Journal Home > Volume 16 , Issue 2

Piezoresponse force microscopy (PFM) is an indispensable tool in the investigation of local electromechanical responses and polarization switching. The acquired data provide spatial information on the local disparity of polarization switching and electromechanical responses, making this technique advantageous over macroscopic approaches. Despite its widespread application in ferroelectrics, it has rarely been used to investigate the ferrielectric (FiE) behaviors in antiferroelectric (AFE) materials. Herein, the PFM was utilized to study the local electromechanical behavior and distribution of FiE, and the AFE phases of PbZrO3 thin-film were studied, where only the FiE behavior is observable using a macroscopic approach. The FiE region resembles a ferroelectric material at low voltages but exhibits a unique on-field amplitude response at high voltages. In contrast, the AFE region only yields an observable response at high voltages. Phase-field simulations reveal the coexistence of AFE and FiE states as well as the phase-transition processes that underpin our experimental observations. Our work illustrates the usefulness of PFM as an analytical tool to characterize AFE/FiE materials and their phase-coexistence behavior, thereby providing insights to guide property modification and potential applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Local probing of the non-uniform distribution of ferrielectric and antiferroelectric phases

Show Author's information Huimin Qiao1,2Fangping Zhuo3( )Zhen Liu3Jinxing Wang4Jeongdae Seo5Chenxi Wang1Jinho Kang1Bin Yang6Yunseok Kim1,2( )
School of Advanced Materials and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt 64287, Germany
Department of Physics, College of Science, Northeast Forestry University, Harbin 150040, China
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China

Abstract

Piezoresponse force microscopy (PFM) is an indispensable tool in the investigation of local electromechanical responses and polarization switching. The acquired data provide spatial information on the local disparity of polarization switching and electromechanical responses, making this technique advantageous over macroscopic approaches. Despite its widespread application in ferroelectrics, it has rarely been used to investigate the ferrielectric (FiE) behaviors in antiferroelectric (AFE) materials. Herein, the PFM was utilized to study the local electromechanical behavior and distribution of FiE, and the AFE phases of PbZrO3 thin-film were studied, where only the FiE behavior is observable using a macroscopic approach. The FiE region resembles a ferroelectric material at low voltages but exhibits a unique on-field amplitude response at high voltages. In contrast, the AFE region only yields an observable response at high voltages. Phase-field simulations reveal the coexistence of AFE and FiE states as well as the phase-transition processes that underpin our experimental observations. Our work illustrates the usefulness of PFM as an analytical tool to characterize AFE/FiE materials and their phase-coexistence behavior, thereby providing insights to guide property modification and potential applications.

Keywords: scanning probe microscopy, ferrielectrics, antiferroelectrics, local electromechanical response

References(38)

[1]

Luo, N. N.; Han, K.; Cabral, M. J.; Liao, X. Z.; Zhang, S. J.; Liao, C. Z.; Zhang, G. Z.; Chen, X. Y.; Feng, Q.; Li, J. F. et al. Constructing phase boundary in AgNbO3 antiferroelectrics: Pathway simultaneously achieving high energy density and efficiency. Nat. Commun. 2020, 11, 4824.

[2]

Hoffmann, M.; Wang, Z.; Tasneem, N.; Zubair, A.; Ravindran, P. V.; Tian, M. K.; Gaskell, A. A.; Triyoso, D.; Consiglio, S.; Tapily, K. et al. Antiferroelectric negative capacitance from a structural phase transition in zirconia. Nat. Commun. 2022, 13, 1228.

[3]

Pérez-Tomás, A.; Lira-Cantú, M.; Catalan, G. Above-bandgap photovoltages in antiferroelectrics. Adv. Mater. 2016, 28, 9644–9647.

[4]

Zhuo, F. P.; Li, Q.; Qiao, H. M.; Yan, Q. F.; Zhang, Y. L.; Xi, X. Q.; Chu, X. C.; Long, X. F.; Cao, W. W. Field-induced phase transitions and enhanced double negative electrocaloric effects in (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric single crystal. Appl. Phys. Lett. 2018, 112, 133901.

[5]

Park, M. H.; Hwang, C. S. Fluorite-structure antiferroelectrics. Rep. Prog. Phys. 2019, 82, 124502.

[6]

Zhuo, F. P.; Li, Q.; Gao, J. H.; Ji, Y. J.; Yan, Q. F.; Zhang, Y. L.; Wu, H. H.; Xi, X. Q.; Chu, X. C.; Cao, W. W. Giant negative electrocaloric effect in (Pb, La)(Zr, Sn, Ti)O3 antiferroelectrics near room temperature. ACS Appl. Mater. Interfaces 2018, 10, 11747–11755.

