Journal Home > Volume 16 , Issue 2

Luminescent nanothermometry can precisely and remotely measure the internal temperature of objects at nanoscale precision, which, therefore, has been placed at the forefront of scientific attention. In particular, due to the high photochemical stability, low toxicity, rich working mechanisms, and superior thermometric performance, lanthanide-based ratiometric luminesencent thermometers are finding prevalent uses in integrated electronics and optoelectronics, property analysis of in-situ tracking, biomedical diagnosis and therapy, and wearable e-health monitoring. Despite recent progresses, it remains debate in terms of the underlying temperature-sensing mechanisms, the quantitative characterization of performance, and the reliability of temperature readouts. In this review, we show the origin of thermal response luminescence, rationalize the ratiometric scheme or thermometric mechanisms, delve into the problems in the characterization of thermometric performance, discuss the universal rules for the quantitative comparison, and showcase the cutting-edge design and emerging applications of lanthanide-based ratiometric thermometers. Finally, we cast a look at the challenges and emerging opportunities for further advances in this field.


menu
Abstract
Full text
Outline
About this article

Lanthanide-based ratiometric luminescence nanothermometry

Show Author's information Mochen Jia1Xu Chen1Ranran Sun1Di Wu1Xinjian Li1Zhifeng Shi1( )Guanying Chen2( )Chongxin Shan1
Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China

Abstract

Luminescent nanothermometry can precisely and remotely measure the internal temperature of objects at nanoscale precision, which, therefore, has been placed at the forefront of scientific attention. In particular, due to the high photochemical stability, low toxicity, rich working mechanisms, and superior thermometric performance, lanthanide-based ratiometric luminesencent thermometers are finding prevalent uses in integrated electronics and optoelectronics, property analysis of in-situ tracking, biomedical diagnosis and therapy, and wearable e-health monitoring. Despite recent progresses, it remains debate in terms of the underlying temperature-sensing mechanisms, the quantitative characterization of performance, and the reliability of temperature readouts. In this review, we show the origin of thermal response luminescence, rationalize the ratiometric scheme or thermometric mechanisms, delve into the problems in the characterization of thermometric performance, discuss the universal rules for the quantitative comparison, and showcase the cutting-edge design and emerging applications of lanthanide-based ratiometric thermometers. Finally, we cast a look at the challenges and emerging opportunities for further advances in this field.

Keywords: luminescent nanothermometry, lanthanide ions, ratiometric thermometers, thermal imaging

References(123)

[1]

Wang, X. D.; Wolfbeis, O. S.; Meier, R. J. Luminescent probes and sensors for temperature. Chem. Soc. Rev. 2013, 42, 7834–7869.

[2]

Brites, C. D. S.; Balabhadra, S.; Carlos, L. D. Lanthanide-based thermometers: At the cutting-edge of luminescence thermometry. Adv. Opt. Mater. 2019, 7, 1801239.

[3]

Zhou, J. J.; Del Rosal, B.; Jaque, D.; Uchiyama, S.; Jin, D. Y. Advances and challenges for fluorescence nanothermometry. Nat. Methods 2020, 17, 967–980.

[4]

Mi, C.; Zhou, J. J.; Wang, F.; Lin, G. G.; Jin, D. Y. Ultrasensitive ratiometric nanothermometer with large dynamic range and photostability. Chem. Mater. 2019, 31, 9480–9487.

[5]

Brites, C. D. S.; Xie, X. J.; Debasu, M. L.; Qin, X.; Chen, R. F.; Huang, W.; Rocha, J.; Liu, X. G.; Carlos, L. D. Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry. Nat. Nanotechnol. 2016, 11, 851–856.

[6]
GeitenbeekR. G.NieuwelinkA. E.JacobsT. S.SalzmannB. B. V.GoetzeJ.MeijerinkA.WeckhuysenB. M. In situ luminescence thermometry to locally measure temperature gradients during catalytic reactionsACS Catal.201882397240110.1021/acscatal.7b04154

Geitenbeek, R. G.; Nieuwelink, A. E.; Jacobs, T. S.; Salzmann, B. B. V.; Goetze, J.; Meijerink, A.; Weckhuysen, B. M. In situ luminescence thermometry to locally measure temperature gradients during catalytic reactions. ACS Catal. 2018, 8, 2397–2401.

[7]

Brites, C. D. S.; Millán, A.; Carlos, L. D. Lanthanides in luminescent thermometry. Handb. Phys. Chem. Rare Earths 2016, 49, 339–427.

[8]

Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millán, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. Thermometry at the nanoscale. Nanoscale 2012, 4, 4799–4829.

[9]

Jaque, D.; Vetrone, F. Luminescence nanothermometry. Nanoscale 2012, 4, 4301–4326.

