Journal Home > Volume 16 , Issue 3

Transition metal dichalcogenides (TMD) heterostructure is widely applied for second harmonic generation (SHG) and holds great promises for laser source, nonlinear switch, and optical logic gate. However, for atomically thin TMD heterostructures, low SHG conversion efficiency would occur due to reduction of light–matter interaction length and lack of phase matching. Herein, we demonstrated a facile directional SHG amplifier formed by MoS2/WS2 monolayer heterostructures suspended on a holey SiO2/Si substrate. The SHG enhancement factor reaches more than two orders of magnitude in a wide spectral range from 355 to 470 nm, and the radiation angle is reduced from 38° to 19° indicating higher coherence and better emission directionality. The giant SHG enhancement and directional emission are attributed to the great excitation and emission field concentration induced by a self-formed vertical Fabry–Pérot microcavity. Our discovery gives helpful insights for the development of two-dimensional (2D) nonlinear optical devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

An on-Si directional second harmonic generation amplifier for MoS2/WS2 heterostructure

Show Author's information Jiaxing Du1,§Jianwei Shi2,§Chun Li1Qiuyu Shang1Xinfeng Liu2Yuan Huang3( )Qing Zhang1( )
School of Materials Science and Engineering, Peking University, Beijing 100871, China
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China

§ Jiaxing Du and Jianwei Shi contributed equally to this work.

Abstract

Transition metal dichalcogenides (TMD) heterostructure is widely applied for second harmonic generation (SHG) and holds great promises for laser source, nonlinear switch, and optical logic gate. However, for atomically thin TMD heterostructures, low SHG conversion efficiency would occur due to reduction of light–matter interaction length and lack of phase matching. Herein, we demonstrated a facile directional SHG amplifier formed by MoS2/WS2 monolayer heterostructures suspended on a holey SiO2/Si substrate. The SHG enhancement factor reaches more than two orders of magnitude in a wide spectral range from 355 to 470 nm, and the radiation angle is reduced from 38° to 19° indicating higher coherence and better emission directionality. The giant SHG enhancement and directional emission are attributed to the great excitation and emission field concentration induced by a self-formed vertical Fabry–Pérot microcavity. Our discovery gives helpful insights for the development of two-dimensional (2D) nonlinear optical devices.

Keywords: two-dimensional (2D) materials, heterostructure, transition metal dichalcogenides, second harmonic generation, field enhancement, optical microcavity

References(51)

[1]

Ghimire, S.; Reis, D. A. High-harmonic generation from solids. Nat. Phys. 2019, 15, 10–16.

[2]

Midorikawa, K. Progress on table-top isolated attosecond light sources. Nat. Photonics 2022, 16, 267–278.

[3]

Sun, Z. P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227–238.

[4]

He, G. S.; Tan, L. S.; Zheng, Q. D.; Prasad, P. N. Multiphoton absorbing materials: Molecular designs, characterizations, and applications. Chem. Rev. 2008, 108, 1245–1330.

[5]

Gu, T.; Petrone, N.; McMillan, J. F.; van der Zande, A.; Yu M.; Lo, G. Q.; Kwong, D. L.; Hone J.; Wong C. W. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photonics 2012, 6, 554–559.

[6]

Li, R.; Wang, X. X.; Zhou, Y.; Zong, H.; Chen, M. D.; Sun, M. T. Advances in nonlinear optical microscopy for biophotonics. J. Nanophoton. 2018, 12, 033007.

[7]

Shi, J.; Yu, P.; Liu, F. C.; He, P.; Wang, R.; Qin, L.; Zhou, J. B.; Li, X.; Zhou, J. D.; Sui, X. et al. 3R MoS2 with broken inversion symmetry: A promising ultrathin nonlinear optical device. Adv. Mater. 2017, 29, 1701486.

[8]

Zhao, L. Y.; Shang, Q. Y.; Li, M. L.; Liang, Y.; Li, C.; Zhang, Q. Strong exciton–photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors. Nano Res. 2021, 14, 1937–1954.

[9]

Shree, S.; Lagarde, D.; Lombez, L.; Robert, C.; Balocchi, A.; Watanabe, K.; Taniguchi, T.; Marie, X.; Gerber, I. C.; Glazov, M. M. et al. Interlayer exciton mediated second harmonic generation in bilayer MoS2. Nat. Commun. 2021, 12, 6894.

