Journal Home > Volume 15 , Issue 10

Methanol electrolysis is significant but challenging as an energy-saving technique for electrochemical hydrogen production. Herein, we demonstrated a novel and efficient bifunctional catalyst of CoSe/N-doped carbon nanospheres supported Pt nanoparticles for hydrogen generation via methanol electrolysis; high catalytic performance for both methanol oxidation (MOR) and hydrogen evolution (HER) was observed benefitting from the effective interaction of metal and support effect as well as the oxophilic characteristics of cobalt selenide. Theoretical calculation disclosed the increased charge density of Pt induced by the CoSe/NC support has a bifunctional ability for optimizing the H* adsorption energy for hydrogen evolution reaction and weakening the CO adsorption energy of methanol oxidation reaction. Specifically, the largely improved CO-tolerance ability was observed in the CO-stripping technique, where about 90 mV less of the peak potential for CO oxidation than that of Pt/C catalyst was observed, resulting from a strong electronic effect as indicated by the spectroscopic analysis. The peak current density of 84.2 mA·cm–2 was found for MOR, which was about 3.1 times higher than that of Pt/C; and a low overpotential of 32 mV was required to reach 10 mA·cm–2 for HER in 0.5 mol·L–1 H2SO4 with 1.0 mol·L–1 CH3OH. When serviced as both anode and cathode catalyst in a methanol electrolyzer, a low cell potential of 0.67 V to offer 10 mA cm-2 was obtained, about 170 mV less than that of Pt/C catalyst; moreover, it was 1.1 V lower than that of water-splitting (1.77 V), indicating a promising energy-saving technique for hydrogen generation. They also showed very good catalytic stability and anti-poisoning ability during the catalysis process. This work would help understand the metal-support interaction for hydrogen generation vis methanol electrolysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Efficient bifunctional catalysts of CoSe/N-doped carbon nanospheres supported Pt nanoparticles for methanol electrolysis of hydrogen generation

Show Author's information Yang Zhou1Qiaowei Wang1Xinlong Tian2Ligang Feng1( )
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China

Abstract

Methanol electrolysis is significant but challenging as an energy-saving technique for electrochemical hydrogen production. Herein, we demonstrated a novel and efficient bifunctional catalyst of CoSe/N-doped carbon nanospheres supported Pt nanoparticles for hydrogen generation via methanol electrolysis; high catalytic performance for both methanol oxidation (MOR) and hydrogen evolution (HER) was observed benefitting from the effective interaction of metal and support effect as well as the oxophilic characteristics of cobalt selenide. Theoretical calculation disclosed the increased charge density of Pt induced by the CoSe/NC support has a bifunctional ability for optimizing the H* adsorption energy for hydrogen evolution reaction and weakening the CO adsorption energy of methanol oxidation reaction. Specifically, the largely improved CO-tolerance ability was observed in the CO-stripping technique, where about 90 mV less of the peak potential for CO oxidation than that of Pt/C catalyst was observed, resulting from a strong electronic effect as indicated by the spectroscopic analysis. The peak current density of 84.2 mA·cm–2 was found for MOR, which was about 3.1 times higher than that of Pt/C; and a low overpotential of 32 mV was required to reach 10 mA·cm–2 for HER in 0.5 mol·L–1 H2SO4 with 1.0 mol·L–1 CH3OH. When serviced as both anode and cathode catalyst in a methanol electrolyzer, a low cell potential of 0.67 V to offer 10 mA cm-2 was obtained, about 170 mV less than that of Pt/C catalyst; moreover, it was 1.1 V lower than that of water-splitting (1.77 V), indicating a promising energy-saving technique for hydrogen generation. They also showed very good catalytic stability and anti-poisoning ability during the catalysis process. This work would help understand the metal-support interaction for hydrogen generation vis methanol electrolysis.

Keywords: metal-organic frameworks, hydrogen evolution reaction, bifunctional electrocatalyst, methanol electrolysis, Pt-based catalysts

References(58)

1

Qin, R.; Hou, J. G.; Xu, C. X.; Yang, H. X.; Zhou, Q. X.; Chen, Z. Z.; Liu, H. Self-supporting Co0.85Se nanosheets anchored on Co plate as highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. Nano Res. 2020, 13, 2950–2957.