[10]

Maestro, L. M.; Rodríguez, E. M.; Rodríguez, F. S.; La Cruz, M. C. I. D.; Juarranz, A.; Naccache, R.; Vetrone, F.; Jaque, D.; Capobianco, J. A.; Solé, J. G. CdSe quantum dots for two-photon fluorescence thermal imaging. Nano Lett. 2010, 10, 5109–5115.

[11]

Hernández-Rodríguez, M. A.; Lozano-Gorrín, A. D.; Martín, I. R.; Rodríguez-Mendoza, U. R.; Lavín, V. Comparison of the sensitivity as optical temperature sensor of nano-perovskite doped with Nd3+ ions in the first and second biological windows. Sens. Actuators B: Chem. 2018, 255, 970–976.

[12]

Donner, J. S.; Thompson, S. A.; Kreuzer, M. P.; Baffou, G.; Quidant, R. Mapping intracellular temperature using green fluorescent protein. Nano Lett. 2012, 12, 2107–2111.

[13]

Walker, G. W.; Sundar, V. C.; Rudzinski, C. M.; Wun, A. W.; Bawendi, M. G.; Nocera, D. G. Quantum-dot optical temperature probes. Appl. Phys. Lett. 2003, 83, 3555–3557.

[14]

Vetrone, F.; Naccache, R.; Zamarrón, A.; De La Fuente, A. J.; Sanz-Rodríguez, F.; Maestro, L. M.; Rodriguez, E. M.; Jaque, D.; Solé, J. G.; Capobianco, J. A. Temperature sensing using fluorescent nanothermometers. ACS Nano 2010, 4, 3254–3258.

[15]

Li, Q.; He, Y.; Chang, J.; Wang, L.; Chen, H. Z.; Tan, Y. W.; Wang, H. Y.; Shao, Z. Z. Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature. J. Am. Chem. Soc. 2013, 135, 14924–14927.

[16]

Del Rosal, B.; Ximendes, E.; Rocha, U.; Jaque, D. In vivo luminescence nanothermometry:From materials to applications. Adv. Opt. Mater. 2017, 5, 1600508.

[17]

Quintanilla, M.; Liz-Marzán, L. M. Guiding rules for selecting a nanothermometer. Nano Today 2018, 19, 126–145.

[18]

Trejgis, K.; Bednarkiewicz, A.; Marciniak, L. Engineering excited state absorption based nanothermometry for temperature sensing and imaging. Nanoscale 2020, 12, 4667–4675.

[19]

Jung, W.; Kim, Y. W.; Yim, D.; Yoo, J. Y. Microscale surface thermometry using SU8/Rhodamine-B thin layer. Sens. Actuators A:Phys. 2011, 171, 228–232.

[20]

Kiyonaka, S.; Kajimoto, T.; Sakaguchi, R.; Shinmi, D.; Omatsu-Kanbe, M.; Matsuura, H.; Imamura, H.; Yoshizaki, T.; Hamachi, I.; Morii, T. et al. Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nat. Methods 2013, 10, 1232–1238.

[21]

McLaurin, E. J.; Vlaskin, V. A.; Gamelin, D. R. Water-soluble dual-emitting nanocrystals for ratiometric optical thermometry. J. Am. Chem. Soc. 2011, 133, 14978–14980.

[22]

Okabe, K.; Inada, N.; Gota, C.; Harada, Y.; Funatsu, T.; Uchiyama, S. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 2012, 3, 705.

[23]

Jia, M. C.; Fu, Z. L.; Liu, G. F.; Sun, Z.; Li, P. P.; Zhang, A. Q.; Lin, F.; Hou, B. F.; Chen, G. Y. NIR-II/III luminescence ratiometric nanothermometry with phonon-tuned sensitivity. Adv. Opt. Mater. 2020, 8, 1901173.

[24]

Suo, H.; Zhao, X. Q.; Zhang, Z. Y.; Wang, Y.; Sun, J. S.; Jin, M. K.; Guo, C. F. Rational design of ratiometric luminescence thermometry based on thermally coupled levels for bioapplications. Laser Photonics Rev. 2021, 15, 2000319.

[25]

Dong, B.; Cao, B. S.; He, Y. Y.; Liu, Z.; Li, Z. P.; Feng, Z. Q. Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Adv. Mater. 2012, 24, 1987–1993.

[26]

Wang, X. F.; Liu, Q.; Bu, Y. Y.; Liu, C. S.; Liu, T.; Yan, X. H. Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv. 2015, 5, 86219–86236.

[27]

Jia, M. C.; Lin, F.; Sun, Z.; Fu, Z. L. Novel excited-state nanothermometry combining the red-shift of charge-transfer bands and a thermal coupling effect. Inorg. Chem. Front. 2020, 7, 3932–3937.