[10]

Yu, R. W.; Cox, J. D.; de Abajo, F. J. G. Nonlinear plasmonic sensing with nanographene. Phys. Rev. Lett. 2016, 117, 123904.

[11]

Karvonen, L.; Säynätjoki, A.; Huttunen, M. J.; Autere, A.; Amirsolaimani, B.; Li, S. S.; Norwood, R. A.; Peyghambarian, N.; Lipsanen, H.; Eda, G. et al. Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy. Nat. Commun. 2017, 8, 15714.

[12]

Li, J. H.; Hu, G. W.; Shi, L. N.; He, N.; Li, D. Q.; Shang, Q. Y.; Zhang, Q.; Fu, H. G.; Zhou, L. L.; Xiong, W. et al. Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic metamaterials. Nat. Commun. 2021, 12, 6425.

[13]

Li, Y. L.; Rao, Y.; Mak, K. F.; You, Y. M.; Wang, S. Y.; Dean, C. R.; Heinz, T. F. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 2013, 13, 3329–3333.

[14]

Manaka, T.; Iwamoto, M. Optical second-harmonic generation measurement for probing organic device operation. Light: Sci. Appl. 2016, 5, e16040.

[15]
Toflove, A.; Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed.; Artech House: Norwood, 2005.
DOI
[16]

Davoodi, F.; Granpayeh, N. Nonlinear manipulation of surface plasmons on graphene-TMDC Bragg reflectors. Opt. Quant. Electron. 2019, 51, 9.

[17]

Zhang Q.; Zhang J. All-optical switching based on self-assembled halide perovskite microwires. J. Semicond., 2022, 43, 010401.

[18]

Hsu, W. T.; Zhao, Z. A.; Li, L. J.; Chen, C. H.; Chiu, M. H.; Chang, P. S.; Chou, Y. C.; Chang, W. H. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano 2014, 8, 2951–2958.

[19]

Shi, J.; Li, Y. Z.; Zhang, Z. P.; Feng, W. Q.; Wang, Q.; Ren, S. L.; Zhang, J.; Du, W. N.; Wu, X. X.; Sui, X. et al. Twisted-angle-dependent optical behaviors of intralayer excitons and trions in WS2/WSe2 heterostructure. ACS Photonics 2019, 6, 3082–3091.

[20]

Ho, Y. W.; Rosa, H. G.; Verzhbitskiy, I.; Rodrigues, M. J. L. F.; Taniguchi, T.; Watanabe, K.; Eda, G.; Pereira, V. M.; Viana-Gomes, J. C. Measuring valley polarization in two-dimensional materials with second-harmonic spectroscopy. ACS Photonics 2020, 7, 925–931.

[21]

Zhang, D. L.; Zeng, Z. X. S.; Tong, Q. J.; Jiang, Y.; Chen, S. L.; Zheng, B. Y.; Qu, J. Y.; Li, F.; Zheng, W. H.; Jiang, F. et al. Near-unity polarization of valley-dependent second-harmonic generation in stacked TMDC layers and heterostructures at room temperature. Adv. Mater. 2020, 32, 1908061.

[22]

Liang, J.; Zhang, J.; Li, Z. Z.; Hong, H.; Wang, J. H.; Zhang, Z. H.; Zhou, X.; Qiao, R. X.; Xu, J. Y.; Gao, P. et al. Monitoring local strain vector in atomic-layered MoSe2 by second-harmonic generation. Nano. Lett. 2017, 17, 7539–7543.

[23]

Seyler, K. L.; Schaibley, J. R.; Gong, P.; Rivera, P.; Jones, A. M.; Wu, S. F.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 2015, 10, 407–411.

[24]

Shi, J. J.; Li, Y.; Kang, M.; He, X. B.; Halas, N. J.; Nordlander, P.; Zhang, S. P.; Xu, H. X. Efficient second harmonic generation in a hybrid plasmonic waveguide by mode interactions. Nano Lett. 2019, 19, 3838–3845.

