Journal Home > Volume 16 , Issue 2

Integrated sensor combines multiple sensor functions into a single unit, which has the advantages of miniaturization and better application potential. However, limited by the sensing platforms of the sensor and the selectivity of the sensitive film, there are still challenges to realize multi-component gas detection in one unit. Herein, a principle integration method is proposed to achieve the multi-component gas detection based on the acoustics-electricity-mechanics coupling effect. The electrical and mechanical properties of the Bi2S3 nanobelts materials in different atmospheres indicate the possibility of realizing the principle integration. At the same time, the surface acoustic wave (SAW) sensor as a multivariable physical transducer can sense both electrical and mechanical properties. Upon exposure to 10 ppm NO2, NH3, and their mixtures, the integrated SAW gas sensor shows a 4.5 kHz positive frequency shift (acoustoelectric effect), an 11 kHz negative frequency shift (mechanics effects), and a reduced 4 kHz negative frequency shift (acoustics-electricity-mechanics coupling effect), respectively. Moreover, we realize wireless passive detection of NO2 and NH3 based on the SAW sensor. Our work provides valuable insights that can serve as a guide to the design and fabrication of single sensors offering multi-component gas detection via different gas sensing mechanisms.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Integrated sensor based on acoustics-electricity-mechanics coupling effect for wireless passive gas detection

Show Author's information Licheng Zhou1Bohui Zhai1Zhixiang Hu1Mingqi Zhang1Long Li1Xiangxin Wang1Guangzu Zhang1Jingting Luo3Honglang Li4Bingbing Chen5Shenglin Jiang1( )Hua-Yao Li1,2( )Huan Liu1
School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen Virtual University Park, Shenzhen 518000, China
Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China

Abstract

Integrated sensor combines multiple sensor functions into a single unit, which has the advantages of miniaturization and better application potential. However, limited by the sensing platforms of the sensor and the selectivity of the sensitive film, there are still challenges to realize multi-component gas detection in one unit. Herein, a principle integration method is proposed to achieve the multi-component gas detection based on the acoustics-electricity-mechanics coupling effect. The electrical and mechanical properties of the Bi2S3 nanobelts materials in different atmospheres indicate the possibility of realizing the principle integration. At the same time, the surface acoustic wave (SAW) sensor as a multivariable physical transducer can sense both electrical and mechanical properties. Upon exposure to 10 ppm NO2, NH3, and their mixtures, the integrated SAW gas sensor shows a 4.5 kHz positive frequency shift (acoustoelectric effect), an 11 kHz negative frequency shift (mechanics effects), and a reduced 4 kHz negative frequency shift (acoustics-electricity-mechanics coupling effect), respectively. Moreover, we realize wireless passive detection of NO2 and NH3 based on the SAW sensor. Our work provides valuable insights that can serve as a guide to the design and fabrication of single sensors offering multi-component gas detection via different gas sensing mechanisms.

Keywords: bismuth sulfide, surface acoustic wave, integrated gas sensor, coupling effect, wireless passive

References(64)

[1]

Song, Z. L.; Ye, W. H.; Chen, Z.; Chen, Z. S.; Li, M. T.; Tang, W. Y.; Wang, C.; Wan, Z. A.; Poddar, S.; Wen, X. L. et al. Wireless self-powered high-performance integrated nanostructured-gas-sensor network for future smart homes. ACS Nano 2021, 15, 7659–7667.

[2]

Jalil, A. R.; Chang, H.; Bandari, V. K.; Robaschik, P.; Zhang, J.; Siles, P. F.; Li, G. D.; Bürger, D.; Grimm, D.; Liu, X. Y. et al. Fully integrated organic nanocrystal diode as high performance room temperature NO2 sensor. Adv. Mater. 2016, 28, 2971–2977.

[3]

Zhao, L. J.; Zheng, Y. Q.; Wang, K.; Lv, C.; Wei, W.; Wang, L. L.; Han, W. Highly stable cross-linked cationic polyacrylamide/Ti3C2Tx MXene nanocomposites for flexible ammonia-recognition devices. Adv. Mater. Technol. 2020, 5, 2000248.