[28]

Xu, X.; Wang, Z.; Lei, P. P.; Yu, Y. N.; Yao, S.; Song, S. Y.; Liu, X. L.; Su, Y.; Dong, L. L.; Feng, J. et al. α-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as “band-shape” luminescent nanothermometers over a wide temperature range. ACS Appl. Mater. Interfaces 2015, 7, 20813–20819.

[29]

Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349.

[30]

Zheng, W.; Huang, P.; Tu, D. T.; Ma, E.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 2015, 44, 1379–1415.

[31]

Dong, H.; Sun, L. D.; Yan, C. H. Local structure engineering in lanthanide-doped nanocrystals for tunable upconversion emissions. J. Am. Chem. Soc. 2021, 143, 20546–20561.

[32]

McLaurin, E. J.; Bradshaw, L. R.; Gamelin, D. R. Dual-emitting nanoscale temperature sensors. Chem. Mater. 2013, 25, 1283–1292.

[33]

Hu, T.; Gao, Y.; Molokeev, M.; Xia, Z. G.; Zhang, Q. Y. Non-stoichiometry in Ca2Al2SiO7 enabling mixed-valent europium toward ratiometric temperature sensing. Sci. China Mater. 2019, 62, 1807–1814.

[34]

Labrador-Páez, L.; Pedroni, M.; Speghini, A.; García-Solé, J.; Haro-González, P.; Jaque, D. Reliability of rare-earth-doped infrared luminescent nanothermometers. Nanoscale 2018, 10, 22319–22328.

[35]

Bednarkiewicz, A.; Marciniak, L.; Carlos, L. D.; Jaque, D. Standardizing luminescence nanothermometry for biomedical applications. Nanoscale 2020, 12, 14405–14421.

[36]

Shinn, M. D.; Sibley, W. A.; Drexhage, M. G.; Brown, R. N. Optical transitions of Er3+ ions in fluorozirconate glass. Phys. Rev. B 1983, 27, 6635–6648.

[37]

Kim, Y. H.; Arunkumar, P.; Kim, B. Y.; Unithrattil, S.; Kim, E.; Moon, S. H.; Hyun, J. Y.; Kim, K. H.; Lee, D.; Lee, J. S. et al. A zero-thermal-quenching phosphor. Nat. Mater. 2017, 16, 543–550.

[38]

Chen, G. Y.; Liu, H. C.; Liang, H. J.; Somesfalean, G.; Zhang, Z. G. Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions. J. Phys. Chem. C 2008, 112, 12030–12036.

[39]

Suo, H.; Guo, C. F.; Wang, W. B.; Li, T.; Duan, C. K.; Yin, M. Mechanism and stability of spectrally pure green up-conversion emission in Yb3+/Ho3+ co-doped Ba5Gd8Zn4O21 phosphors. Dalton Trans. 2016, 45, 2629–2636.

[40]

Zhou, J. J.; Wen, S. H.; Liao, J. Y.; Clarke, C.; Tawfik, S. A.; Ren, W.; Mi, C.; Wang, F.; Jin, D. Y. Activation of the surface dark-layer to enhance upconversion in a thermal field. Nat. Photonics 2018, 12, 154–158.

[41]

Mi, C.; Zhou, J. J.; Wang, F.; Jin, D. Y. Thermally enhanced NIR-NIR anti-Stokes emission in rare earth doped nanocrystals. Nanoscale 2019, 11, 12547–12552.

[42]

Auzel, F. Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions. Phys. Rev. B 1976, 13, 2809–2817.

[43]

Ximendes, E. C.; Rocha, U.; Sales, T. O.; Fernández, N.; Sanz-Rodríguez, F.; Martín, I. R.; Jacinto, C.; Jaque, D. In vivo subcutaneous thermal video recording by supersensitive infrared nanothermometers. Adv. Funct. Mater. 2017, 27, 1702249.

[44]

Yamada, N.; Shionoya, S.; Kushida, T. Phonon-assisted energy transfer between trivalent rare earth ions. J. Phys. Soc. Jpn. 1972, 32, 1577–1586.

[45]

Ximendes, E. C.; Santos, W. Q.; Rocha, U.; Kagola, U. K.; Sanz-Rodríguez, F.; Fernández, N.; Da Silva Gouveia-Neto, A.; Bravo, D.; Domingo, A. M.; Del Rosal, B. et al. Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers. Nano Lett. 2016, 16, 1695–1703.

[46]

Cooke, D. W.; Bennett, B. L.; Muenchausen, R. E.; Lee, J. K.; Nastasi, M. A. Intrinsic ultraviolet luminescence from Lu2O3, Lu2SiO5 and Lu2SiO5: Ce3+. J. Lumin. 2004, 106, 125–132.