2
LiD. Y.LiaoL. L.ZhouH. Q.ZhaoY.CaiF. M.ZengJ. S.LiuF.WuH.TangD. S.YuF. Highly active non-noble electrocatalyst from Co2P/Ni2P nanohybrids for pH-universal hydrogen evolution reactionMater. Today Phys.202116100314

Li, D. Y.; Liao, L. L.; Zhou, H. Q.; Zhao, Y.; Cai, F. M.; Zeng, J. S.; Liu, F.; Wu, H.; Tang, D. S.; Yu, F. Highly active non-noble electrocatalyst from Co2P/Ni2P nanohybrids for pH-universal hydrogen evolution reaction. Mater. Today Phys. 2021, 16, 100314.

3

Li, P. Y.; Hong, W. T.; Liu, W. Fabrication of large scale self-supported WC/Ni(OH)2 electrode for high-current-density hydrogen evolution. Chin. J. Struc. Chem. 2021, 40, 1365–1371.

4

Xue, H. R.; Gong, H.; Yamauchi, Y.; Sasaki, T.; Ma, R. Z. Photo-enhanced rechargeable high-energy-density metal batteries for solar energy conversion and storage. Nano Res. Energy 2022, 1, e9120007.

5

Chang, J. F.; Wang, G. Z.; Zhang, W.; Yang, Y. Atomically dispersed catalysts for small molecule electrooxidation in direct liquid fuel cells. J. Energy Chem. 2022, 68, 439–453.

6

Fu, X. W.; Shi, R. J.; Jiao, S. L.; Li, M. M.; Li, Q. Y. Structural design for electrocatalytic water splitting to realize industrial-scale deployment: Strategies, advances, and perspectives. J. Energy Chem. 2022, 70, 129–153.

7

Hasa, B.; Vakros, J.; Katsaounis, A. D. Effect of TiO2 on Pt-Ru-based anodes for methanol electroreforming. Appl. Catal. B:Environ. 2018, 237, 811–816.

8

Shen, Y. B.; Xu, Z. W.; Wang, L. Q.; Zhan, Y. L. Hydrogen production from bioinspired methanol reforming at room temperature. Green Chem. 2021, 23, 5618–5624.

9

Kwon, S.; Ham, D. J.; Kim, T.; Kwon, Y.; Lee, S. G.; Cho, M. Active methanol oxidation reaction by enhanced CO tolerance on bimetallic Pt/Ir electrocatalysts using electronic and bifunctional effects. ACS Appl. Mater. Interfaces 2018, 10, 39581–39589.

10
Hao, A. H.; Wan, X.; Liu, X. F.; Yu, R. H.; Shui, J. L. Inorganic microporous membranes for hydrogen separation: Challenges and solutions. Nano Res. Energy 2022, 1, e9120013.
11

Yin, X.; Feng, L. G.; Yang, W.; Zhang, Y. X.; Wu, H. Y.; Yang, L.; Zhou, L.; Gan, L.; Sun, S. R. Interface engineering of plasmonic induced Fe/N/C-F catalyst with enhanced oxygen catalysis performance for fuel cells application. Nano Res. 2022, 15, 2138–2146.

12

Li, M.; Deng, X. H.; Liang, Y.; Xiang, K.; Wu, D.; Zhao, B.; Yang, H. P.; Luo, J. L.; Fu, X. Z. CoxP@NiCo-LDH heteronanosheet arrays as efficient bifunctional electrocatalysts for co-generation of value-added formate and hydrogen with less-energy consumption. J. Energy Chem. 2020, 50, 314–323.

13

Ma, G.; Zhang, X. Y.; Zhou, G. F.; Wang, X. Hydrogen production from methanol reforming electrolysis at NiO nanosheets supported Pt nanoparticles. Chem. Eng. J. 2021, 411, 128292.

14

Li, J. X.; Wang, S. L.; Chang, J. F.; Feng, L. G. A review of Ni based powder catalyst for urea oxidation in assisting water splitting reaction. Adv. Powder Mater. 2022, 1, 100030.

15

Kuang, Z. C.; Liu, S.; Li, X. N.; Wang, M.; Ren, X. Y.; Ding, J.; Ge, R. L.; Zhou, W. H.; Rykov, A. I.; Sougrati, M. T. et al. Topotactically constructed nickel-iron (oxy)hydroxide with abundant in-situ produced high-valent iron species for efficient water oxidation. J. Energy Chem. 2021, 57, 212–218.

