Journal Home > Volume 15 , Issue 10

Vast amounts of electromagnetic waves are generated in modern society, which severely endanger human health and cause instrument disturbance. Furthermore, practical application of electromagnetic shielding polymer-based materials aspires to flame retardancy. Herein, cellulose acetate butyrate modified ammonium polyphosphate (CAPP) and phosphoramide flame retardant decorated short carbon fiber (MSCF) were synthesized separately and then simultaneously blended into thermoplastic polyurethane (TPU) to prepare a series of flame retardant TPU composites. Then, the multi-hierarchical flexible TPU/CAPP/MSCF composites were fabricated via our self-developed air-assisted thermocompression method. The results revealed that the TPU/CAPP/MSCF showed improved thermal stability. Moreover, the TPU/10CA/2.5F incorporated with 10.0 wt.% CAPP and 2.5 wt.% MSCF respectively exhibited 77.8% and 58.6% reduction in peak of heat release rate (PHRR) and total heat release (THR), compared to those of pure TPU. In addition, the TPU/10CA/2.5F passed the UL-94 V-0 rating test and achieved a higher limit oxygen index (LOI) (27.3%) than pure TPU (21.7%). In the case of electromagnetic interference shielding effectiveness (EMI SE), the TPU/10CA/10.0F-SW with 10 wt.% CAPP and 10 wt.% MSCF dispersed in the surface layer and Ti3C2Tx MXene intercalated in the interlayer exhibited EMI SE of 43.8 dB in X band and 32.0 dB in K band. Summarily, synergistic effect between CAPP and MSCF together with scattered and multiply adsorbed effect of MSCF, MXene and CAPP was responsible for fire safety and EMI shielding property improvements. This work provides a fascinating strategy for fabricating multi-hierarchical flexible TPU composites with outstanding flame retardant and EMI shielding performances.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multi-hierarchical flexible composites towards superior fire safety and electromagnetic interference shielding

Show Author's information Kexin Chen1Miao Liu1Yongqian Shi1( )Hengrui Wang1Libi Fu2Yuezhan Feng3Pingan Song4
College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
Centre for Future Materials, University of Southern Queensland, Springfield, QLD 4350, Australia

Abstract

Vast amounts of electromagnetic waves are generated in modern society, which severely endanger human health and cause instrument disturbance. Furthermore, practical application of electromagnetic shielding polymer-based materials aspires to flame retardancy. Herein, cellulose acetate butyrate modified ammonium polyphosphate (CAPP) and phosphoramide flame retardant decorated short carbon fiber (MSCF) were synthesized separately and then simultaneously blended into thermoplastic polyurethane (TPU) to prepare a series of flame retardant TPU composites. Then, the multi-hierarchical flexible TPU/CAPP/MSCF composites were fabricated via our self-developed air-assisted thermocompression method. The results revealed that the TPU/CAPP/MSCF showed improved thermal stability. Moreover, the TPU/10CA/2.5F incorporated with 10.0 wt.% CAPP and 2.5 wt.% MSCF respectively exhibited 77.8% and 58.6% reduction in peak of heat release rate (PHRR) and total heat release (THR), compared to those of pure TPU. In addition, the TPU/10CA/2.5F passed the UL-94 V-0 rating test and achieved a higher limit oxygen index (LOI) (27.3%) than pure TPU (21.7%). In the case of electromagnetic interference shielding effectiveness (EMI SE), the TPU/10CA/10.0F-SW with 10 wt.% CAPP and 10 wt.% MSCF dispersed in the surface layer and Ti3C2Tx MXene intercalated in the interlayer exhibited EMI SE of 43.8 dB in X band and 32.0 dB in K band. Summarily, synergistic effect between CAPP and MSCF together with scattered and multiply adsorbed effect of MSCF, MXene and CAPP was responsible for fire safety and EMI shielding property improvements. This work provides a fascinating strategy for fabricating multi-hierarchical flexible TPU composites with outstanding flame retardant and EMI shielding performances.

