Journal Home > Volume 16 , Issue 2

Tin-lead (Sn-Pb) alloyed perovskites with tunable bandgaps hold great potential for constructing highly efficient single-junction and tandem photovoltaic devices. However, the efficiency and stability of Sn-Pb perovskite solar cells (PSCs) are greatly hampered by severe nonradiative recombination due to the easy oxidation of Sn(II). In this work, we report the construction of mixed dimensional two-dimensional (2D) Dion–Jacobson (DJ) and three-dimensional (3D) perovskites to improve the efficiency and stability of Sn-Pb alloyed PSCs. Introducing a small amount of 1,4-butanediammonium diiodide as spacer cations of DJ perovskites into precursor, the prepared mixed dimensional Sn-Pb alloyed perovskites exhibit reduced trap-state density due to the passivation of 2D DJ perovskites. As a result, nonradiative charge recombination is greatly suppressed. The prepared Sn-Pb alloyed PSCs based on 2D-DJ/3D heterojunction deliver a power conversion efficiency of 19.02% with an impressive fill factor of 80%. As well, improved device stability is realized due to the presence of DJ perovskites which serves as a protection barrier against oxidation and water invasion.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Mixed 2D-Dion–Jacobson/3D Sn-Pb alloyed perovskites for efficient photovoltaic solar devices

Show Author's information Zhili Lu1,§Chaohui Li1,2,4,§Hongwei Lai2Xinming Zhou2Chunfeng Wang3Xianhu Liu1( )Fei Guo2( )Caofeng Pan3( )
National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST), Beijing 100083, China
Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander University Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany

§ Zhili Lu and Chaohui Li contributed equally to this work.

Abstract

Tin-lead (Sn-Pb) alloyed perovskites with tunable bandgaps hold great potential for constructing highly efficient single-junction and tandem photovoltaic devices. However, the efficiency and stability of Sn-Pb perovskite solar cells (PSCs) are greatly hampered by severe nonradiative recombination due to the easy oxidation of Sn(II). In this work, we report the construction of mixed dimensional two-dimensional (2D) Dion–Jacobson (DJ) and three-dimensional (3D) perovskites to improve the efficiency and stability of Sn-Pb alloyed PSCs. Introducing a small amount of 1,4-butanediammonium diiodide as spacer cations of DJ perovskites into precursor, the prepared mixed dimensional Sn-Pb alloyed perovskites exhibit reduced trap-state density due to the passivation of 2D DJ perovskites. As a result, nonradiative charge recombination is greatly suppressed. The prepared Sn-Pb alloyed PSCs based on 2D-DJ/3D heterojunction deliver a power conversion efficiency of 19.02% with an impressive fill factor of 80%. As well, improved device stability is realized due to the presence of DJ perovskites which serves as a protection barrier against oxidation and water invasion.

Keywords: solar cells, Sn-Pb perovskite, narrow bandgap, Dion–Jacobson perovskite, two-dimensional (2D)/three-dimensional (3D)

References(44)

[1]

Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514.

[2]

Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater. 2014, 13, 838–842.

[3]

Zeng, L. X.; Chen, S.; Forberich, K.; Brabec, C. J.; Mai, Y. H.; Guo, F. Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings. Energy Environ. Sci. 2020, 13, 4666–4690.

[4]

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

[5]

Zhong, Y. F.; Munir, R.; Li, J. B.; Tang, M. C.; Niazi, M. R.; Smilgies, D. M.; Zhao, K.; Amassian, A. Blade-coated hybrid perovskite solar cells with efficiency > 17%: An in situ investigation. ACS Energy Lett. 2018, 3, 1078–1085.

[6]

Almora, O.; Baran, D.; Bazan, G. C.; Berger, C.; Cabrera, C. I.; Catchpole, K. R.; Erten-Ela, S.; Guo, F.; Hauch, J.; Ho-Baillie, A. W. Y. et al. Device performance of emerging photovoltaic materials (version 2). Adv. Energy Mater. 2021, 11, 2102526.

[7]

Guillemoles, J. F.; Kirchartz, T.; Cahen, D.; Rau, U. Guide for the perplexed to the Shockley–Queisser model for solar cells. Nat. Photonics 2019, 13, 501–505.