[4]

Huang, Y. F.; Jiao, W. C.; Chu, Z. M.; Wang, S. Y.; Chen, L. Y.; Nie, X. M.; Wang, R. G.; He, X. D. High sensitivity, humidity-independent, flexible NO2 and NH3 gas sensors based on SnS2 hybrid functional graphene Ink. ACS Appl. Mater. Interfaces 2020, 12, 997–1004.

[5]

Yavari, F.; Castillo, E.; Gullapalli, H.; Ajayan, P. M.; Koratkar, N. High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl. Phys. Lett. 2012, 100, 203120.

[6]

Van Cat, V.; Dinh, N. X.; Ngoc Phan, V.; Le, A. T.; Nam, M. H.; Dinh Lam, V.; Dang, T. V.; Quy, N. V. Realization of graphene oxide nanosheets as a potential mass-type gas sensor for detecting NO2, SO2, CO, and NH3. Mater. Today Commun. 2020, 25, 101682.

[7]

Boukhenane, M. L.; Redon, N.; Wojkiewicz, J. L.; Duc, C.; Coddeville, P. Novel and cost-efficient sensors for the concentration measurement of ammonia and ammonium nitrate particles. Sens. Transducers 2019, 237, 80–87.

[8]

Chai, J.; Liu, Q.; Liu, J. X.; Zhang, D. D. Optical fiber sensors based on novel polyimide for humidity monitoring of building materials. Opt. Fiber Technol. 2018, 41, 40–47.

[9]

Le, X. H.; Wang, X. Y.; Pang, J. T.; Liu, Y. J.; Fang, B.; Xu, Z.; Gao, C.; Xu, Y.; Xie, J. A high performance humidity sensor based on surface acoustic wave and graphene oxide on AlN/Si layered structure. Sens. Actuators B Chem. 2018, 255, 2454–2461.

[10]

Liu, H.; Li, M.; Voznyy, O.; Hu, L.; Fu, Q. Y.; Zhou, D. X.; Xia, Z.; Sargent, E. H.; Tang, J. Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 2014, 26, 2718–2724.

[11]

Hu, W. W.; Wan, L. T.; Jian, Y. Y.; Ren, C.; Jin, K.; Su, X. H.; Bai, X. X.; Haick, H.; Yao, M. S.; Wu, W. W. Electronic noses: From advanced materials to sensors aided with data processing. Adv. Mater. Technol. 2018, 4, 1800488.

[12]

Wang, R. C.; Lan, K.; Chen, Z.; Zhang, X. M.; Hung, C. T.; Zhang, W.; Wang, C. Y.; Wang, S.; Chen, A. B.; Li, W. et al. Janus mesoporous sensor devices for simultaneous multivariable gases detection. Matter 2019, 1, 1274–1284.

[13]

Devkota, J.; Kim, K. J.; Ohodnicki, P. R.; Culp, J. T.; Greve, D. W.; Lekse, J. W. Zeolitic imidazolate framework-coated acoustic sensors for room temperature detection of carbon dioxide and methane. Nanoscale 2018, 10, 8075–8087.

[14]

Luo, W.; Fu, Q. Y.; Zhou, D. X.; Deng, J. F.; Liu, H.; Yan, G. P. A surface acoustic wave H2S gas sensor employing nanocrystalline SnO2 thin film. Sens. Actuators B Chem. 2013, 176, 746–752.

[15]

Jakubik, W. P. Surface acoustic wave-based gas sensors. Thin Solid Films 2011, 520, 986–993.

[16]

Sil, D.; Hines, J.; Udeoyo, U.; Borguet, E. Palladium nanoparticle-based surface acoustic wave hydrogen sensor. ACS Appl. Mater. Interfaces 2015, 7, 5709–5714.

[17]

Mujahid, A.; Dickert, F. L. Surface acoustic wave (SAW) for chemical sensing applications of recognition layers. Sensors 2017, 17, 2716.