[47]

Gao, Y.; Huang, F.; Lin, H.; Zhou, J. C.; Xu, J.; Wang, Y. S. A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states. Adv. Funct. Mater. 2016, 26, 3139–3145.

[48]

Wang, Z. P.; Ananias, D.; Carné-Sánchez, A.; Brites, C. D. S.; Imaz, I.; Maspoch, D.; Rocha, J.; Carlos, L. D. Lanthanide-organic framework nanothermometers prepared by spray-drying. Adv. Funct. Mater. 2015, 25, 2824–2830.

[49]

Wang, L.; Xie, R. J.; Li, Y. Q.; Wang, X. J.; Ma, C. G.; Luo, D.; Takeda, T.; Tsai, Y. T.; Liu, R. S.; Hirosaki, N. Ca1−xLixAl1−xSi1+xN3:Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes. Light Sci. Appl. 2016, 5, e16155.

[50]

Zou, H.; Yang, X. Q.; Chen, B.; Du, Y. Y.; Ren, B. Y.; Sun, X. W.; Qiao, X.; Zhang, Q. W.; Wang, F. Thermal enhancement of upconversion by negative lattice expansion in orthorhombic Yb2W3O12. Angew. Chem., Int. Ed. 2019, 58, 17255–17259.

[51]

Liao, J. S.; Wang, M. H.; Lin, F. L.; Han, Z.; Fu, B.; Tu, D. T.; Chen, X. Y.; Qiu, B.; Wen, H. R. Thermally boosted upconversion and downshifting luminescence in Sc2(MoO4)3:Yb/Er with two-dimensional negative thermal expansion. Nat. Commun. 2022, 13, 2090.

[52]

Back, M.; Ueda, J.; Xu, J.; Murata, D.; Brik, M. G.; Tanabe, S. Ratiometric luminescent thermometers with a customized phase-transition-driven fingerprint in perovskite oxides. ACS Appl. Mater. Interfaces 2019, 11, 38937–38945.

[53]

Yu, D. C.; Li, H. Y.; Zhang, D. W.; Zhang, Q. Y.; Meijerink, A.; Suta, M. One ion to catch them all: Targeted high-precision Boltzmann thermometry over a wide temperature range with Gd3+. Light Sci. Appl. 2021, 10, 236.

[54]

Wade, S. A.; Collins, S. F.; Baxter, G. W. Fluorescence intensity ratio technique for optical fiber point temperature sensing. J. Appl. Phys. 2003, 94, 4743–4756.

[55]

Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millán, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. Lanthanide-based luminescent molecular thermometers. New J. Chem. 2011, 35, 1177–1183.

[56]

Sun, X. K.; Sun, J.; Dong, B.; Huang, G. S.; Zhang, L.; Zhou, W. H.; Lv, J. K.; Zhang, X. R.; Liu, M.; Xu, L. et al. Noninvasive temperature monitoring for dual-modal tumor therapy based on lanthanide-doped up-conversion nanocomposites. Biomaterials 2019, 201, 42–52.

[57]

Wickberg, A.; Mueller, J. B.; Mange, Y. J.; Fischer, J.; Nann, T.; Wegener, M. Three-dimensional micro-printing of temperature sensors based on up-conversion luminescence. Appl. Phys. Lett. 2015, 106, 133103.

[58]

Pandey, A.; Rai, V. K.; Kumar, V.; Kumar, V.; Swart, H. C. Upconversion based temperature sensing ability of Er3+-Yb3+codoped SrWO4: An optical heating phosphor. Sens. Actuators B: Chem. 2015, 209, 352–358.

[59]

Liu, G. F.; Jiang, F.; Chen, Y. Q.; Yu, C.; Ding, B. B.; Shao, S.; Jia, M. C.; Ma, P. A.; Fu, Z. L.; Lin, J. Superior temperature sensing of small-sized upconversion nanocrystals for simultaneous bioimaging and enhanced synergetic therapy. Nanomed.: Nanotechnol., Biol. Med. 2020, 24, 102135.

[60]

León-Luis, S. F.; Rodríguez-Mendoza, U. R.; Martín, I. R.; Lalla, E.; Lavín, V. Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors. Sens. Actuators B: Chem. 2013, 176, 1167–1175.

[61]

León-Luis, S. F.; Rodríguez-Mendoza, U. R.; Haro-González, P.; Martín, I. R.; Lavín, V. Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors. Sens. Actuators B: Chem. 2012, 174, 176–186.

[62]

Suo, H.; Guo, C. F.; Zheng, J. M.; Zhou, B.; Ma, C. G.; Zhao, X. Q.; Li, T.; Guo, P.; Goldys, E. M. Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix. ACS Appl. Mater. Interfaces 2016, 8, 30312–30319.