Keywords: MXene, electromagnetic interference shielding, flame retardancy, multi-hierarchical structure, air-assisted thermocompression

References(71)

1

Gao, C. Q.; Shi, Y. Q.; Chen, Y. J.; Zhu, S. C.; Feng, Y. Z.; Lv, Y. C.; Yang, F. Q.; Liu, M. H.; Shui, W. Constructing segregated polystyrene composites for excellent fire resistance and electromagnetic wave shielding. J. Colloid Interface Sci. 2022, 606, 1193–1204.

2

Sun, Z. P.; Chen, J. L.; Jia, X. C.; Wang, G. Q.; Shen, B.; Zheng, W. G. Humidification of high-performance and multifunctional polyimide/carbon nanotube composite foams for enhanced electromagnetic shielding. Mater. Today Phys. 2021, 21, 100521.

3

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

4

Shen, B.; Zhai, W. T.; Zheng, W. G. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 2014, 24, 4542–4548.

5

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

6

Pan, M. Z.; Mei, C. T.; Du, J.; Li, G. C. Synergistic effect of Nano silicon dioxide and ammonium polyphosphate on flame retardancy of wood fiber-polyethylene composites. Compos. Part A:Appl. Sci. Manuf. 2014, 66, 128–134.

7

Savas, L. A.; Deniz, T. K.; Tayfun, U.; Dogan, M. Effect of microcapsulated red phosphorus on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral. Polym. Degrad. Stabil. 2017, 135, 121–129.

8

Wilke, A.; Langfeld, K.; Ulmer, B.; Andrievici, V.; Hörold, A.; Limbach, P.; Bastian, M.; Schartel, B. Halogen-free multicomponent flame retardant thermoplastic styrene-ethylene-butylene-styrene elastomers based on ammonium polyphosphate-expandable graphite synergy. Ind. Eng. Chem. Res. 2017, 56, 8251–8263.

9

Sut, A.; Metzsch-Zilligen, E.; Großhauser, M.; Pfaendner, R.; Schartel, B. Synergy between melamine cyanurate, melamine polyphosphate and aluminum diethylphosphinate in flame retarded thermoplastic polyurethane. Polym. Test. 2019, 74, 196–204.

10

Zhu, M.; Zhang, Y.; Sheng, H. B.; Wang, B. B.; Hu, Y. Effect carbon black microencapsulated ammonium polyphosphate on the flame retardancy and mechanical properties of polyurethane composites. Polym. Plast. Technol. Mater. 2020, 59, 83–94.

11

Gao, W. Y.; Qian, X. D.; Wang, S. J. Preparation of hybrid silicon materials microcapsulated ammonium polyphosphate and its application in thermoplastic polyurethane. J. Appl. Polym. Sci. 2018, 135, 45742.

12

Bahri, Z. E.; Taverdet, J. L. Preparation and optimization of 2,4-D loaded cellulose derivatives microspheres by solvent evaporation technique. J. Appl. Polym. Sci. 2007, 103, 2742–2751.

13

Wang, B. B.; Tang, Q. B.; Hong, N. N.; Song, L.; Wang, L.; Shi, Y. Q.; Hu, Y. Effect of cellulose acetate butyrate microencapsulated ammonium polyphosphate on the flame retardancy, mechanical, electrical, and thermal properties of intumescent flame-retardant ethylene-vinyl acetate copolymer/microencapsulated ammonium polyphosphate/polyamide-6 blends. ACS Appl. Mater. Interfaces 2011, 3, 3754–3761.

14

Kuzhir, P.; Paddubskaya, A.; Bychanok, D.; Liubimau, A.; Ortona, A.; Fierro, V.; Celzard, A. 3D-printed, carbon-based, lossy photonic crystals: Is high electrical conductivity the must? Carbon 2021, 171, 484–492.

15

Letellier, M.; Macutkevic, J.; Kuzhir, P.; Banys, J.; Fierro, V.; Celzard, A. Electromagnetic properties of model vitreous carbon foams. Carbon 2017, 122, 217–227.