[18]

Bartley, D. L.; Dominguez, D. D. Elastic effects of polymer coatings on surface acoustic waves. Anal. Chem. 1990, 62, 1649–1656.

[19]

Asad, M.; Sheikhi, M. H. Surface acoustic wave based H2S gas sensors incorporating sensitive layers of single wall carbon nanotubes decorated with Cu nanoparticles. Sens. Actuators B Chem. 2014, 198, 134–141.

[20]

Wang, X. D.; Wang, W.; Li, H. L.; Fu, C.; Ke, Y. B.; He, S. T. Development of a SnO2/CuO-coated surface acoustic wave-based H2S sensor with switch-like response and recovery. Sens. Actuators B Chem. 2012, 169, 10–16.

[21]

Chen, Z.; Zhou, J.; Tang, H.; Liu, Y.; Shen, Y. P.; Yin, X. B.; Zheng, J. P.; Zhang, H. S.; Wu, J. H.; Shi, X. L. et al. Ultrahigh-frequency surface acoustic wave sensors with giant mass-loading effects on electrodes. ACS Sens. 2020, 5, 1657–1664.

[22]

Ramakrishnan, N.; Nemade, H. B.; Palathinkal, R. P. Mass loading in coupled resonators consisting of SU-8 micropillars fabricated over SAW devices. IEEE Sens. J. 2011, 11, 430–431.

[23]

Kan, H.; Li, M.; Song, Z. L.; Liu, S. S.; Zhang, B. H.; Liu, J. Y.; Li, M. Y.; Zhang, G. Z.; Jiang, S. L.; Liu, H. Highly sensitive response of solution-processed bismuth sulfide nanobelts for room-temperature nitrogen dioxide detection. J. Colloid Interface Sci. 2017, 506, 102–110.

[24]

Fu, T. X. Sensing behavior of CdS nanoparticles to SO2, H2S and NH3 at room temperature. Mater. Res. Bull. 2013, 48, 1784–1790.

[25]

Fu, T. X. Gas sensor based on three dimensional Bi2S3 nanowires network for ammonia detection at room temperature. Mater. Res. Bull. 2018, 99, 460–465.

[26]

Chen, G. H.; Yu, Y. Q.; Zheng, K.; Ding, T.; Wang, W. L.; Jiang, Y.; Yang, Q. Fabrication of ultrathin Bi2S3 nanosheets for high-performance, flexible, visible-NIR photodetectors. Small 2015, 11, 2848–2855.

[27]

Zhang, H.; Huang, J.; Zhou, X. G.; Zhong, X. H. Single-crystal Bi2S3 nanosheets growing via attachment-recrystallization of nanorods. Inorg. Chem. 2011, 50, 7729–7734.

[28]

Afsar, M. F.; Rafiq, M. A.; Jamil, A.; Fareed, S.; Siddique, F.; Tok, A. I. Y.; Hasan, M. M. U. Development of high-performance bismuth sulfide nanobelts humidity sensor and effect of humid environment on its transport properties. ACS Omega 2019, 4, 2030–2039.

[29]

Zhou, L. C.; Hu, Z. X.; Li, H. Y.; Liu, J. Y.; Zeng, Y.; Wang, J. S.; Huang, Y. F.; Miao, L.; Zhang, G. Z.; Huang, Y. A. et al. Template-free construction of tin oxide porous hollow microspheres for room-temperature gas sensors. ACS Appl. Mater. Interfaces 2021, 13, 25111–25120.

[30]

Tarapoulouzi, M.; Kokkinofta, R.; Theocharis, C. R. Chemometric analysis combined with FTIR spectroscopy of milk and halloumi cheese samples according to species’ origin. Food Sci. Nutr. 2020, 8, 3262–3273.