[63]

Suo, H.; Zhao, X. Q.; Zhang, Z. Y.; Shi, R.; Wu, Y. F.; Xiang, J. M.; Guo, C. F. Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres. Nanoscale 2018, 10, 9245–9251.

[64]

Jia, M. C.; Sun, Z.; Lin, F.; Hou, B. F.; Li, X.; Zhang, M. X.; Wang, H. Y.; Xu, Y.; Fu, Z. L. Prediction of thermal-coupled thermometric performance of Er3+. J. Phys. Chem. Lett. 2019, 10, 5786–5790.

[65]

Savchuk, O. A.; Carvajal, J. J.; Pujol, M. C.; Barrera, E. W.; Massons, J.; Aguilo, M.; Diaz, F. Ho, Yb: KLu(WO4)2 nanoparticles: A versatile material for multiple thermal sensing purposes by luminescent thermometry. J. Phys. Chem. C 2015, 119, 18546–18558.

[66]

Gao, Y.; Huang, F.; Lin, H.; Xu, J.; Wang, Y. S. Intervalence charge transfer state interfered Pr3+ luminescence: A novel strategy for high sensitive optical thermometry. Sens. Actuators B:Chem. 2017, 243, 137–143.

[67]

Li, P. P.; Jia, M. C.; Liu, G. F.; Zhang, A. Q.; Sun, Z.; Fu, Z. L. Investigation on the fluorescence intensity ratio sensing thermometry based on nonthermally coupled levels. ACS Appl. Bio Mater. 2019, 2, 1732–1739.

[68]

Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millán, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids. Nanoscale 2013, 5, 7572–7580.

[69]

Jia, M. C.; Sun, Z.; Xu, H. Y.; Jin, X. Y.; Lv, Z. Q.; Sheng, T. Q.; Fu, Z. L. An ultrasensitive luminescent nanothermometer in the first biological window based on phonon-assisted thermal enhancing and thermal quenching. J. Mater. Chem. C 2020, 8, 15603–15608.

[70]

Wang, T. R.; Li, P.; Li, H. R. Color-tunable luminescence of organoclay-based hybrid materials showing potential applications in white LED and thermosensors. ACS Appl. Mater. Interfaces 2014, 6, 12915–12921.

[71]

Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millán, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale. Adv. Mater. 2010, 22, 4499–4504.

[72]

Sun, Z.; Jia, M. C.; Wei, Y. L.; Cheng, J. C.; Sheng, T. Q.; Fu, Z. L. Constructing new thermally coupled levels based on different emitting centers for high sensitive optical thermometer. Chem. Eng. J. 2020, 381, 122654.

[73]

Savchuk, O. A.; Carvajal, J. J.; Brites, C. D. S.; Carlos, L. D.; Aguilo, M.; Diaz, F. Upconversion thermometry: A new tool to measure the thermal resistance of nanoparticles. Nanoscale 2018, 10, 6602–6610.

[74]

Neto, A. N. C.; Mamontova, E.; Botas, A. M. P.; Brites, C. D. S.; Ferreira, R. A. S.; Rouquette, J.; Guari, Y.; Larionova, J.; Long, J.; Carlos, L. D. Rationalizing the thermal response of dual-center molecular thermometers: The example of an Eu/Tb coordination complex. Adv. Opt. Mater. 2022, 10, 2101870.

[75]

Sun, Z.; Fu, Z. L.; Ma, L.; Cao, H. W.; Wang, M. L.; Cao, H. J.; Zhang, A. Q. Excellent multi-color emission and multi-mode optical ratiometric thermometer in (Ca, Tb, Eu, Sm)Nb2O6 phosphors based on wide O2−→Nb5+ CTB. Appl. Surf. Sci. 2022, 575, 151791.

[76]

Lu, H. Y.; Hao, H. Y.; Gao, Y. C.; Li, D. Y.; Shi, G.; Song, Y. L.; Wang, Y. X.; Zhang, X. R. Optical sensing of temperature based on non-thermally coupled levels and upconverted white light emission of a Gd2(WO4)3 phosphor co-doped with in Ho(III), Tm(III), and Yb(III). Microchim. Acta 2017, 184, 641–646.

[77]

Xu, M.; Chen, D. Q.; Huang, P.; Wan, Z. Y.; Zhou, Y.; Ji, Z. G. A dual-functional upconversion core@shell nanostructure for white-light-emission and temperature sensing. J. Mater. Chem. C 2016, 4, 6516–6524.