[7]

Zhuo, F. P.; Qiao, H. M.; Zhu, J. M.; Wang, S. Z.; Bai, Y.; Mao, X. P.; Wu, H. H. Perspective on antiferroelectrics for energy storage and conversion applications. Chin. Chem. Lett. 2021, 32, 2097–2107.

[8]

Wang, C.; Wang, T. Y.; Zhang, W. D.; Jiang, J.; Chen, L.; Jiang, A. Q. Analog ferroelectric domain-wall memories and synaptic devices integrated with Si substrates. Nano Res. 2022, 15, 3606–3613.

[9]

Kittel, C. Theory of antiferroelectric crystals. Phys. Rev. 1951, 82, 729–732.

[10]

Xu, C.; Chen, Y. C.; Cai, X. B.; Meingast, A.; Guo, X. Y.; Wang, F. K.; Lin, Z. Y.; Lo, T. W.; Maunders, C.; Lazar, S. et al. Two-dimensional antiferroelectricity in nanostripe-ordered In2Se3. Phys. Rev. Lett. 2020, 125, 047601.

[11]

Dziaugys, A.; Kelley, K.; Brehm, J. A.; Tao, L.; Puretzky, A.; Feng, T. L.; O’Hara, A.; Neumayer, S.; Chyasnavichyus, M.; Eliseev, E. A. et al. Piezoelectric domain walls in van der Waals antiferroelectric CuInP2Se6. Nat. Commun. 2020, 11, 3623.

[12]

Wu, Z. Y.; Liu, X. T.; Ji, C. M.; Li, L. N.; Wang, S. S.; Peng, Y.; Tao, K. W.; Sun, Z. H.; Hong, M. C.; Luo, J. H. Discovery of an above-room-temperature antiferroelectric in two-dimensional hybrid perovskite. J. Am. Chem. Soc. 2019, 141, 3812–3816.

[13]

Mundy, J. A.; Grosso, B. F.; Heikes, C. A.; Segedin, D. F.; Wang, Z.; Shao, Y. T.; Dai, C.; Goodge, B. H.; Meier, Q. N.; Nelson, C. T. et al. Liberating a hidden antiferroelectric phase with interfacial electrostatic engineering. Sci. Adv. 2022, 8, eabg5860.

[14]

Park, M. H.; Lee, Y. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Kim, K. D.; Müller, J.; Kersch, A.; Schroeder, U.; Mikolajick, T. et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 2015, 27, 1811–1831.

[15]

Monserrat, B.; Bennett, J. W.; Rabe, K. M.; Vanderbilt, D. Antiferroelectric topological insulators in orthorhombic A MgBi compounds (A = Li, Na, K). Phys. Rev. Lett. 2017, 119, 036802.

[16]

Fu, Z. Q.; Chen, X. F.; Li, Z. Q.; Hu, T. F.; Zhang, L. L.; Lu, P.; Zhang, S. J.; Wang, G. S.; Dong, X. L.; Xu, F. F. Unveiling the ferrielectric nature of PbZrO3-based antiferroelectric materials. Nat. Commun. 2020, 11, 3809.

[17]

Pulvari, C. F. Ferrielectricity. Phys. Rev. 1960, 120, 1670–1673.

[18]

Cross, L. E. VII. A thermodynamic treatment of ferroelectricity and antiferroelectricity in pseudo-cubic dielectrics. Philos. Mag.:J. Theor. Exp. Appl. Phys. 1956, 1, 76–92.

[19]

Gao, M.; Tang, X.; Dai, S.; Li, J. F.; Viehland, D. Depth dependent ferroelectric to incommensurate/commensurate antiferroelectric phase transition in epitaxial lanthanum modified lead zirconate titanate thin films. Appl. Phys. Lett. 2019, 115, 072901.

[20]

Ji, Y. J.; Li, Q.; Zhuo, F. P.; Yan, Q. F.; Zhang, Y. L.; Chu, X. C. Phase coexistence and broad depolarization response in (Pb, La)(Zr, Sn, Ti)O3 single crystals. Ceram. Int. 2019, 45, 10394–10399.

[21]

Zhuo, F. P.; Damjanovic, D.; Li, Q.; Zhou, Y. M.; Ji, Y. J.; Yan, Q. F.; Zhang, Y. L.; Zhou, Y.; Chu, X. C. Giant shape memory and domain memory effects in antiferroelectric single crystals. Mater. Horiz. 2019, 6, 1699–1706.

[22]

Gao, R.; Reyes-Lillo, S. E.; Xu, R. J.; Dasgupta, A.; Dong, Y. Q.; Dedon, L. R.; Kim, J.; Saremi, S.; Chen, Z. H.; Serrao, C. R. et al. Ferroelectricity in Pb1+δZrO3 Thin Films. Chem. Mater. 2017, 29, 6544–6551.