[25]

Aouani, H.; Rahmani, M.; Navarro-Cía, M.; Maier, S. A. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat. Nanotechnol. 2014, 9, 290–294.

[26]

Ginzburg, P.; Krasavin, A.; Sonnefraud, Y.; Murphy, A.; Pollard, R. J.; Maier, S. A.; Zayats, A. V. Nonlinearly coupled localized plasmon resonances: Resonant second-harmonic generation. Phys. Rev. B 2012, 86, 085422.

[27]

Butet, J.; Brevet, P. F.; Martin, O. J. F. Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications. ACS Nano 2015, 9, 10545–10562.

[28]

Wu, X. X.; Jiang, W. Y.; Wang, X. F.; Zhao, L. Y.; Shi, J.; Zhang, S.; Sui, X.; Chen, Z. X.; Du, W. N.; Shi, J. W. et al. Inch-scale ball-in-bowl plasmonic nanostructure arrays for polarization-independent second-harmonic generation. ACS Nano 2021, 15, 1291–1300.

[29]

Yu, H. K.; Talukdar, D.; Xu, W. G.; Khurgin, J. B.; Xiong, Q. H. Charge-induced second-harmonic generation in bilayer WSe2. Nano Lett. 2015, 15, 5653–5657.

[30]

Pan, X. L.; Hong, X. F.; Xu, L.; Li, Y. X.; Yan, M. Y.; Mai, L. On-chip micro/nano devices for energy conversion and storage. Nano Today 2019, 28, 100764.

[31]

Niu, Y.; Gonzalez-Abad, S.; Frisenda, R.; Marauhn, P.; Drüppel, M.; Gant, P.; Schmidt, R.; Taghavi, N. S.; Barcons, D.; Molina-Mendoza, A. J. et al. Thickness-dependent differential reflectance spectra of monolayer and few-layer MoS2, MoSe2, WS2 and WSe2. Nanomaterials 2018, 8, 725.

[32]

Xu, L.; Zhao, L. Y.; Wang, Y. S.; Zou, M. C.; Zhang, Q.; Cao, A. Y. Analysis of photoluminescence behavior of high-quality single-layer MoS2. Nano Res. 2019, 12, 1619–1624.

[33]

Senthilkumar, V.; Tam, L. C.; Kim, Y. S.; Sim, Y.; Seong, M. J.; Jang, J. I. Direct vapor phase growth process and robust photoluminescence properties of large area MoS2 layers. Nano Res. 2014, 7, 1759–1768.

[34]

Ling, X.; Fang, W. J.; Lee, Y. H.; Araujo, P. T.; Zhang, X.; Rodriguez-Nieva, J. F.; Lin, Y. X.; Zhang, J.; Kong, J.; Dresselhaus, M. S. Raman enhancement effect on two-dimensional layered materials: Graphene, h-BN and MoS2. Nano Lett. 2014, 14, 3033–3040.

[35]

Janisch, C.; Wang, Y. X.; Ma, D.; Mehta, N.; Elías, A. L.; Perea-López, N.; Terrones, M.; Crespi, V.; Liu, Z. W. Extraordinary second harmonic generation in tungsten disulfide monolayers. Sci. Rep. 2014, 4, 5530.

[36]

Lu, X.; Luo, X.; Zhang, J.; Quek, S. Y.; Xiong, Q. H. Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Res. 2016, 9, 3559–3597.

[37]

Horzum, S.; Sahin, H.; Cahangirov, S.; Cudazzo, P.; Rubio, A.; Serin, T.; Peeters, F. M. Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2. Phys. Rev. B 2013, 87, 125415.

[38]

Yu, Y. F.; Yu, Y. L.; Xu, C.; Cai, Y. Q.; Su, L. Q.; Zhang, Y.; Zhang, Y. W.; Gundogdu, K.; Cao, L. Y. Engineering substrate interactions for high luminescence efficiency of transition-metal dichalcogenide monolayers. Adv. Funct. Mater. 2016, 26, 4733–4739.

[39]

Li, Q.; Li, C.; Shang, Q. Y.; Zhao, L. Y.; Zhang, S.; Gao, Y.; Liu, X. F.; Wang, X. N.; Zhang, Q. Lasing from reduced dimensional perovskite microplatelets: Fabry–Pérot or whispering-gallery-mode? J. Chem. Phys. 2019, 151, 211101.

