J. Q.; Qin, C. C.; Hao, X. T. 3D charge transport pathway in organic solar cells via incorporation of discotic liquid crystal columns. Solar RRL 2020, 4, 2070056.

[18]

Tian, Y.; Qian, X. Y.; Qin, C. C.; Cui, M. H.; Li, Y. Q.; Ye, Y. C.; Wang, J. K.; Wang, W. J.; Tang, J. X. Modulating low-dimensional domains of self-assembling quasi-2D perovskites for efficient and spectra-stable blue light-emitting diodes. Chem. Eng. J. 2021, 415, 129088.

[19]

Du, Q.; Zhu, C.; Yin, Z. X.; Na, G. R.; Cheng, C. T.; Han, Y.; Liu, N.; Niu, X. X.; Zhou, H. P.; Chen, H. D. et al. Stacking effects on electron–phonon coupling in layered hybrid perovskites via microstrain manipulation. ACS Nano 2020, 14, 5806–5817.

[20]

Tao, W. J.; Zhang, C.; Zhou, Q. H.; Zhao, Y. D.; Zhu, H. M. Momentarily trapped exciton polaron in two-dimensional lead halide perovskites. Nat. Commun. 2021, 12, 1400.

[21]

Li, F. C.; Zhou, S. J.; Yuan, J. Y.; Qin, C. C.; Yang, Y. G.; Shi, J. W.; Ling, X. F.; Li, Y. Y.; Ma, W. L. Perovskite quantum dot solar cells with 15.6% efficiency and improved stability enabled by an α-CsPbI3/FAPbI3 bilayer structure. ACS Energy Lett. 2019, 4, 2571–2578.

[22]

Ren, Z. Q.; Wang, N.; Wei, P. C.; Cui, M. H.; Li, X.; Qin, C. C. Ultraviolet-ozone modification on TiO2 surface to promote both efficiency and stability of low-temperature planar perovskite solar cells. Chem. Eng. J. 2020, 393, 124731.

[23]

Thouin, F.; Valverde-Chávez, D. A.; Quarti, C.; Cortecchia, D.; Bargigia, I.; Beljonne, D.; Petrozza, A.; Silva, C.; Kandada, A. R. S. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 2019, 18, 349–356.

[24]

Giovanni, D.; Chong, W. K.; Dewi, H. A.; Thirumal, K.; Neogi, I.; Ramesh, R.; Mhaisalkar, S.; Mathews, N.; Sum, T. C. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites. Sci. Adv. 2016, 2, e1600477.

[25]

Giovanni, D.; Chong, W. K.; Liu, Y. Y. F.; Dewi. H. A.; Yin, T. T.; Lekina, Y.; Shen, Z. X.; Mathews, N.; Gan, C. K.; Sum, T. C. Coherent spin and quasiparticle dynamics in solution-processed layered 2D lead halide perovskites. Adv. Sci. 2018, 5, 1800664.

[26]

Ni, L. M.; Huynh, U.; Cheminal, A.; Thomas, T. H.; Shivanna, R.; Hinrichsen, T. F.; Ahmad, S.; Sadhanala, A.; Rao, A. Real-time observation of exciton–phonon coupling dynamics in self-assembled hybrid perovskite quantum wells. ACS Nano 2017, 11, 10834–10843.

[27]

Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

[28]

Moot, T.; Marshall, A. R.; Wheeler, L. M.; Habisreutinger, S. N.; Schloemer, T. H.; Boyd, C. C.; Dikova, D. R.; Pach, G. F.; Hazarika, A.; McGehee, M. D. et al. CsI-antisolvent adduct formation in all-inorganic metal halide perovskites. Adv. Energy Mater. 2020, 10, 1903365.

[29]

Caiazzo, A.; Datta, K.; Jiang, J. K.; Gélvez-Rueda, M. C.; Li, J. Y.; Ollearo, R.; Vicent-Luna, J. M.; Tao, S. X.; Grozema, F. C.; Wienk, M. M. et al. Effect of Co-solvents on the crystallization and phase distribution of mixed-dimensional perovskites. Adv. Energy Mater. 2021, 11, 2102144.

[30]

Deng, W.; Jin, X. C.; Lv, Y.; Zhang, X. J.; Zhang, X H.; Jie, J. S. 2D ruddlesden-popper perovskite nanoplate based deep-blue light-emitting diodes for light communication. Adv. Funct. Mater. 2019, 29, 1903861.

