AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The promoting effect of interstitial hydrogen on the oxygen reduction performance of PtPd alloy nanotubes for fuel cells

Tingting Chao1,§Xuan Luo2,§Mengzhao Zhu1,§Yanmin Hu1Yida Zhang3Yunteng Qu1Hantao Peng4Xiaoshuang Shen5Xusheng Zheng3Liang Zhang2( )Xun Hong1( )
Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
Country Center for Combustion Energy and School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, China
Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
School of Physical Science and Technology, Yangzhou University, Yangzhou 225002, China

§ Tingting Chao, Xuan Luo, and Mengzhao Zhu contributed equally to this work.

Show Author Information

Graphical Abstract

Interfacial reaction driving force together with capillary force facilitates the transient infiltration of molten Li into a three-dimensional (3D) host for stable 3D composite lithium anode.

Abstract

Highly efficient and stable oxygen reduction reaction (ORR) electrocatalysts are remarkably important but challenging for advancing the large-scale commercialization of practical proton exchange membrane fuel cells (PEMFCs). In this work, we report that the introduction of interstitial hydrogen atoms into PtPd nanotubes can significantly promote ORR performance without scarifying the durability. The enhanced mass activity was 8.8 times higher than that of commercial Pt/C. The accelerated durability test showed negligible activity attenuation after 30,000 cycles. Additionally, H2/O2 fuel cell tests further verified the excellent activity of PtPd-H nanotubes with a maximum power density of 1.32 W·cm−2, superior to that of commercial Pt/C (1.16 W·cm−2). Density functional theory calculations demonstrated the incorporation of hydrogen atoms gives rise to the broadening of Pt d-band and the downshift of d-band center, which consequently leads to the weaker intermediates binding and enhanced ORR activity.

Electronic Supplementary Material

Download File(s)
12274_2022_4891_MOESM1_ESM.pdf (2.6 MB)

References

[1]

Stephens, I. E. L.; Rossmeisl, J.; Chorkendorff, I. Toward sustainable fuel cells. Science 2016, 354, 1378–1379.

[2]

Weydahl, H.; Gilljam, M.; Lian, T.; Johannessen, T. C.; Holm, S. I.; Hasvold, J. Ø. Fuel cell systems for long-endurance autonomous underwater vehicles—Challenges and benefits. Int. J. Hydrog. Energy 2020, 45, 5543–5553.

[3]

Wang, X. X.; Swihart, M. T.; Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578–589.

[4]

Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

[5]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[6]

Hu, Y. M.; Zhu, M. Z.; Luo, X.; Wu, G.; Chao, T. T.; Qu, Y. T.; Zhou, F. Y.; Sun, R. B.; Han, X.; Li, H. et al. Coplanar Pt/C nanomeshes with ultrastable oxygen reduction performance in fuel cells. Angew. Chem., Int. Ed. 2021, 60, 6533–6538.

[7]

Han, A.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

[8]

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p–d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 134, e202115735.

[9]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[10]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[11]

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. H.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

[12]

Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

[13]

Wu, Z. P.; Caracciolo, D. T.; Maswadeh, Y.; Wen, J. G.; Kong, Z. J.; Shan, S. Y.; Vargas, J. A.; Yan, S.; Hopkins, E.; Park, K. et al. Alloying–realloying enabled high durability for Pt–Pd-3d-transition metal nanoparticle fuel cell catalysts. Nat. Commun. 2021, 12, 859.

[14]

Chen, S.; Zhao, J. K.; Su, H. Y.; Li, H. L.; Wang, H. L.; Hu, Z. P.; Bao, J.; Zeng, J. Pd–Pt tesseracts for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 496–503.

[15]

Wang, X.; Choi, S. I.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M. F.; Liu, J. Y.; Xie, Z. X.; Herron, J. A. et al. Palladium–platinum core–shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 2015, 6, 7594.