[78]

Wang, S. X.; Ma, S. W.; Wu, J. M.; Ye, Z. M.; Cheng, X. A promising temperature sensing strategy based on highly sensitive Pr3+-doped SrRE2O4 (RE = Sc, Lu and Y) luminescent thermometers. Chem. Eng. J. 2020, 393, 124564.

[79]

Brites, C. D. S.; Fiaczyk, K.; Ramalho, J. F. C. B.; Sójka, M.; Carlos, L. D.; Zych, E. Widening the temperature range of luminescent thermometers through the intra- and interconfigurational transitions of Pr3+. Adv. Opt. Mater. 2018, 6, 1701318.

[80]

Jia, M. C.; Sun, Z.; Zhang, M. X.; Xu, H. Y.; Fu, Z. L. What determines the performance of lanthanide-based ratiometric nanothermometers? Nanoscale 2020, 12, 20776–20785.

[81]

Van Swieten, T. P.; Meijerink, A.; Rabouw, F. T. Impact of noise and background on measurement uncertainties in luminescence thermometry. ACS Photonics 2022, 9, 1366–1374.

[82]

Thiem, J.; Spelthann, S.; Neumann, J.; Ruehl, A.; Ristau, D. Three-dimensional nanothermometry below the diffraction limit. Opt. Lett. 2021, 46, 3352–3355.

[83]

Nexha, A.; Carvajal, J. J.; Pujol, M. C.; Díaz, F.; Aguiló, M. Lanthanide doped luminescence nanothermometers in the biological windows: Strategies and applications. Nanoscale 2021, 13, 7913–7987.

[84]

Cui, X. S.; Cheng, Y.; Lin, H.; Huang, F.; Wu, Q. P.; Wang, Y. S. Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles. Nanoscale 2017, 9, 13794–13799.

[85]

Suo, H.; Zhao, X. Q.; Zhang, Z. Y.; Guo, C. F. Ultra-sensitive optical nano-thermometer LaPO4: Yb3+/Nd3+ based on thermo-enhanced NIR-to-NIR emissions. Chem. Eng. J. 2020, 389, 124506.

[86]

Liang, L. L.; Liu, X. G. Nanocrystals feel the heat. Nat. Photonics 2018, 12, 124–125.

[87]

Hu, Y. Q.; Shao, Q. Y.; Zhang, P. G.; Dong, Y.; Fang, F.; Jiang, J. Q. Mechanistic investigations on the dramatic thermally induced luminescence enhancement in upconversion nanocrystals. J. Phys. Chem. C 2018, 122, 26142–26152.

[88]

Martínez, E. D.; Brites, C. D. S.; Carlos, L. D.; García-Flores, A. F.; Urbano, R. R.; Rettori, C. Electrochromic switch devices mixing small- and large-sized upconverting nanocrystals. Adv. Funct. Mater. 2019, 29, 1807758.

[89]

Zou, H.; Chen, B.; Hu, Y. F.; Zhang, Q. W.; Wang, X. S.; Wang, F. Simultaneous enhancement and modulation of upconversion by thermal stimulation in Sc2Mo3O12 crystals. J. Phys. Chem. Lett. 2020, 11, 3020–3024.

[90]

Wang, S. X.; Ma, S. W.; Zhang, G. G.; Ye, Z. M.; Cheng, X. High-performance Pr3+-doped scandate optical thermometry: 200 K of sensing range with relative temperature sensitivity above 2%·K−1. ACS Appl. Mater. Interfaces 2019, 11, 42330–42338.

[91]

Wang, Y. B.; Lei, L.; Ye, R. G.; Jia, G. H.; Hua, Y. J.; Deng, D. G.; Xu, S. Q. Integrating positive and negative thermal quenching effect for ultrasensitive ratiometric temperature sensing and anti-counterfeiting. ACS Appl. Mater. Interfaces 2021, 13, 23951–23959.

[92]

Pan, Y.; Xie, X. J.; Huang, Q. W.; Gao, C.; Wang, Y. B.; Wang, L. X.; Yang, B. X.; Su, H. Q.; Huang, L.; Huang, W. Inherently Eu2+/Eu3+ codoped Sc2O3 nanoparticles as high-performance nanothermometers. Adv. Mater. 2018, 30, 1705256.

[93]

Wang, Q.; Liao, M.; Lin, Q. M.; Xiong, M. X.; Mu, Z. F.; Wu, F. G. A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials. J. Alloys Compd. 2021, 850, 156744.

[94]

Wu, X. F.; Zhan, S. P.; Han, J. B.; Liu, Y. X. Nanoscale ultrasensitive temperature sensing based on upconversion nanoparticles with lattice self-adaptation. Nano Lett. 2021, 21, 272–278.