[23]

Pintilie, L.; Boldyreva, K.; Alexe, M.; Hesse, D. Coexistence of ferroelectricity and antiferroelectricity in epitaxial PbZrO3 films with different orientations. J. Appl. Phys. 2008, 103, 024101.

[24]

Kwon, O.; Seol, D.; Qiao, H. M.; Kim, Y. Recent progress in the nanoscale evaluation of piezoelectric and ferroelectric properties via scanning probe microscopy. Adv. Sci. 2020, 7, 1901391.

[25]

Brehm, J. A.; Neumayer, S. M.; Tao, L.; O’Hara, A.; Chyasnavichus, M.; Susner, M. A.; McGuire, M. A.; Kalinin, S. V.; Jesse, S.; Ganesh, P. et al. Tunable quadruple-well ferroelectric van der Waals crystals. Nat. Mater. 2020, 19, 43–48.

[26]

Qiao, H. M.; Wang, C. X.; Choi, W. S.; Park, M. H.; Kim, Y. Ultra-thin ferroelectrics. Mater. Sci. Eng. R:Rep. 2021, 145, 100622.

[27]

Liu, Z.; Deng, L. J.; Peng, B. Ferromagnetic and ferroelectric two-dimensional materials for memory application. Nano Res. 2021, 14, 1802–1813.

[28]

Qiao, H. M.; He, C.; Yuan, F. F.; Wang, Z. J.; Li, X. Z.; Liu, Y.; Guo, H. Y.; Long, X. F. Evolution of electrical properties and domain configuration of Mn modified Pb(In1/2Nb1/2)O3-PbTiO3 single crystals. J. Appl. Phys. 2018, 123, 134101.

[29]

Collins, L.; Celano, U. Revealing antiferroelectric switching and ferroelectric wakeup in Hafnia by advanced piezoresponse force microscopy. ACS Appl. Mater. Interfaces 2020, 12, 41659–41665.

[30]

Neumayer, S. M.; Brehm, J. A.; Tao, L.; O’Hara, A.; Ganesh, P.; Jesse, S.; Susner, M. A.; McGuire, M. A.; Pantelides, S. T.; Maksymovych, P. et al. Local strain and polarization mapping in ferrielectric materials. ACS Appl. Mater. Interfaces 2020, 12, 38546–38553.

[31]

Lu, H. D.; Glinsek, S.; Buragohain, P.; Defay, E.; Iñiguez, J.; Gruverman, A. Probing antiferroelectric–ferroelectric phase transitions in PbZrO3 capacitors by piezoresponse force microscopy. Adv. Funct. Mater. 2020, 30, 2003622.

[32]

Kalinin, S. V.; Kim, Y.; Fong, D. D.; Morozovska, A. N. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures. Rep. Prog. Phys. 2018, 81, 036502.

[33]

Kim, Y.; Bae, C.; Ryu, K.; Ko, H.; Kim, Y. K.; Hong, S.; Shin, H. Origin of surface potential change during ferroelectric switching in epitaxial PbTiO3 thin films studied by scanning force microscopy. Appl. Phys. Lett. 2009, 94, 032907.

[34]

Guan, Z.; Jiang, Z. Z.; Tian, B. B.; Zhu, Y. P.; Xiang, P. H.; Zhong, N.; Duan, C. G.; Chu, J. H. Identifying intrinsic ferroelectricity of thin film with piezoresponse force microscopy. AIP Adv. 2017, 7, 095116.

[35]

Wei, X. K.; Tagantsev, A. K.; Kvasov, A.; Roleder, K.; Jia, C. L.; Setter, N. Ferroelectric translational antiphase boundaries in nonpolar materials. Nat. Commun. 2014, 5, 3031.

[36]

Ghosh, A.; Damjanovic, D. Antiferroelectric–ferroelectric phase boundary enhances polarization extension in rhombohedral Pb(Zr, Ti)O3. Appl. Phys. Lett. 2011, 99, 232906.

[37]

Kim, S.; Seol, D.; Lu, X. L.; Alexe, M.; Kim, Y. Electrostatic-free piezoresponse force microscopy. Sci. Rep. 2017, 7, 41657.

[38]

Liu, Z.; Xu, B. X. Insight into perovskite antiferroelectric phases: Landau theory and phase field study. Scr. Mater. 2020, 186, 136–141.

File
12274_2022_4908_MOESM1_ESM.pdf (736.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 April 2022
Revised: 28 July 2022
Accepted: 16 August 2022
Published: 14 September 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 2019R1I1A1A01063888) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2019R1A6A1A03033215). F. P. Z. acknowledges the Alexander von Humboldt Foundation (AvH) for the fellowship with award number 1203828, and Z. L. acknowledges the LOEWE program of the State of Hesse, Germany, within the project FLAME (Fermi Level Engineering of Antiferroelectric Materials for Energy Storage and Insulation Systems).

Return