[8]

Yang, Z. B.; Rajagopal, A.; Jen, A. K. Y. Ideal bandgap organic–inorganic hybrid perovskite solar cells. Adv. Mater. 2017, 29, 1704418.

[9]

Lin, R. X.; Xu, J.; Wei, M. Y.; Wang, Y. R.; Qin, Z. Y.; Liu, Z.; Wu, J. L.; Xiao, K.; Chen, B.; Park, S. M. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 2022, 603, 73–78.

[10]

Guo, F.; Li, N.; Fecher, F. W.; Gasparini, N.; Quiroz, C. O. R.; Bronnbauer, C.; Hou, Y.; Radmilović, V. V.; Radmilović, V. R.; Spiecker, E. et al. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells. Nat. Commun. 2015, 6, 7730.

[11]

Leijtens, T.; Prasanna, R.; Gold-Parker, A.; Toney, M. F.; McGehee, M. D. Mechanism of tin oxidation and stabilization by lead substitution in tin halide perovskites. ACS Energy Lett. 2017, 2, 2159–2165.

[12]

Lin, R. X.; Xiao, K.; Qin, Z. Y.; Han, Q. L.; Zhang, C. F.; Wei, M. Y.; Saidaminov, M. I.; Gao, Y.; Xu, J.; Xiao, M. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 2019, 4, 864–873.

[13]

Zhao, D. W.; Yu, Y.; Wang, C. L.; Liao, W. Q.; Shrestha, N.; Grice, C. R.; Cimaroli, A. J.; Guan, L.; Ellingson, R. J.; Zhu, K. et al. Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2017, 2, 17018.

[14]

Tong, J. H.; Song, Z. N.; Kim, D. H.; Chen, X. H.; Chen, C.; Palmstrom, A. F.; Ndione, P. F.; Reese, M. O.; Dunfield, S. P.; Reid, O. G. et al. Carrier lifetimes of > 1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 2019, 364, 475–479.

[15]
XiaoK.LinR. X.HanQ. L.HouY.QinZ. Y.NguyenH. T.WenJ.WeiM. Y.YedduV.SaidaminovM. I. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidantNat. Energy2020587088010.1038/s41560-020-00705-5

Xiao, K.; Lin, R. X.; Han, Q. L.; Hou, Y.; Qin, Z. Y.; Nguyen, H. T.; Wen, J.; Wei, M. Y.; Yeddu, V.; Saidaminov, M. I. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 2020, 5, 870–880.

[16]

Li, C. W.; Song, Z. N.; Chen, C.; Xiao, C. X.; Subedi, B.; Harvey, S. P.; Shrestha, N.; Subedi, K. K.; Chen, L.; Liu, D. C. et al. Low-bandgap mixed tin-lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nat. Energy 2020, 5, 768–776.

[17]

Zhou, X. Y.; Zhang, L. Z.; Wang, X. Z.; Liu, C.; Chen, S.; Zhang, M. Q.; Li, X. N.; Yi, W. D.; Xu, B. M. Highly efficient and stable GABr-modified ideal-bandgap (1.35 eV) Sn/Pb perovskite solar cells achieve 20.63% efficiency with a record small Voc deficit of 0.33 V. Adv. Mater. 2020, 32, 1908107.

[18]

Hu, J. L.; Wang, C.; Qiu, S. D.; Zhao, Y. C.; Gu, E. N.; Zeng, L. X.; Yang, Y. Z.; Li, C. H.; Liu, X. H.; Forberich, K. et al. Spontaneously self-assembly of a 2D/3D heterostructure enhances the efficiency and stability in printed perovskite solar cells. Adv. Energy Mater. 2020, 10, 2000173.

[19]

Wang, Z.; Lu, Y. L.; Xu, Z. H.; Hu, J. L.; Chen, Y. J.; Zhang, C. L.; Wang, Y. S.; Guo, F.; Mai, Y. H. An embedding 2D/3D heterostructure enables high-performance FA-alloyed flexible perovskite solar cells with efficiency over 20%. Adv. Sci. 2021, 8, 2101856.