[16]

Sasaki, K.; Naohara, H.; Cai, Y.; Choi, Y. M.; Liu, P.; Vukmirovic, M. B.; Wang, J. X.; Adzic, R. R. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew. Chem., Int. Ed. 2010, 49, 8602–8607.

[17]

Lu, B. A.; Shen, L. F.; Liu, J.; Zhang, Q. H.; Wan, L. Y.; Morris, D. J.; Wang, R. X.; Zhou, Z. Y.; Li, G.; Sheng, T. et al. Structurally disordered phosphorus-doped Pt as a highly active electrocatalyst for an oxygen reduction reaction. ACS Catal. 2020, 11, 355–363.

[18]

Guo, Q.; Chen, R. T.; Guo, J. P.; Qin, C.; Xiong, Z. T.; Yan, H. X.; Gao, W. B.; Pei, Q. J.; Wu, A. A.; Chen, P. Enabling semihydrogenation of alkynes to alkenes by using a calcium palladium complex hydride. J. Am. Chem. Soc. 2021, 143, 20891–20897.

[19]

Kobayashi, K.; Kobayashi, H.; Maesato, M.; Hayashi, M.; Yamamoto, T.; Yoshioka, S.; Matsumura, S.; Sugiyama, T.; Kawaguchi, S.; Kubota, Y. et al. Discovery of hexagonal structured Pd–B nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 6578–6582.

[20]

Chen, T. Y.; Ellis, I.; Hooper, T. J. N.; Liberti, E.; Ye, L.; Lo, B. T. W.; O’Leary, C.; Sheader, A. A.; Martinez, G. T.; Jones, L. et al. Interstitial boron atoms in the palladium lattice of an industrial type of nanocatalyst: Properties and structural modifications. J. Am. Chem. Soc. 2019, 141, 19616–19624.

[21]
Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, in press, https://doi.org./10.1007/s12274-022-4429-9.
[22]

Hong, J.; Bae, J. H.; Jo, H.; Park, H. Y.; Lee, S.; Hong, S. J.; Chun, H.; Cho, M. K.; Kim, J.; Kim, J. et al. Metastable hexagonal close-packed palladium hydride in liquid cell TEM. Nature 2022, 603, 631–636.

[23]

Chen, T. Y.; Foo, C.; Tsang, S. C. E. Interstitial and substitutional light elements in transition metals for heterogeneous catalysis. Chem. Sci. 2021, 12, 517–532.

[24]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[25]

Ai, X.; Zou, X.; Chen, H.; Su, Y. T.; Feng, X. L.; Li, Q. J.; Liu, Y. P.; Zhang, Y.; Zou, X. X. Transition-metal-boron intermetallics with strong interatomic d–sp orbital hybridization for high-performance electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 3961–3965.

[26]

Vo Doan, T. T.; Wang, J. B.; Poon, K. C.; Tan, D. C. L.; Khezri, B.; Webster, R. D.; Su, H. B.; Sato, H. Theoretical modelling and facile synthesis of a highly active boron-doped palladium catalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2016, 55, 6842–6847.

[27]

Fan, J. C.; Wu, J. D.; Cui, X. Q.; Gu, L.; Zhang, Q. H.; Meng, F. Q.; Lei, B. H.; Singh, D. J.; Zheng, W. T. Hydrogen stabilized RhPdH 2D bimetallene nanosheets for efficient alkaline hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 3645–3651.

[28]

Dekura, S.; Kobayashi, H.; Ikeda, R.; Maesato, M.; Yoshino, H.; Ohba, M.; Ishimoto, T.; Kawaguchi, S.; Kubota, Y.; Yoshioka, S. et al. The electronic state of hydrogen in the α phase of the hydrogen-storage material PdH(D)x: Does a chemical bond between palladium and hydrogen exist? Angew. Chem., Int. Ed. 2018, 57, 9823–9827.