[95]

Marciniak, L.; Piotrowski, W.; Szalkowski, M.; Kinzhybalo, V.; Drozd, M.; Dramicanin, M.; Bednarkiewicz, A. Highly sensitive luminescence nanothermometry and thermal imaging facilitated by phase transition. Chem. Eng. J. 2022, 427, 131941.

[96]

Rodríguez-Sevilla, P.; Arita, Y.; Liu, X. G.; Jaque, D.; Dholakia, K. The temperature of an optically trapped, rotating microparticle. ACS Photonics 2018, 5, 3772–3778.

[97]

Bolek, P.; Zeler, J.; Brites, C. D. S.; Trojan-Piegza, J.; Carlos, L. D.; Zych, E. Ga-modified YAG: Pr3+ dual-mode tunable luminescence thermometers. Chem. Eng. J. 2021, 421, 129764.

[98]

Wu, M.; Deng, D. G.; Ruan, F. P.; Chen, B. W.; Xu, S. Q. A spatial/temporal dual-mode optical thermometry based on double-sites dependent luminescence of Li4SrCa(SiO4)2:Eu2+ phosphors with highly sensitive luminescent thermometer. Chem. Eng. J. 2020, 396, 125178.

[99]

Maciejewska, K.; Marciniak, L. Multimodal Stokes and Anti-Stokes luminescent thermometers based on GdP5O14 co-doped with Cr3+ and Nd3+ ions. Chem. Eng. J. 2020, 402, 126197.

[100]

Cao, B. S.; Bao, Y. N.; Liu, Y.; Shang, J. Y.; Zhang, Z. Y.; He, Y. Y.; Feng, Z. Q.; Dong, B. Wide-range and highly-sensitive optical thermometers based on the temperature-dependent energy transfer from Er to Nd in Er/Yb/Nd codoped NaYF4 upconversion nanocrystals. Chem. Eng. J. 2020, 385, 123906.

[101]

Maturi, F. E.; Brites, C. D. S.; Ximendes, E. C.; Mills, C.; Olsen, B.; Jaque, D.; Ribeiro, S. J. L.; Carlos, L. D. Going above and beyond: A tenfold gain in the performance of luminescence thermometers joining multiparametric sensing and multiple regression. Laser Photonics Rev. 2021, 15, 2100301.

[102]

Fu, H. H.; Liu, C. P.; Peng, P. F.; Jiang, F. L.; Liu, Y. S.; Hong, M. C. Peasecod-like hollow upconversion nanocrystals with excellent optical thermometric performance. Adv. Sci. 2020, 7, 2000731.

[103]

Liu, Y.; Bai, G. X.; Lyu, Y. X.; Hua, Y. J.; Ye, R. G.; Zhang, J. J.; Chen, L.; Xu, S. Q.; Hao, J. H. Ultrabroadband tuning and fine structure of emission spectra in lanthanide Er-doped ZnSe nanosheets for display and temperature sensing. ACS Nano 2020, 14, 16003–16012.

[104]

Kaczmarek, A. M.; Suta, M.; Rijckaert, H.; Abalymov, A.; Van Driessche, I.; Skirtach, A. G.; Meijerink, A.; Van Der Voort, P. Visible and NIR upconverting Er3+-Yb3+ luminescent nanorattles and other hybrid PMO-inorganic structures for in vivo nanothermometry. Adv. Funct. Mater. 2020, 30, 2003101.

[105]

Cerón, E. N.; Ortgies, D. H.; Del Rosal, B.; Ren, F. Q.; Benayas, A.; Vetrone, F.; Ma, D. L.; Sanz-Rodríguez, F.; Solé, J. G.; Jaque, D. et al. Hybrid nanostructures for high-sensitivity luminescence nanothermometry in the second biological window. Adv. Funct. Mater. 2015, 27, 4781–4787.

[106]

Qiu, X. C.; Zhou, Q. W.; Zhu, X. J.; Wu, Z. G.; Feng, W.; Li, F. Y. Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique. Nat. Commun. 2020, 11, 4.

[107]

Yu, S. H.; Xu, J.; Shang, X. Y.; Zheng, W.; Huang, P.; Li, R. F.; Tu, D. T.; Chen, X. Y. A dual-excitation decoding strategy based on NIR hybrid nanocomposites for high-accuracy thermal sensing. Adv. Sci. 2020, 7, 2001589.

[108]

Chen, P.; Xu, X.; Li, D. Y.; Li, Z. X.; Wang, H. Y.; Pi, L. J.; Zhou, X.; Zhai, T. Y. 2D van der Waals rare earth material based ratiometric luminescence thermography integrated on micro-nano devices vertically. Adv. Opt. Mater. 2022, 10, 2102102.