[31]

He, Y. Y.; Wu, P.; Xiao, W.; Li, G. Y.; Yi, J. C.; He, Y. F.; Chen, C. M.; Ding, P.; Duan, Y. Y. Efficient removal of Pb(II) from aqueous solution by a novel ion imprinted magnetic biosorbent: Adsorption kinetics and mechanisms. PLoS One 2019, 14, e0213377.

[32]

Zhang, B. H.; Tang, Y.; Wu, X. J.; Xie, H. J.; Zhao, F. Q.; Zeng, B. Z. Experimental and DFT studies of novel Z-scheme Bi-doped Bi2WO6/Bi2S3 p-n/n homo/heterojunction and its application in cathodic photoelectrochemical immunosensing. Sens. Actuators B Chem. 2021, 346, 130455.

[33]

Ghoreishian, S. M.; Ranjith, K. S.; Park, B.; Hwang, S. K.; Hosseini, R.; Behjatmanesh-Ardakani, R.; Pourmortazavi, S. M.; Lee, H. U.; Son, B.; Mirsadeghi, S. et al. Full-spectrum-responsive Bi2S3@CdS S-scheme heterostructure with intimated ultrathin RGO toward photocatalytic Cr(VI) reduction and H2O2 production: Experimental and DFT studies. Chem. Eng. J. 2021, 419, 129530.

[34]

Liu, H.; Gong, S. P.; Hu, Y. X.; Liu, J. Q.; Zhou, D. X. Properties and mechanism study of SnO2 nanocrystals for H2S thick-film sensors. Sens. Actuators B Chem. 2009, 140, 190–195.

[35]

Liu, H.; Wan, J. X.; Fu, Q. Y.; Li, M.; Luo, W.; Zheng, Z. P.; Cao, H. F.; Hu, Y. X.; Zhou, D. X. Tin oxide films for nitrogen dioxide gas detection at low temperatures. Sens. Actuators B Chem. 2013, 177, 460–466.

[36]

Liu, J. Y.; Hu, Z. X.; Zhang, Y. Z.; Li, H. Y.; Gao, N. B.; Tian, Z. L.; Zhou, L. C.; Zhang, B. H.; Tang, J.; Zhang, J. B. et al. MoS2 nanosheets sensitized with quantum dots for room-temperature gas sensors. Nano-Micro Lett. 2020, 12, 59.

[37]

Abraham, N.; Reshma Krishnakumar, R.; Unni, C.; Philip, D. Simulation studies on the responses of ZnO-CuO/CNT nanocomposite based SAW sensor to various volatile organic chemicals. J. Sci. Adv. Mater. Dev. 2019, 4, 125–131.

[38]
Sadek, A. Z.; Wlodarski, W.; Kalantar-Zadeh, K.; Powell, D. A.; Hughes, W. L.; Buchine, B. A.; Wang, Z. L. H2 and NO2 gas sensors with ZnO nanobelts layer on 36° LiTaO3 and 64° LiNbO3 SAW transducers. In: SENSORS, 2005 IEEE, Irvine, CA, USA, 2005, pp1343–1346.
[39]

Li, H.; Li, M.; Kan, H.; Li, C.; Quan, A. J.; Fu, C.; Luo, J. T.; Liu, X. L.; Wang, W.; Yang, Z. B. et al. Surface acoustic wave NO2 sensors utilizing colloidal SnS quantum dot thin films. Surf. Coat. Technol. 2019, 362, 78–83.

[40]

Zhou, L. C.; Hu, Z. X.; Wang, P.; Gao, N. B.; Zhai, B. H.; Ouyang, M.; Zhang, G. Z.; Chen, B. B.; Luo, J. T.; Jiang, S. L. et al. Enhanced NO2 sensitivity of SnO2 SAW gas sensors by facet engineering. Sens. Actuators B Chem. 2022, 361, 131735.

[41]

Rana, L.; Gupta, R.; Kshetrimayum, R.; Tomar, M.; Gupta, V. Fabrication of surface acoustic wave based wireless NO2 gas sensor. Surf. Coat. Technol. 2018, 343, 89–92.