16

Kuzhir, P. P.; Paddubskaya, A. G.; Volynets, N. I.; Batrakov, K. G.; Kaplas, T.; Lamberti, P.; Kotsilkova, R.; Lambin, P. Main principles of passive devices based on graphene and carbon films in microwave-THz frequency range. J. Nanophotonics. 2017, 11, 032504.

17

Lecocq, H.; Garois, N.; Lhost, O.; Girard, P. F.; Cassagnau, P.; Serghei, A. Polypropylene/carbon nanotubes composite materials with enhanced electromagnetic interference shielding performance: Properties and modeling. Compos. Part B:Eng. 2020, 189, 107866.

18

Sobha, A. P.; Sreekala, P. S.; Narayanankutty, S. K. Electrical, thermal, mechanical and electromagnetic interference shielding properties of PANI/FMWCNT/TPU composites. Prog. Org. Coat. 2017, 113, 168–174.

19

Duan, N. M.; Shi, Z. Y.; Wang, J. L.; Wang, G. L.; Zhang, X. Z. Strong and flexible carbon fiber fabric reinforced thermoplastic polyurethane composites for high-performance EMI shielding applications. Macromol. Mater. Eng. 2020, 305, 1900829.

20

Lu, J. Y.; Zhang, Y.; Tao, Y. J.; Wang, B. B.; Cheng, W. H.; Jie, G. X.; Song, L.; Hu, Y. Self-healable castor oil-based waterborne polyurethane/MXene film with outstanding electromagnetic interference shielding effectiveness and excellent shape memory performance. J. Colloid Interface Sci. 2021, 588, 164–174.

21

Verma, M.; Chauhan, S. S.; Dhawan, S. K.; Choudhary, V. Graphene nanoplatelets/carbon nanotubes/polyurethane composites as efficient shield against electromagnetic polluting radiations. Compos. Part B:Eng. 2017, 120, 118–127.

22

Batrakov, K.; Kuzhir, P.; Maksimenko, S.; Volynets, N.; Voronovich, S.; Paddubskaya, A.; Valusis, G.; Kaplas, T.; Svirko, Y.; Lambin, P. Enhanced microwave-to-terahertz absorption in graphene. Appl. Phys. Lett. 2016, 108, 123101.

23

Yang, W. X.; Zhao, Z. D.; Wu, K.; Huang, R.; Liu, T. Y.; Jiang, H.; Chen, F.; Fu, Q. Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 2017, 5, 3748–3756.

24

Duan, N. M.; Shi, Z. Y.; Wang, Z. H.; Zou, B.; Zhang, C. P.; Wang, J. L.; Xi, J. R.; Zhang, X. S.; Zhang, X. Z.; Wang, G. L. Mechanically robust Ti3C2Tx MXene/carbon fiber fabric/thermoplastic polyurethane composite for efficient electromagnetic interference shielding applications. Mater. Design 2022, 214, 110382.

25

Yin, X. C.; Wang, L.; Li, S.; He, G. J.; Yang, Z. T.; Feng, Y. H.; Qu, J. P. Preparation and characterization of carbon fiber/polylactic acid/thermoplastic polyurethane (CF/PLA/TPU) composites prepared by a vane mixer. J. Polym. Eng. 2017, 37, 355–364.

26

Lin, S. C.; Ma, C. C. M.; Hsiao, S. T.; Wang, Y. S.; Yang, C. Y.; Liao, W. H.; Li, S. M.; Wang, J. A.; Cheng, T. Y.; Lin, C. W. et al. Electromagnetic interference shielding performance of waterborne polyurethane composites filled with silver nanoparticles deposited on functionalized graphene. Appl. Surf. Sci. 2016, 385, 436–444.

27

Li, J. W.; Ding, Y. Q.; Yu, N.; Gao, Q.; Fan, X.; Wei, X.; Zhang, G. C.; Ma, Z. L.; He, X. H. Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon 2020, 158, 45–54.

28

Ji, X. Y.; Chen, D. Y.; Shen, J. B.; Guo, S. Y. Flexible and flame-retarding thermoplastic polyurethane-based electromagnetic interference shielding composites. Chem. Eng. J. 2019, 370, 1341–1349.