[20]

Wang, Z. P.; Lin, Q. Q.; Chmiel, F. P.; Sakai, N.; Herz, L. M.; Snaith, H. J. Efficient ambient-air-stable solar cells with 2D−3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2017, 2, 17135.

[21]

Yang, F.; Zhang, P. T.; Kamarudin, M. A.; Kapil, G.; Ma, T. L.; Hayase, S. Addition effect of pyreneammonium iodide to methylammonium lead halide perovskite-2D/3D heterostructured perovskite with enhanced stability. Adv. Funct. Mater. 2018, 28, 1804856.

[22]

Ramirez, D.; Schutt, K.; Wang, Z. P.; Pearson, A. J.; Ruggeri, E.; Snaith, H. J.; Stranks, S. D.; Jaramillo, F. Layered mixed tin-lead hybrid perovskite solar cells with high stability. ACS Energy Lett. 2018, 3, 2246–2251.

[23]

Chen, Z. M.; Liu, M. Y.; Li, Z. C.; Shi, T. T.; Yang, Y. C.; Yip, H. L.; Cao, Y. Stable Sn/Pb-based perovskite solar cells with a coherent 2D/3D interface. iScience 2018, 9, 337–346.

[24]

Li, C. H.; Pan, Y. M.; Hu, J. L.; Qiu, S. D.; Zhang, C. L.; Yang, Y. Z.; Chen, S.; Liu, X. H.; Brabec, C. J.; Nazeeruddin, M. K. et al. Vertically aligned 2D/3D Pb-Sn perovskites with enhanced charge extraction and suppressed phase segregation for efficient printable solar cells. ACS Energy Lett. 2020, 5, 1386–1395.

[25]

Ke, W. J.; Chen, C.; Spanopoulos, I.; Mao, L. L.; Hadar, I.; Li, X. T.; Hoffman, J. M.; Song, Z. N.; Yan, Y. F.; Kanatzidis, M. G. Narrow-bandgap mixed lead/tin-based 2D Dion−Jacobson perovskites boost the performance of solar cells. J. Am. Chem. Soc. 2020, 142, 15049–15057.

[26]

Lu, D.; Lv, G. W.; Xu, Z. Y.; Dong, Y. X.; Ji, X. F.; Liu, Y. S. Thiophene-based two-dimensional Dion-Jacobson perovskite solar cells with over 15% efficiency. J. Am. Chem. Soc. 2020, 142, 11114–11122.

[27]

Ahmad, S.; Fu, P.; Yu, S. W.; Yang, Q.; Liu, X.; Wang, X. C.; Wang, X. L.; Guo, X.; Li, C. Dion−Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 2019, 3, 794–806.

[28]

Zeng, L. X.; Chen, Z.; Qiu, S. D.; Hu, J. L.; Li, C. H.; Liu, X. H.; Liang, G. X.; Brabec, C. J.; Mai, Y. H.; Guo, F. 2D−3D heterostructure enables scalable coating of efficient low-bandgap Sn-Pb mixed perovskite solar cells. Nano Energy 2019, 66, 104099.

[29]

Guo, F.; Qiu, S. D.; Hu, J. L.; Wang, H. H.; Cai, B. Y.; Li, J. J.; Yuan, X. C.; Liu, X. H.; Forberich, K.; Brabec, C. J. et al. A generalized crystallization protocol for scalable deposition of high-quality perovskite thin films for photovoltaic applications. Adv. Sci. 2019, 6, 1901067.

[30]

Abdollahi Nejand, B.; Hossain, I. M.; Jakoby, M.; Moghadamzadeh, S.; Abzieher, T.; Gharibzadeh, S.; Schwenzer, J. A.; Nazari, P.; Schackmar, F.; Hauschild, D. et al. Vacuum-assisted growth of low-bandgap thin films (FA0.8MA0.2Sn0.5Pb0.5I3) for all-perovskite tandem solar cells. Adv. Energy Mater. 2020, 10, 1902583.