[109]

Brites, C. D. S.; Fuertes, M. C.; Angelomé, P. C.; Martínez, E. D.; Lima, P. P.; Soler-Illia, G. J. A. A.; Carlos, L. D. Tethering luminescent thermometry and plasmonics: Light manipulation to assess real-time thermal flow in nanoarchitectures. Nano Lett. 2017, 17, 4746–4752.

[110]

Bastos, A. R. N.; Brites, C. D. S.; Rojas-Gutierrez, P. A.; DeWolf, C.; Ferreira, R. A. S.; Capobianco, J. A.; Carlos, L. D. Thermal properties of lipid bilayers determined using upconversion nanothermometry. Adv. Funct. Mater. 2019, 29, 1905474.

[111]

Lin, X.; Kong, M. Y.; Wu, N.; Gu, Y. Y.; Qiu, X. C.; Chen, X. Y.; Li, Z. X.; Feng, W.; Li, F. Y. Measurement of temperature distribution at the nanoscale with luminescent probes based on lanthanide nanoparticles and quantum dots. ACS Appl. Mater. Interfaces 2020, 12, 52393–52401.

[112]

Zhu, X. J.; Feng, W.; Chang, J.; Tan, Y. W.; Li, J. C.; Chen, M.; Sun, Y.; Li, F. Y. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 2016, 7, 10437.

[113]

Zhu, X. J.; Li, J. C.; Qiu, X. C.; Liu, Y.; Feng, W.; Li, F. Y. Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature. Nat. Commun. 2018, 9, 2176.

[114]

Wu, N.; Sun, Y. S.; Kong, M. Y.; Lin, X.; Cao, C.; Li, Z. X.; Feng, W.; Li, F. Y. Er-based luminescent nanothermometer to explore the real-time temperature of cells under external stimuli. Small 2022, 18, 2107963.

[115]

Piñol, R.; Zeler, J.; Brites, C. D. S.; Gu, Y. Y.; Téllez, P.; Neto, A. N. C.; Da Silva, T. E.; Moreno-Loshuertos, R.; Fernandez-Silva, P.; Gallego, A. I. et al. Real-time intracellular temperature imaging using lanthanide-bearing polymeric micelles. Nano Lett. 2020, 20, 6466–6472.

[116]

Guo, J. J.; Zhou, B. Q.; Yang, C. X.; Dai, Q. H.; Kong, L. J. Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring. Adv. Funct. Mater. 2019, 29, 1902898.

[117]

Guo, J. J.; Zhou, B. Q.; Yang, C. X.; Dai, Q. H.; Kong, L. J. Stretchable and upconversion-luminescent polymeric optical sensor for wearable multifunctional sensing. Opt. Lett. 2019, 44, 5747–5750.

[118]

Ramalho, J. F. C. B.; Correia, S. F. H.; Fu, L. S.; António, L. L. F.; Brites, C. D. S.; André, P. S.; Ferreira, R. A. S.; Carlos, L. D. Luminescence thermometry on the route of the mobile-based Internet of Things (IoT): How smart QR codes make it real. Adv. Sci. 2019, 6, 1900950.

[119]

Ramalho, J. F. C. B.; Dias, L. M. S.; Fu, L. S.; Botas, A. M. P.; Carlos, L. D.; Neto, A. N. C.; André, P. S.; Ferreira, R. A. S. Customized luminescent multiplexed quick-response codes as reliable temperature mobile optical sensors for eHealth and Internet of Things. Adv. Photonics Res. 2022, 3, 2100206.

[120]

Marin, R.; Jaque, D. Doping lanthanide ions in colloidal semiconductor nanocrystals for brighter photoluminescence. Chem. Rev. 2021, 121, 1425–1462.

[121]

Li, M. Z.; Xia, Z. G. Recent progress of zero-dimensional luminescent metal halides. Chem. Soc. Rev. 2021, 50, 2626–2662.

[122]

Pei, P.; Chen, Y.; Sun, C. X.; Fan, Y.; Yang, Y. M.; Liu, X.; Lu, L. F.; Zhao, M. Y.; Zhang, H. X.; Zhao, D. Y. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 2021, 16, 1011–1018.

[123]

Zhou, J. J.; Chizhik, A. I.; Chu, S.; Jin, D. Y. Single-particle spectroscopy for functional nanomaterials. Nature 2020, 579, 41–50.

Publication history
Copyright
Acknowledgements

Publication history

Received: 08 July 2022
Revised: 07 August 2022
Accepted: 08 August 2022
Published: 21 September 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12074347, 61935009, and 12004346), the Science Foundation for Distinguished Young Scholars of Henan Province (No. 212300410019), the Project funded by China Postdoctoral Science Foundation (No. 2019M662508), and the Young Talent Support Project of Henan Province (No. 222300420322).

Return