29

Sun, Z. P.; Shen, B.; Li, Y.; Chen, J. L.; Zheng, W. G. High-performance porous carbon foams via catalytic pyrolysis of modified isocyanate-based polyimide foams for electromagnetic shielding. Nano Res. 2022, 15, 6851–6859.

30

Zhang, Y.; Xu, M. K.; Wang, Z. G.; Zhao, T. Y.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 2022, 15, 4916–4924.

31

Feng, D.; Wang, Q. Q.; Xu, D. W.; Liu, P. J. Microwave assisted sinter molding of polyetherimide/carbon nanotubes composites with segregated structure for high-performance EMI shielding applications. Compos. Sci. Technol. 2019, 182, 107753.

32

Gao, Q. S.; Pan, Y. M.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 2021, 4, 274–285.

33

He, L.; Shi, Y. D.; Wang, Q. W.; Chen, D. Y.; Shen, J. B.; Guo, S. Y. Strategy for constructing electromagnetic interference shielding and flame retarding synergistic network in poly(butylene succinate) and thermoplastic polyurethane multilayered composites. Compos. Sci. Technol. 2020, 199, 108324.

34

Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

35

Liu, C.; Wu, W.; Shi, Y. Q.; Yang, F. Q.; Liu, M. H.; Chen, Z. X.; Yu, B.; Feng, Y. Z. Creating MXene/reduced graphene oxide hybrid towards highly fire safe thermoplastic polyurethane nanocomposites. Compos. Part B:Eng. 2020, 203, 108486.

36

Liu, C.; Yao, A. S.; Chen, K. X.; Shi, Y. Q.; Feng, Y. Z.; Zhang, P.; Yang, F. Q.; Liu, M. H.; Chen, Z. X. MXene based core–shell flame retardant towards reducing fire hazards of thermoplastic polyurethane. Compos. Part B: Eng. 2021, 226, 109363.

37

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

38

Zhang, Y. L.; Yan, Y.; Qiu, H.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. A mini-review of MXene porous films: Preparation, mechanism and application. J. Mater. Sci. Technol. 2022, 103, 42–49.

39

Jiao, C. Y.; Deng, Z. M.; Min, P.; Lai, J. J.; Gou, Q. Q.; Gao, R.; Yu, Z. Z.; Zhang, H. B. Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding. Carbon 2022, 198, 179–187.

40

Shi, Y. Q.; Liu, C.; Duan, Z. P.; Yu, B.; Liu, M. H.; Song, P. G. Interface engineering of MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety. Chem. Eng. J. 2020, 399, 125829.

41

Shi, Y. Q.; Liu, C.; Liu, L.; Fu, L. B.; Yu, B.; Lv, Y. C.; Yang, F. Q.; Song, P. A. Strengthening, toughing and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement. Chem. Eng. J. 2019, 378, 122267.

42

Wei, W. C.; Deng, C.; Huang, S. C.; Wei, Y. X.; Wang, Y. Z. Nickel-Schiff base decorated graphene for simultaneously enhancing the electroconductivity, fire resistance, and mechanical properties of a polyurethane elastomer. J. Mater. Chem. A 2018, 6, 8643–8654.

43

Scheibe, B.; Tadyszak, K.; Jarek, M.; Michalak, N.; Kempiński, M.; Lewandowski, M.; Peplińska, B.; Chybczyńska, K. Study on the magnetic properties of differently functionalized multilayered Ti3C2Tx MXenes and Ti-Al-C carbides. Appl. Surf. Sci. 2019, 479, 216–224.

44

Shah, S. A.; Habib, T.; Gao, H.; Gao, P.; Sun, W.; Green, M. J.; Radovic, M. Template-free 3D titanium carbide (Ti3C2Tx) MXene particles crumpled by capillary forces. Chem. Commun. 2017, 53, 400–403.