[42]

Pasupuleti, K. S.; Nam, D. J.; Bak, N. H.; Reddeppa, M.; Oh, J. E.; Kim, S. G.; Cho, H. D.; Kim, M. D. Highly sensitive g-C3N4 nanosheets as a potential candidate for the effective detection of NO2 gas via Langasite-based surface acoustic wave gas sensor. J. Mater. Chem. C 2022, 10, 160–170.

[43]

Al-Mashat, L.; Tran, H. D.; Wlodarski, W.; Kaner, R. B.; Kalantar-Zadeh, K. Polypyrrole nanofiber surface acoustic wave gas sensors. Sens. Actuators B Chem. 2008, 134, 826–831.

[44]

Yan, X. F.; Li, D. M.; Hou, C. C.; Wang, X.; Zhou, W.; Liu, M.; Ye, T. C. Comparison of response towards NO2 and H2S of PPy and PPy/TiO2 as SAW sensitive films. Sens. Actuators B Chem. 2012, 161, 329–333.

[45]

Pasupuleti, K. S.; Reddeppa, M.; Nam, D. J.; Bak, N. H.; Peta, K. R.; Cho, H. D.; Kim, S. G.; Kim, M. D. Boosting of NO2 gas sensing performances using GO-PEDOT: PSS nanocomposite chemical interface coated on Langasite-based surface acoustic wave sensor. Sens. Actuators B Chem. 2021, 344, 130267.

[46]

Hu, Y. W.; Xiang, J. W.; Sun, X. Y.; Xu, C. Z.; Wang, S.; Duan, J. A. Sensitivity improvement of SAW NO2 sensors by p-n heterojunction nanocomposite based on MWNTs skeleton. IEEE Sens. J. 2016, 16, 287–292.

[47]

Tang, Q. B.; Guo, Y. J.; Tang, Y. L.; Long, G. D.; Wang, J. L.; Li, D. J.; Zu, X. T.; Ma, J. Y.; Wang, L.; Torun, H. et al. Highly sensitive and selective Love mode surface acoustic wave ammonia sensor based on graphene oxides operated at room temperature. J. Mater. Sci. 2019, 54, 11925–11935.

[48]

Long, G. D.; Guo, Y. J.; Li, W.; Tang, Q. B.; Zu, X. T.; Ma, J. Y.; Du, B.; Fu, Y. Q. Surface acoustic wave ammonia sensor based on ZnS mucosal-like nanostructures. Microelectron. Eng. 2020, 222, 111201.

[49]

Xu, X. F.; Zu, X. T.; Ao, D. Y.; Yu, J. X.; Xiang, X.; Xie, W. F.; Tang, Y. L.; Li, S. A.; Fu, Y. Q. NH3-sensing mechanism using surface acoustic wave sensor with AlO(OH) film. Nanomaterials 2019, 9, 1732.

[50]

Zhu, H.; Xie, D.; Lin, S. X.; Zhang, W. T.; Yang, Y. W.; Zhang, R. J.; Shi, X.; Wang, H. Y.; Zhang, Z. Q.; Zu, X. T. et al. Elastic loading enhanced NH3 sensing for surface acoustic wave sensor with highly porous nitrogen doped diamond like carbon film. Sens. Actuators B Chem. 2021, 344, 130175.

[51]

Constantinoiu, I.; Miu, D.; Viespe, C. Surface acoustic wave sensors for ammonia detection at room temperature based on SnO2/Co3O4 bilayers. J. Sens. 2019, 2019, 8203810.

[52]

Guo, Y. J.; Long, G. D.; Tang, Y. L.; Wang, J. L.; Tang, Q. B.; Zu, X. T.; Ma, J. Y.; Du, B.; Torun, H.; Fu, Y. Q. Surface acoustic wave ammonia sensor based on SiO2-SnO2 composite film operated at room temperature. Smart Mater. Struct. 2020, 29, 95003.