16

Xiang, K.; Song, Z. X.; Wu, D.; Deng, X. H.; Wang, X. W.; You, W.; Peng, Z. K.; Wang, L.; Luo, J. L.; Fu, X. Z. Bifunctional Pt-Co3O4 electrocatalysts for simultaneous generation of hydrogen and formate via energy-saving alkaline seawater/methanol co-electrolysis. J. Mater. Chem. A 2021, 9, 6316–6324.

17

Pethaiah, S. S.; Sadasivuni, K. K.; Jayakumar, A.; Ponnamma, D.; Tiwary, C. S.; Sasikumar, G. Methanol electrolysis for hydrogen production using polymer electrolyte membrane: A mini-review. Energies 2020, 13, 5879.

18

Muthumeenal, A.; Pethaiah, S. S.; Nagendran, A. Investigation of SPES as PEM for hydrogen production through electrochemical reforming of aqueous methanol. Renewable Energy 2016, 91, 75–82.

19

Shan, J. Q.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Transition-metal-doped ruir bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 2019, 31, 1900510.

20

Xu, Y.; Liu, M. Y.; Wang, M. Z.; Ren, T. L.; Ren, K. L.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Methanol electroreforming coupled to green hydrogen production over bifunctional NiIr-based metal-organic framework nanosheet arrays. Appl. Catal. B:Environ. 2022, 300, 120753.

21

Yang, L.; Li, G. Q.; Ma, R. P.; Hou, S.; Chang, J. F.; Ruan, M. B.; Cai, W. B.; Jin, Z.; Xu, W. L.; Wang, G. L. et al. Nanocluster PtNiP supported on graphene as an efficient electrocatalyst for methanol oxidation reaction. Nano Res. 2021, 14, 2853–2860.

22

Ma, R. P.; Wang, Y.; Li, G. Q.; Yang, L.; Liu, S. W.; Jin, Z.; Zhao, X.; Ge, J. J.; Xing, W. Tuning the oxidation state of Ru to surpass Pt in hydrogen evolution reaction. Nano Res. 2021, 14, 4321–4327.

23

Zhao, Y.; Liu, Y. C.; Miao, B. Q.; Ding, Y.; Jin, P. J.; Chen, Y. One-dimensional rhodium-nickel alloy assemblies with nano-dendrite subunits for alkaline methanol oxidation. Chin. J. Struc. Chem. 2022, 41, 2204040–2204045.

24

Liao, L. L.; Cheng, C.; Zhou, H. Q.; Qi, Y.; Li, D. Y.; Cai, F. M.; Yu, B.; Long, R.; Yu, F. Accelerating pH-universal hydrogen-evolving activity of a hierarchical hybrid of cobalt and dinickel phosphides by interfacial chemical bonds. Mater. Today Phys. 2022, 22, 100589.

25

Wu, F. X.; Eid, K.; Abdullah, A. M.; Niu, W. X.; Wang, C.; Lan, Y. X.; Elzatahry, A. A.; Xu, G. B. Unveiling one-pot template-free fabrication of exquisite multidimensional PtNi multicube nanoarchitectonics for the efficient electrochemical oxidation of ethanol and methanol with a great tolerance for CO. ACS Appl. Mater. Interfaces 2020, 12, 31309–31318.

26

Tang, J.; Zhang, X. M.; Yu, S. S.; Wang, S. L.; Sun, G. Q. Performance and mechanism of PtxCuy/C electrocatalyst for methanol oxidation. J. Electrochem. 2021, 27, 508–517.

27

Fang, B.; Feng, L. G. PtCo-NC catalyst derived from the pyrolysis of Pt-incorporated ZIF-67 for alcohols fuel electrooxidation. Acta Phys. -Chim. Sin. 2020, 36, 1905023.

28

Yue, X. Y.; Pu, Y. G.; Zhang, W.; Zhang, T.; Gao, W. Ultrafine Pt nanoparticles supported on double-shelled C/TiO2 hollow spheres material as highly efficient methanol oxidation catalysts. J. Energy Chem. 2020, 49, 275–282.

29

Zhang, K. F.; Wang, H. F.; Qiu, J.; Wu, J.; Wang, H. J.; Shao, J. W.; Deng, Y. Q.; Yan, L. F. Multi-dimensional Pt/Ni(OH)2/nitrogen-doped graphene nanocomposites with low platinum content for methanol oxidation reaction with highly catalytic performance. Chem. Eng. J. 2021, 421, 127786.