45

Liu, L. B.; Xu, Y.; Li, S.; Xu, M. J.; He, Y. T.; Shi, Z. X.; Li, B. A novel strategy for simultaneously improving the fire safety, water resistance and compatibility of thermoplastic polyurethane composites through the construction of biomimetic hydrophobic structure of intumescent flame retardant synergistic system. Compos. Part B: Eng. 2019, 176, 107218.

46

Wei, W.; Huang, X. B.; Chen, K. Y.; Tao, Y. M.; Tang, X. Z. Fluorescent organic–inorganic hybrid polyphosphazene microspheres for the trace detection of nitroaromatic explosives. RSC Adv. 2012, 2, 3765–3771.

47

Zhang, X. Q.; Xu, H. B.; Fan, X. Y. Grafting of amine-capped cross-linked polyphosphazenes onto carbon fiber surfaces: A novel coupling agent for fiber reinforced composites. RSC Adv. 2014, 4, 12198–12205.

48

Tran, M. Q.; Ho, K. K. C.; Kalinka, G.; Shaffer, M. S. P.; Bismarck, A. Carbon fibre reinforced poly(vinylidene fluoride): Impact of matrix modification on fibre/polymer adhesion. Compos. Sci. Technol. 2008, 68, 1766–1776.

49

Wu, Z. H.; Pittman, C. U. Jr; Gardner, S. D. Nitric acid oxidation of carbon fibers and the effects of subsequent treatment in refluxing aqueous NaOH. Carbon 1995, 33, 597–605.

50

Biniak, S.; Szymański, G.; Siedlewski, J.; Świątkowski, A. The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 1997, 35, 1799–1810.

51

Georgiou, P.; Walton, J.; Simitzis, J. Surface modification of pyrolyzed carbon fibres by cyclic voltammetry and their characterization with XPS and dye adsorption. Electrochim. Acta 2010, 55, 1207–1216.

52

Crobu, M.; Rossi, A.; Mangolini, F.; Spencer, N. D. Chain-length-identification strategy in zinc polyphosphate glasses by means of XPS and ToF-SIMS. Anal. Bioanal. Chem. 2012, 403, 1415–1432.

53

Chen, K. X.; Feng, Y. Z.; Shi, Y. Q.; Wang, H. R.; Fu, L. B.; Liu, M.; Lv, Y. C.; Yang, F. Q.; Yu, B.; Liu, M. H. et al. Flexible and fire safe sandwich structured composites with superior electromagnetic interference shielding properties. Compos. Part A: Appl. Sci. Manuf. 2022, 160, 107070.

54

Chen, X. L.; Jiao, C. M.; Zhang, J. Microencapsulation of ammonium polyphosphate with hydroxyl silicone oil and its flame retardance in thermoplastic polyurethane. J. Therm. Anal. Calorim. 2011, 104, 1037–1043.

55

Green, J. A review of phosphorus-containing flame retardants. J. Fire Sci. 1992, 10, 470–487.

56

Liu, C.; Xu, K.; Shi, Y. Q.; Wang, J. W.; Ma, S. N.; Feng, Y. Z.; Lv, Y. C.; Yang, F. Q.; Liu, M. H.; Song, P. G. Fire-safe, mechanically strong and tough thermoplastic Polyurethane/MXene nanocomposites with exceptional smoke suppression. Mater. Today Phys. 2022, 22, 100607.

57

Zhang, Y.; Jing, J.; Liu, T.; Xi, L. D.; Sai, T.; Ran, S. Y.; Fang, Z. P.; Huo, S. Q.; Song, P. G. A molecularly engineered bioderived polyphosphate for enhanced flame retardant, UV-blocking and mechanical properties of poly(lactic acid). Chem. Eng. J. 2021, 411, 128493.

58

Yuan, Y.; Wang, W.; Shi, Y. Q.; Song, L.; Ma, C.; Hu, Y. The influence of highly dispersed Cu2O-anchored MoS2 hybrids on reducing smoke toxicity and fire hazards for rigid polyurethane foam. J. Hazard. Mater. 2020, 382, 121028.