[53]

Tang, Y. L.; Ao, D. Y.; Li, W.; Zu, X. T.; Li, S. A.; Fu, Y. Q. NH3 sensing property and mechanisms of quartz surface acoustic wave sensors deposited with SiO2, TiO2, and SiO2-TiO2 composite films. Sens. Actuators B Chem. 2018, 254, 1165–1173.

[54]

Tang, Y. L.; Li, Z. J.; Ma, J. Y.; Guo, Y. J.; Fu, Y. Q.; Zu, X. T. Ammonia gas sensors based on ZnO/SiO2 bi-layer nanofilms on ST-cut quartz surface acoustic wave devices. Sens. Actuators B Chem. 2014, 201, 114–121.

[55]

Šetka, M.; Bahos, F. A.; Matatagui, D.; Kral, Z.; Gràcia, I.; Drbohlavová, J.; Vallejos, S. Polypyrrole based love-wave gas sensor devices with enhanced properties to ammonia. Proceedings 2018, 2, 786.

[56]

Wang, W.; Liu, X. L.; Mei, S. C.; Jia, Y. N.; Liu, M. W.; Xue, X. F.; Yang, D. C. Development of a Pd/Cu nanowires coated SAW hydrogen gas sensor with fast response and recovery. Sens. Actuators B Chem. 2019, 287, 157–164.

[57]

Müller, C.; Nateprov, A. A.; Obermeier, G.; Klemm, M.; Tidecks, R.; Wixforth, A.; Horn, S. Surface acoustic wave investigations of the metal-to-insulator transition of V2O3 thin films on lithium niobate. J. Appl. Phys. 2005, 98, 084111.

[58]

Li, M.; Kan, H.; Chen, S. T.; Feng, X. Y.; Li, H.; Li, C.; Fu, C.; Quan, A. J.; Sun, H. B.; Luo, J. T. et al. Colloidal quantum dot-based surface acoustic wave sensors for NO2-sensing behavior. Sens. Actuators B Chem. 2019, 287, 241–249.

[59]

Russ, T.; Hu, Z. X.; Junker, B.; Liu, H.; Weimar, U.; Barsan, N. Operando investigation of the aging mechanism of lead sulfide colloidal quantum dots in an oxidizing background. J. Phys. Chem. C 2021, 125, 19847–19857.

[60]

Zhu, L.; Zhong, Z. P.; Xue, J. M.; Xu, Y. Y.; Wang, C. H.; Wang, L. X. NH3-SCR performance and the resistance to SO2 for Nb doped vanadium based catalyst at low temperatures. J. Environ. Sci. 2018, 65, 306–316.

[61]

Pan, Y.; Molin, Q.; Guo, T. X.; Zhang, L.; Cao, B. Q.; Yang, J. C.; Wang, W.; Xue, X. F. Wireless passive surface acoustic wave (SAW) technology in gas sensing. Sens. Rev. 2021, 41, 135–143.

[62]

Greve, D. W.; Chin, T. L.; Zheng, P.; Ohodnicki, P.; Baltrus, J.; Oppenheim, I. J. Surface acoustic wave devices for harsh environment wireless sensing. Sensors 2013, 13, 6910–6935.

[63]

Rabus, D.; Friedt, J. M.; Arapan, L.; Lamare, S.; Baqué, M.; Audouin, G.; Chérioux, F. Subsurface H2S detection by a surface acoustic wave passive wireless sensor interrogated with a ground penetrating radar. ACS Sens. 2020, 5, 1075–1081.

[64]

Lim, C.; Wang, W.; Yang, S.; Lee, K. Development of SAW-based multi-gas sensor for simultaneous detection of CO2 and NO2. Sens. Actuators B Chem. 2011, 154, 9–16.

File
12274_2022_4892_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 June 2022
Revised: 09 August 2022
Accepted: 09 August 2022
Published: 26 August 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61922032). We thank the Program for the Academic Frontier Youth Team of Huazhong University of Science and Technology (HUST) (No. 2018QYTD06) and the Innovation Fund of Wuhan National Laboratory for Optoelectronics. We thank the Analytical and Testing Center of HUST for the characterization support.

Return