[31]

Zhang, Y. H.; Yin, J.; Parida, M. R.; Ahmed, G. H.; Pan, J.; Bakr, O. M.; Brédas, J. L.; Mohammed, O. F. Direct-indirect nature of the bandgap in lead-free perovskite nanocrystals. J. Phys. Chem. Lett. 2017, 8, 3173–3177.

[32]

Gauthron, K.; Lauret, J. S.; Doyennette, L.; Lanty, G.; Al Choueiry, A.; Zhang, S. J.; Brehier, A.; Largeau, L.; Mauguin, O.; Bloch, J. et al. Optical spectroscopy of two-dimensional layered (C6H5C2H4-NH3)2-PbI4 perovskite. Opt. Express 2010, 18, 5912–5919.

[33]

Ema, K.; Umeda, K.; Toda, M.; Yajima, C.; Arai, Y.; Kunugita, H.; Wolverson, D.; Davies, J. J. Huge exchange energy and fine structure of excitons in an organic-inorganic quantum well material. Phys. Rev. B 2006, 73, 241310.

[34]

Straus, D. B.; Parra, S. H.; Iotov, N.; Gebhardt, J.; Rappe, A. M.; Subotnik, J. E.; Kikkawa, J. M.; Kagan, C. R. Direct observation of electron–phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites. J. Am. Chem. Soc. 2016, 138, 13798–13801.

[35]

Fujisawa, J. I.; Ishihara, T. Excitons and biexcitons bound to a positive ion in a bismuth-doped inorganic-organic layered lead iodide semiconductor. Phys. Rev. B 2004, 70, 205330.

[36]

Neutzner, S.; Thouin, F.; Cortecchia, D.; Petrozza, A.; Silva, C.; Kandada, A. R. S. Exciton-polaron spectral structures in two dimensional hybrid lead-halide perovskites. Phys. Rev. Mater. 2018, 2, 064605.

[37]

Kataoka, T.; Kondo, T.; Ito, R.; Sasaki, S.; Uchida, K.; Miura, N. Magneto-optical study on excitonic spectra in (C6H13NH3)2PbI4. Phys. Rev. B 1993, 47, 2010–2018.

[38]

Thouin, F.; Neutzner, S.; Cortecchia, D.; Dragomir, V. A.; Soci, C.; Salim, T.; Lam, Y. M.; Leonelli, R.; Petrozza, A.; Kandada, A. R. S. et al. Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder. Phys. Rev. Mater. 2018, 2, 034001.

[39]

Fischer, A. J.; Shan, W.; Song, J. J.; Chang, Y. C.; Horning, R.; Goldenberg, B. Temperature-dependent absorption measurements of excitons in GaN epilayers. Appl. Phys. Lett. 1997, 71, 1981–1983.

[40]

Huang, L. Y.; Lambrecht, W. R. L. Lattice dynamics in perovskite halides CsSn X3 with X = I, Br, Cl. Phys. Rev. B 2014, 90, 195201.

[41]

Debnath, T.; Sarker, D.; Huang, H.; Han, Z. K.; Dey, A.; Polavarapu, L.; Levchenko, S. V.; Feldmann, J. Coherent vibrational dynamics reveals lattice anharmonicity in organic-inorganic halide perovskite nanocrystals. Nat. Commun. 2021, 12, 2629.

[42]

Dhanabalan, B.; Leng, Y. C.; Biffi, G.; Lin, M. L.; Tan, P. H.; Infante, I.; Manna, L.; Arciniegas, M. P.; Krahne, R. Directional anisotropy of the vibrational modes in 2D-layered perovskites. ACS Nano 2020, 14, 4689–4697.

[43]

Ivanovska, T.; Quarti, C.; Grancini, G.; Petrozza, A.; De Angelis, F.; Milani, A.; Ruani, G. Vibrational response of methylammonium lead iodide: From cation dynamics to phonon–phonon interactions. ChemSusChem 2016, 9, 2994–3004.

[44]

Debernardi, A. Anharmonic effects in the phonons of III–V semiconductors: First principles calculations. Soild State Commun. 1999, 113, 1–10.

[45]

Jiang, X. T.; Liu, S. X.; Liang, W. Y.; Luo, S. J.; He, Z. L.; Ge, Y. Q.; Wang, H. D.; Cao, R.; Zhang, F.; Wen, Q. et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev. 2018, 12, 1700229.