30

Huang, H. J.; Zhu, J. X.; Li, D. B.; Shen, C.; Li, M. M.; Zhang, X.; Jiang, Q. G.; Zhang, J. F.; Wu, Y. P. Pt nanoparticles grown on 3D RuO2-modified graphene architectures for highly efficient methanol oxidation. J. Mater. Chem. A 2017, 5, 4560–4567.

31

Duan, Y. Q.; Sun, Y.; Pan, S. Y.; Dai, Y.; Hao, L.; Zou, J. L. Self-stable WP/C support with excellent cocatalytic functionality for Pt: Enhanced catalytic activity and durability for methanol electro-oxidation. ACS Appl. Mater. Interfaces 2016, 8, 33572–33582.

32

Li, M.; Feng, L. G. Advances of phosphide promoter assisted Pt based catalyst for electrooxidation of methanol. J. Electrochem. 2022, 28, 2106211.

33

Ding, X.; Li, M.; Jin, J. L.; Huang, X. B.; Wu, X.; Feng, L. G. Graphene aerogel supported Pt-Ni alloy as efficient electrocatalysts for alcohol fuel oxidation. Chin. Chem. Lett. 2022, 33, 2687–2691.

34

Liu, X. B.; Liu, Y. C.; Fan, L. Z. MOF-derived CoSe2 microspheres with hollow interiors as high-performance electrocatalysts for the enhanced oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 15310–15314.

35

Chen, D.; Zhang, Y. J.; Li, X.; Shen, J. W.; Chen, Z. X.; Cao, S. A.; Li, T.; Xu, F. CoSe2 hollow microspheres, nano-polyhedra and nanorods as pseudocapacitive Mg-storage materials with fast solid-state Mg2+ diffusion kinetics. Nanoscale 2019, 11, 23173–23181.

36

Miao, C. X.; Xiao, X. H.; Gong, Y.; Zhu, K.; Cheng, K.; Ye, K.; Yan, J.; Cao, D. X.; Wang, G. L.; Xu, P. P. Facile synthesis of metal-organic framework-derived CoSe2 nanoparticles embedded in the N-doped carbon nanosheet array and application for supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 9365–9375.

37

Peng, X.; Yan, Y. J.; Jin, X.; Huang, C.; Jin, W. H.; Gao, B.; Chu, P. K. Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 2020, 78, 105234.

38
Li, Z. Y.; Zhang, L. Y.; Zhang, L.; Huang, J. M.; Liu, H. D. ZIF-67-derived CoSe/NC composites as anode materials for lithium-ion batteries. Nanoscale Res. Lett. 2019, 14, 358.
39

Wang, S. L.; Zhu, J. Y.; Wu, X.; Feng, L. G. Microwave-assisted hydrothermal synthesis of NiMoO4 nanorods for high-performance urea electrooxidation. Chin. Chem. Lett. 2022, 33, 1105–1109.

40

Zhou, Y.; Liu, D. Y.; Qiao, W.; Liu, Z.; Yang, J.; Feng, L. G. Ternary synergistic catalyst system of Pt-Cu-Mo2C with high activity and durability for alcohol oxidation. Mater. Today Phys. 2021, 17, 100357.

41

Zhang, J. M.; Qu, X. M.; Han, Y.; Shen, L. F.; Yin, S. H.; Li, G.; Jiang, Y. X.; Sun, S. G. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance. Appl. Catal. B: Environ. 2020, 263, 118345.

42

Bao, Y. F.; Feng, L. G. Formic acid electro-oxidation catalyzed by PdNi/graphene aerogel. Acta Phys. -Chim. Sin. 2021, 37, 2008031.

43

Bao, Y. F.; Zha, M.; Sun, P. L.; Hu, G. Z.; Feng, L. G. PdNi/N-doped graphene aerogel with over wide potential activity for formic acid electrooxidation. J. Energy Chem. 2021, 59, 748–754.

44

Fang, B.; Liu, Z.; Bao, Y. F.; Feng, L. G. Unstable Ni leaching in MOF-derived PtNi-C catalyst with improved performance for alcohols fuel electro-oxidation. Chin. Chem. Lett. 2020, 31, 2259–2262.

45

Xie, F.; Gan, M. Y.; Ma, L. Accurately manipulating hierarchical flower-like Fe2P@CoP@nitrogen-doped carbon spheres as an efficient carrier material of Pt-based catalyst. Nanoscale 2021, 13, 18226–18236.