59

Wu, W.; Zhao, W. J.; Gong, X. J.; Sun, Q. J.; Cao, X. W.; Su, Y. J.; Yu, B.; Li, R. K. Y.; Vellaisamy, R. A. L. Surface decoration of Halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites. J. Mater. Sci. Technol. 2022, 101, 107–117.

60

Ni, J. X.; Chen, L. J.; Zhao, K. M.; Hu, Y.; Song, L. Preparation of gel-silica/ammonium polyphosphate core–shell flame retardant and properties of polyurethane composites. Polym. Adv. Technol. 2011, 22, 1824–1831.

61

Ren, Y. L.; Zhang, Y.; Gu, Y. T.; Zeng, Q. Flame retardant polyacrylonitrile fabrics prepared by organic–inorganic hybrid silica coating via sol-gel technique. Prog. Org. Coat. 2017, 112, 225–233.

62

Rajaei, M.; Wang, D. Y.; Bhattacharyya, D. Combined effects of ammonium polyphosphate and talc on the fire and mechanical properties of epoxy/glass fabric composites. Compos. Part B: Eng. 2017, 113, 381–390.

63

Bian, R. J.; Lin, R. Z.; Wang, G. L.; Lu, G.; Zhi, W. Q.; Xiang, S. L.; Wang, T. W.; Clegg, P. S.; Cai, D. Y.; Huang, W. 3D assembly of Ti3C2-MXene directed by water/oil interfaces. Nanoscale 2018, 10, 3621–3625.

64

Fan, Z. M.; Wang, D. L.; Yuan, Y.; Wang, Y. S.; Cheng, Z. J.; Liu, Y. Y.; Xie, Z. M. A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122696.

65

Peng, M. Y.; Qin, F. X. Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 2021, 130, 225108.

66

Li, Y.; Shen, B.; Yi, D.; Zhang, L. H.; Zhai, W. T.; Wei, X. C.; Zheng, W. G. The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos. Sci. Technol. 2017, 138, 209–216.

67

Bertolini, M. C.; Ramoa, S. D. A. S.; Merlini, C.; Barra, G. M. O.; Soares, B. G.; Pegoretti, A. Hybrid composites based on thermoplastic polyurethane with a mixture of carbon nanotubes and carbon black modified with polypyrrole for electromagnetic shielding. Front. Mater. 2020, 7, 174.

68

Shin, B.; Mondal, S.; Lee, M.; Kim, S.; Huh, Y. I.; Nah, C. Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management. Chem. Eng. J. 2021, 418, 129282.

69

Dong, W. Q.; He, L.; Chen, C. Q.; Kang, J.; Niu, H. M.; Zhang, J. B.; Li, J.; Li, K. S. Preparation and electromagnetic shielding performances of graphene/TPU-PVDF nanocomposites by high-energy ball milling. J. Mater. Sci. Mater. Electron. 2022, 33, 1817–1829.

70

Ji, X. Y.; Chen, D. Y.; Wang, Q. W.; Shen, J. B.; Guo, S. Y. Synergistic effect of flame retardants and carbon nanotubes on flame retarding and electromagnetic shielding properties of thermoplastic polyurethane. Compos. Sci. Technol. 2018, 163, 49–55.

71

Shi, Y. D.; He, L.; Chen, D. Y.; Wang, Q. W.; Shen, J. B.; Guo, S. Y. Simultaneously improved electromagnetic interference shielding and flame retarding properties of poly(butylene succinate)/thermoplastic polyurethane blends by constructing segregated flame retardants and multi-walled carbon nanotubes double network. Compos. Part A: Appl. Sci. Manuf. 2020, 137, 106037.

File
12274_2022_4883_MOESM1_ESM.pdf (3.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 July 2022
Revised: 05 August 2022
Accepted: 08 August 2022
Published: 26 August 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52173070 and 51803031). The authors thank Dr. Jianhang Lin, Dr. Qingming Huang and Dr. Na Ai of Fujian College Association Instrumental Analysis Center for assisting analysis of SEM images, XRD patterns and Raman spectra, respectively.

Return