[46]

Lim, G. K.; Chen, Z. L.; Clark, J.; Goh, R. G. S.; Ng, W. H.; Tan, H. W.; Friend, R. H.; Ho, P. K. H.; Chua, L. L. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nat. Photonics 2011, 5, 554–560.

[47]

Liu, X. F.; Guo, Q. B.; Qiu, J. R. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater. 2017, 29, 1605886.

[48]
Zhang, H.; Virally, S.; Bao, Q. L.; Ping, L. K.; Massar, S.; Godbout, N.; Kockaert, P. Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 2012, 37, 1856–1858.
[49]

Lu, L.; Liang, Z. M.; Wu, L. M.; Chen, Y. X.; Song, Y. F.; Dhanabalan, S. C.; Ponraj, J. S.; Dong, B. Q.; Xiang, Y. J.; Xing, F. et al. Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability. Laser Photonics Rev. 2018, 12, 1700221.

[50]

Gramlich, M.; Bohn, B. J.; Tong, Y.; Polavarapu, L.; Feldmann, J.; Urban, A. S. Thickness-dependence of exciton–exciton annihilation in halide perovskite nanoplatelets. J. Phys. Chem. Lett. 2020, 11, 5361–5366.

[51]

Qin, C. C.; Cui, M. H.; Song, D. D.; He, W. Ultrafast multiexciton Auger recombination of CdSeS. Acta Phys. Sin. 2019, 68, 107801.

[52]

Fu, J. H.; Qiang, X.; Han, G. F.; Wu, B.; Huan, C. H. A.; Leek, M. L.; Sum, T. C. Hot carrier cooling mechanisms in halide perovskites. Nat. Commun. 2017, 8, 1300.

[53]

Yin, J.; Maity, P.; Naphade, R.; Cheng, B.; He, J. H.; Bakr, O. M.; Brédas, J. L.; Mohammed, O. F. Tuning hot carrier cooling dynamics by dielectric confinement in two-dimensional hybrid perovskite crystals. ACS Nano 2019, 13, 12621–12629.

[54]

Begum, R.; Parida, M. R.; Abdelhady, A. L.; Murali, B.; Alyami, N. M.; Ahmed, G. H.; Hedhili, M. N.; Bakr, O. M.; Mohammed, O. F. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. J. Am. Chem. Soc. 2017, 139, 731–737.

[55]

Hao, F.; Stoumpos, C. C.; Guo, P. J.; Zhou, N. J.; Marks, T. J.; Chang, R. P. H.; Kanatzidis, M. G. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 11445–11452.

[56]

Yang, M. J.; Li, Z.; Reese, M. O.; Reid, O. G.; Kim, D. H.; Siol, S.; Klein, T. R.; Yan, Y. F.; Berry, J. J.; van Hest, M. F. A. M. et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat. Energy 2017, 2, 17038.

[57]

Cheng, P. R.; Xu, Z.; Li, J. B.; Liu, Y. C.; Fan, Y. Y.; Yu, L. Y.; Smilgies, D. M.; Müller, C.; Zhao, K.; Liu, S. F. Highly efficient ruddlesden-popper halide perovskite PA2MA4Pb5I16 solar cells. ACS Energy Lett. 2018, 3, 1975–1985.

[58]

Seo, Y. H.; Kim, E. C.; Cho, S. P.; Kim, S. S.; Na, S. I. High-performance planar perovskite solar cells: Influence of solvent upon performance. Appl. Mater. Today 2017, 9, 598–604.

[59]

Hwang, B.; Park, Y.; Lee, J. S. Impact of grain size on the optoelectronic performance of 2D Ruddlesden–Popper perovskite-based photodetectors. J. Mater. Chem. C 2021, 9, 110–116.

[60]

Torchyniuk, P. V.; V'yunov, O. I.; Kovalenko, L. L.; Ishchenko, A. A.; Kurdyukova, I. V.; Belous, A. G. Influence of solvent on stability and electrophysical properties of organic-inorganic perovskites films CH3NH3PbI3. Theor. Exp. Chem. 2021, 57, 113–120.

File
12274_2022_4911_MOESM1_ESM.pdf (5.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 June 2022
Revised: 28 July 2022
Accepted: 16 August 2022
Published: 14 September 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. U1804261, 61627818, 12074104, 11804084, 62075058, and 11827806), Natural Science Foundation of Henan Province (No. 222300420057), the Outstanding Youth Foundation of Henan Normal University (No. 20200171), and the Young Backbone Teacher Training Program in Higher Education of Henan Province (No. 2019GGJS065).

Return