46

Li, D. Z.; Liu, Y.; Liu, Z.; Yang, J.; Hu, C. Q.; Feng, L. G. Electrochemical hydrogen evolution reaction efficiently catalyzed by Ru-N coupling in defect-rich Ru/g-C3N4 nanosheets. J. Mater. Chem. A 2021, 9, 15019–15026.

47

Tian, J. W.; Li, J.; Zhang, Y. X.; Yu, X. Y.; Hong, Z. L. Carbon-coated CoSe2 nanoparticles confined in N-doped carbon microboxes with enhanced sodium storage properties. J. Mater. Chem. A 2019, 7, 21404–21409.

48

Zhou, Y. W.; Chen, Y. F.; Jiang, K.; Liu, Z.; Mao, Z. J.; Zhang, W. Y.; Lin, W. F.; Cai, W. B. Probing the enhanced methanol electrooxidation mechanism on platinum-metal oxide catalyst. Appl. Catal. B: Environ. 2021, 280, 119393.

49

Gong, W. H.; Jiang, Z.; Wu, R. F.; Liu, Y.; Huang, L.; Hu, N.; Tsiakaras, P.; Shen, P. K. Cross-double dumbbell-like Pt-Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Appl. Catal. B: Environ. 2019, 246, 277–283.

50

Shan, A. X.; Huang, S. Y.; Zhao, H. F.; Jiang, W. G.; Teng, X. A.; Huang, Y. C.; Chen, C. P.; Wang, R. M.; Lau, W. M. Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction. Nano Res. 2020, 13, 3088–3097.

51

Li, J.; Wang, C.; Shang, H. Y.; Wang, Y.; You, H. M.; Xu, H.; Du, Y. K. Metal-modified PtTe2 nanorods: Surface reconstruction for efficient methanol oxidation electrocatalysis. Chem. Eng. J. 2021, 424, 130319.

52

Xue, Q.; Bai, X. Y.; Zhao, Y.; Li, Y. N.; Wang, T. J.; Sun, H. Y.; Li, F. M.; Chen, P.; Jin, P. J.; Yin, S. B. et al. Au core-PtAu alloy shell nanowires for formic acid electrolysis. J. Energy Chem. 2022, 65, 94–102.

53

Reier, T.; Nong, H. N.; Teschner, D.; Schlögl, R.; Strasser, P. Electrocatalytic oxygen evolution reaction in acidic environments-reaction mechanisms and catalysts. Adv. Energy Mater. 2017, 7, 1601275.

54

Wang, S. Q.; Cao, Y. L.; Jia, W.; Lu, Z. J.; Jia, D. Z. A cage-confinement strategy to fabricate Pt-Mo6Co6C heterojunction for highly efficient PH-universal hydrogen evolution. Appl. Catal. B: Environ. 2021, 298, 120579.

55

Sun, J. P.; Hu, X. T.; Huang, Z. D.; Huang, T. X.; Wang, X. K.; Guo, H. L.; Dai, F. N.; Sun, D. F. Atomically thin defect-rich Ni-Se-S hybrid nanosheets as hydrogen evolution reaction electrocatalysts. Nano Res. 2020, 13, 2056–2062.

56

Zhang, L. L.; Lei, Y. T.; Zhou, D. N.; Xiong, C. L.; Jiang, Z. L.; Li, X. Y.; Shang, H. S.; Zhao, Y. F.; Chen, W. X.; Zhang, B. Interfacial engineering of 3D hollow CoSe2@ultrathin MoSe2 core@shell heterostructure for efficient pH-universal hydrogen evolution reaction. Nano Res. 2022, 15, 2895–2904.

57

Pan, S. Y.; Ma, S. X.; Chang, C. F.; Long, X.; Qu, K. G.; Yang, Z. H. Activation of rhodium selenides for boosted hydrogen evolution reaction via heterostructure construction. Mater. Today Phys. 2021, 18, 100401.

58

Guo, F.; Zou, Z. J.; Zhang, Z. Y.; Zeng, T.; Tan, Y. Y.; Chen, R. Z.; Wu, W.; Cheng, N. C.; Sun, X. L. Confined sub-nanometer PtCo clusters as a highly efficient and robust electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 5468–5474.

File
12274_2022_4907_MOESM1_ESM.pdf (775.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 July 2022
Revised: 22 July 2022
Accepted: 15 August 2022
Published: 20 August 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 21972124), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institution. L. G. F. also thanks the support of the Six Talent Peaks Project of Jiangsu Province (No. XCL-070-2018) and the support of Yangzhou Municipal Science and Technology Planning Project (No. YZ2020028).

Return