[40]

Nauman, M.; Yan, J. S.; de Ceglia, D.; Rahmani, M.; Zangeneh Kamali, K.; De Angelis, C.; Miroshnichenko, A. E.; Lu, Y. R.; Neshev, D. N. Tunable unidirectional nonlinear emission from transition-metal-dichalcogenide metasurfaces. Nat. Commun. 2021, 12, 5597.

[41]

Cai, W. S.; Vasudev, A. P.; Brongersma, M. L. Electrically controlled nonlinear generation of light with plasmonics. Science 2011, 333, 1720–1723.

[42]

Hong, H.; Wu, C. C.; Zhao, Z. X.; Zuo, Y. G.; Wang, J. H.; Liu, C.; Zhang, J.; Wang, F. F.; Feng, J. G.; Shen, H. B. et al. Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton-excitation resonance energy transfer from quantum dots. Nat. Photonics 2021, 15, 510–515.

[43]

Liu, X. F.; Zhang, Q.; Chong, W. K.; Yip, J. N.; Wen, X. L.; Li, Z. P.; Wei, F. X.; Yu, G. N.; Xiong, Q. H.; Sum, T. C. Cooperative enhancement of second-harmonic generation from a single CdS nanobelt-hybrid plasmonic structure. ACS Nano 2015, 9, 5018–5026.

[44]

Schinke, C.; Christian Peest, P.; Schmidt, J.; Brendel, R.; Bothe, K.; Vogt, M. R.; Kröger, I.; Winter, S.; Schirmacher, A.; Lim, S. et al. Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. AIP Adv. 2015, 5, 067168.

[45]

Rodríguez-de Marcos, L. V.; Larruquert, J. I.; Méndez, J. A.; Aznárez, J. A. Self-consistent optical constants of SiO2 and Ta2O5 films. Opt. Mater. Express 2016, 6, 3622–3637.

[46]

Song, B. K.; Gu, H. G.; Fang, M. S.; Chen, X. G.; Jiang, H.; Wang, R. Y.; Zhai, T. Y.; Ho, Y. T.; Liu, S. Y. Layer-dependent dielectric function of wafer-scale 2D MoS2. Adv. Opt. Mater. 2019, 7, 1801250.

[47]

Ermolaev, G. A.; Yakubovsky, D. I.; Stebunov, Y. V.; Arsenin, A. V.; Volkov, V. S. Spectral ellipsometry of monolayer transition metal dichalcogenides: Analysis of excitonic peaks in dispersion. J. Vac. Sci. Technol. B 2020, 38, 014002.

[48]

Barmenkov, Y. O.; Zalvidea, D.; Torres-Peiró, S.; Cruz, J. L.; Andrés, M. V. Effective length of short Fabry–Perot cavity formed by uniform fiber Bragg gratings. Opt. Express 2006, 14, 6394–6399.

[49]

Cheng, Y. Z.; Fan, J. P.; Luo, H.; Chen, F. Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial. IEEE Access 2020, 8, 7615–7621.

[50]

Malard, L. M.; Alencar, T. V.; Barboza, A. P. M.; Mak, K. F.; de Paula, A. M. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 2013, 87, 201401(R).

[51]
Shi, J. W.; Wu, X. X.; Wu, K. M.; Zhang, S.; Sui, X. Y.; Du, W. N.; Yue, S.; Liang, Y.; Jiang, C. X.; Wang, Z. et al. Giant enhancement and directional second harmonic emission from monolayer WS2 on silicon substrate via Fabry–Pérot microcavity. ACS Nano, in press, https://doi.org/10.1021/acsnano.2c03033
DOI
File
12274_2022_4898_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 May 2022
Revised: 07 August 2022
Accepted: 11 August 2022
Published: 13 September 2022
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We acknowledge funding support from the National Natural Science Foundation of China (Nos. 51991340, 51991344, 52072006, 62022089, and 11874405), the Natural Science Foundation of Beijing Municipality (No. JQ21004), the National Key Research and Development Program of China (No. 2019YFA0308000), Chongqing Outstanding Youth Fund (No. 2021ZX0400005), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (No. XDB33000000).

Return