[31]

Ke, W. J.; Spanopoulos, I.; Tu, Q.; Hadar, I.; Li, X. T.; Shekhawat, G. S.; Dravid, V. P.; Kanatzidis, M. G. Ethylenediammonium-based “hollow” Pb/Sn perovskites with ideal band gap yield solar cells with higher efficiency and stability. J. Am. Chem. Soc. 2019, 141, 8627–8637.

[32]
KeW. J.StoumposC. C.KanatzidisM. G. “Unleaded” Perovskites: Status quo and future prospects of tin-based perovskite solar cellsAdv. Mater.201931180323010.1002/adma.201803230

Ke, W. J.; Stoumpos, C. C.; Kanatzidis, M. G. “Unleaded” Perovskites: Status quo and future prospects of tin-based perovskite solar cells. Adv. Mater. 2019, 31, 1803230.

[33]

Wang, Z.; Zeng, L. X.; Zhang, C. L.; Lu, Y. L.; Qiu, S. D.; Wang, C.; Liu, C.; Pan, L. J.; Wu, S. H.; Hu, J. L. et al. Rational interface design and morphology control for blade-coating efficient flexible perovskite solar cells with a record fill factor of 81%. Adv. Funct. Mater. 2020, 30, 2001240.

[34]

Chen, C. R.; Zeng, L. X.; Jiang, Z. Y.; Xu, Z. H.; Chen, Y. J.; Wang, Z.; Chen, S.; Xu, B. M.; Mai, Y. H.; Guo, F. Vacuum-assisted preparation of high-quality quasi-2D perovskite thin films for large-area light-emitting diodes. Adv. Funct. Mater. 2022, 32, 2107644.

[35]

Tsai, H.; Nie, W. Y.; Blancon, J. C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 2016, 536, 312–316.

[36]

Yang, S.; Dai, J.; Yu, Z. H.; Shao, Y. C.; Zhou, Y.; Xiao, X.; Zeng, X. C.; Huang, J. S. Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 2019, 141, 5781–5787.

[37]

Singh, T.; Miyasaka, T. Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity. Adv. Energy Mater. 2018, 8, 1700677.

[38]

Kapil, G.; Ripolles, T. S.; Hamada, K.; Ogomi, Y.; Bessho, T.; Kinoshita, T.; Chantana, J.; Yoshino, K.; Shen, Q.; Toyoda, T. et al. Highly efficient 17.6% tin-lead mixed perovskite solar cells realized through spike structure. Nano Lett. 2018, 18, 3600–3607.

[39]

Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948.

[40]

Tan, H. R.; Jain, A.; Voznyy, O.; Lan, X. Z.; De Arquer, F. P. G.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M. J.; Zhang, B.; Zhao, Y. C. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355, 722–726.

[41]

Jodlowski, A. D.; Roldán-Carmona, C.; Grancini, G.; Salado, M.; Ralaiarisoa, M.; Ahmad, S.; Koch, N.; Camacho, L.; de Miguel, G.; Nazeeruddin, M. K. Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nat. Energy 2017, 2, 972–979.

[42]

Kim, J.; Shiah, Y. S.; Sim, K.; Iimura, S.; Abe, K.; Tsuji, M.; Sasase, M.; Hosono, H. High-performance P-channel tin halide perovskite thin film transistor utilizing a 2D−3D core–shell structure. Adv. Sci. 2022, 9, 2104993.

[43]

Kim, M. S.; Lee, J.; Kim, H. S.; Cho, A.; Shim, K. H.; Le, T. N.; An, S. S. A.; Han, J. W.; Kim, M. I.; Lee, J. Heme cofactor-resembling Fe-N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity. Adv. Funct. Mater. 2020, 30, 1905410.

[44]

Krysmann, M. J.; Kelarakis, A.; Dallas, P.; Giannelis, E. P. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 2012, 134, 747–750.

File
12274_2022_4894_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 June 2022
Revised: 23 July 2022
Accepted: 10 August 2022
Published: 02 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

C. H. is grateful for the financial support from China Scholarship Council. The work was supported by the National Natural Science Foundation of China (No. 62174069) and Natural Science Foundation of Guangdong Province (No. 2020A1515010853).

Return