[29]

Kim, J.; Kim, H.; Lee, W. J.; Ruqia, B.; Baik, H.; Oh, H. S.; Paek, S. M.; Lim, H. K.; Choi, C. H.; Choi, S. I. Theoretical and experimental understanding of hydrogen evolution reaction kinetics in alkaline electrolytes with Pt-based core–shell nanocrystals. J. Am. Chem. Soc. 2019, 141, 18256–18263.

[30]

Lu, Y. Z.; Wang, J.; Peng, Y. C.; Fisher, A.; Wang, X. Highly efficient and durable Pd hydride nanocubes embedded in 2D amorphous NiB nanosheets for oxygen reduction reaction. Adv. Energy Mater. 2017, 7, 1700919.

[31]

Shi, Y. F.; Schimmenti, R.; Zhu, S. Q.; Venkatraman, K.; Chen, R. H.; Chi, M. F.; Shao, M. H.; Mavrikakis, M.; Xia, Y. N. Solution-phase synthesis of PdH0.706 nanocubes with enhanced stability and activity toward formic acid oxidation. J. Am. Chem. Soc. 2022, 144, 2556–2568.

[32]

Li, H. Q.; Zeng, R.; Feng, X. R.; Wang, H. S.; Xu, W. X.; Lu, X. Y.; Xie, Z. X.; Abruña, H. D. Oxidative stability matters: A case study of palladium hydride nanosheets for alkaline fuel cells. J. Am. Chem. Soc. 2022, 144, 8106–8114.

[33]

Lin, B. Q.; Wu, X.; Xie, L.; Kang, Y. Q.; Du, H. D.; Kang, F. Y.; Li, J.; Gan, L. Atomic imaging of subsurface interstitial hydrogen and insights into surface reactivity of palladium hydrides. Angew. Chem., Int. Ed. 2020, 59, 20348–20352.

[34]

Zhao, Z. P.; Huang, X. Q.; Li, M. F.; Wang, G. M.; Lee, C.; Zhu, E. B.; Duan, X. F.; Huang, Y. Synthesis of stable shape-controlled catalytically active β-palladium hydride. J. Am. Chem. Soc. 2015, 137, 15672–15675.

[35]

Dai, Y.; Mu, X. L.; Tan, Y. M.; Lin, K. Q.; Yang, Z. L; Zheng, N. F.; Fu G. Carbon monoxide-assisted synthesis of single-crystalline Pd tetrapod nanocrystals through hydride formation. J. Am. Chem. Soc. 2012, 134, 7073–7080.

[36]

Xu, W. C.; Fan, G. L.; Chen, J. L.; Li, J. H.; Zhang, L.; Zhu, S. L.; Su, X. C.; Cheng, F. Y.; Chen, J. Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions. Angew. Chem., Int. Ed. 2020, 59, 3511–3516.

[37]

Narayan, T. C.; Baldi, A.; Koh, A. L.; Sinclair, R.; Dionne, J. A. Reconstructing solute-induced phase transformations within individual nanocrystals. Nat. Mater. 2016, 15, 768–774.

[38]

Fan, J. C.; Cui, X. Q.; Yu, S. S.; Gu, L.; Zhang, Q. H.; Meng, F. Q.; Peng, Z. Q.; Ma, L. O.; Ma, J. Y.; Qi, K. et al. Interstitial hydrogen atom modulation to boost hydrogen evolution in Pd-based alloy nanoparticles. ACS Nano 2019, 13, 12987–12995.

[39]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[40]

Greeley, J.; Nørskov, J. K. A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys. Surf. Sci. 2005, 592, 104–111.

Nano Research
Pages 2366-2372
Cite this article:
Chao T, Luo X, Zhu M, et al. The promoting effect of interstitial hydrogen on the oxygen reduction performance of PtPd alloy nanotubes for fuel cells. Nano Research, 2023, 16(2): 2366-2372. https://doi.org/10.1007/s12274-022-4891-4
Topics:

1335

Views

7

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 17 June 2022
Revised: 08 August 2022
Accepted: 09 August 2022
Published: 30 August 2022
© Tsinghua University Press 2022
Return