Journal Home > Volume 16 , Issue 2

Lanthanides (Ln3+) doped luminescent materials play critical roles in lighting and display techniques. While increasing experimental and theoretical research have been carried out on aluminate-based phosphors for white light-emitting diodes (WLEDs) over the past decades, most investigation was mainly focused on their luminescent properties; therefore, the local structure of the light emission center remains unclear. Especially, doping-induced local composition and structure modification around the luminescent centers have yet to be unveiled. In this study, we use advanced electron microscopy techniques including electron diffraction (ED), high-resolution transmission electron microscopy (HRTEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), in combination with energy dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS), to reveal atomically resolved crystalline and chemical structure of Ce3+ doped CaYAlO4. The microscopic results prove substantial microstructural and compositional inhomogeneities in Ce3+ doped CaYAlO4, especially the appearance of Ce dopant clustering and Ce3+/Ce4+ valence variation. Our research provides a new understanding the structure of Ln3+ doped luminescent materials and will facilitate the materials design for next-generation WLEDs luminescent materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Directly imaging of the atomic structure of luminescent centers in CaYAlO4:Ce3+

Show Author's information Yalong Zhai1,§Xuewei Yang1,§Shu-Na Zhao4Pei Liu3( )Jun Lin2( )Yang Zhang1( )
School of Materials Science and Engineering, Center of Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
DTU Nanolab. Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby, Denmark
Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

§ Yalong Zhai and Xuewei Yang contributed equally to this work.

Abstract

Lanthanides (Ln3+) doped luminescent materials play critical roles in lighting and display techniques. While increasing experimental and theoretical research have been carried out on aluminate-based phosphors for white light-emitting diodes (WLEDs) over the past decades, most investigation was mainly focused on their luminescent properties; therefore, the local structure of the light emission center remains unclear. Especially, doping-induced local composition and structure modification around the luminescent centers have yet to be unveiled. In this study, we use advanced electron microscopy techniques including electron diffraction (ED), high-resolution transmission electron microscopy (HRTEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), in combination with energy dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS), to reveal atomically resolved crystalline and chemical structure of Ce3+ doped CaYAlO4. The microscopic results prove substantial microstructural and compositional inhomogeneities in Ce3+ doped CaYAlO4, especially the appearance of Ce dopant clustering and Ce3+/Ce4+ valence variation. Our research provides a new understanding the structure of Ln3+ doped luminescent materials and will facilitate the materials design for next-generation WLEDs luminescent materials.

Keywords: luminescent, rare earth element, white light-emitting diodes (WLEDs), atomic structure, chemical structure

References(32)

[1]

Qiao, J. W.; Ning, L. X.; Molokeev, M. S.; Chuang, Y. C.; Zhang, Q. Y.; Poeppelmeier, K. R.; Xia, Z. G. Site-selective occupancy of Eu2+ toward blue-light-excited red emission in a Rb3YSi2O7: Eu phosphor. Angew. Chem., Int. Ed. 2019, 58, 11521–11526.

[2]

Zheng, B. Z.; Fan, J. Y.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R. R.; Liu, X. G. Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 2022, 122, 5519–5603.

[3]

You, S. H.; Li, S. X.; Jia, Y. C.; Xie, R. J. Interstitial site engineering for creating unusual red emission in La3Si6N11: Ce3+. Chem. Mater. 2020, 32, 3631–3640.

[4]

Sato, Y.; Kato, H.; Kobayashi, M.; Masaki, T.; Yoon, D. H.; Kakihana, M. Tailoring of deep-red luminescence in Ca2SiO4: Eu2+. Angew. Chem., Int. Ed. 2014, 53, 7756–7759.

[5]
BerendsA. C.van de HaarM. A.KramesM. R. YAG: Ce3+ phosphor: From micron-sized workhorse for general lighting to a bright future on the nanoscaleChem. Rev.2020120134611347910.1021/acs.chemrev.0c00618

Berends, A. C.; van de Haar, M. A.; Krames, M. R. YAG: Ce3+ phosphor: From micron-sized workhorse for general lighting to a bright future on the nanoscale. Chem. Rev. 2020, 120, 13461–13479.

[6]

Pust, P.; Weiler, V.; Hecht, C.; Tücks, A.; Wochnik, A. S.; Henß, A. K.; Wiechert, D.; Scheu, C.; Schmidt, P. J.; Schnick, W. Narrow-band red-emitting Sr[LiAl3N4]: Eu2+ as a next-generation LED-phosphor material. Nat. Mater. 2014, 13, 891–896.

[7]

Zhuo, Y.; Hariyani, S.; Zhong, J. Y.; Brgoch, J. Creating a green-emitting phosphor through selective rare-earth site preference in NaBaB9O15: Eu2+. Chem. Mater. 2021, 33, 3304–3311.

[8]

Fang, M. H.; Lin, J. C.; Huang, W. T.; Majewska, N.; Barzowska, J.; Mahlik, S.; Pang, W. K.; Lee, J. F.; Sheu, H. S.; Liu, R. S. Linking macro- and micro-structural analysis with luminescence control in oxynitride phosphors for light-emitting diodes. Chem. Mater. 2021, 33, 7897–7904.

[9]

Qiao, J. W.; Zhou, Y. Y.; Molokeev, M. S.; Zhang, Q. Y.; Xia, Z. G. Narrow bandwidth luminescence in Sr2Li(Al, Ga)O4: Eu2+ by selective site occupancy engineering for high definition displays. Laser Photon. Rev. 2021, 15, 2100392.

[10]

Yang, Z. Y.; Liu, G. C.; Zhao, Y. F.; Zhou, Y. Y.; Qiao, J. W.; Molokeev, M. S.; Swart, H. C.; Xia, Z. G. Competitive site occupation toward improved quantum efficiency of SrLaScO4: Eu red phosphors for warm white LEDs. Adv. Opt. Mater. 2022, 10, 2102373.

[11]

Hirosaki, N.; Xie, R. J.; Kimoto, K.; Sekiguchi, T.; Yamamoto, Y.; Suehiro, T.; Mitomo, M. Characterization and properties of green-emitting β-SiAlON: Eu2+ powder phosphors for white light-emitting diodes. Appl. Phys. Lett. 2005, 86, 211905.

[12]

Takeda, T.; Hirosaki, N.; Xie, R. J.; Kimoto, K.; Saito, M. Anomalous Eu layer doping in Eu, Si co-doped aluminium nitride based phosphor and its direct observation. J. Mater. Chem. 2010, 20, 9948–9953.

[13]

Xu, F. F.; Sourty, E.; Shi, W.; Mou, X. L.; Zhang, L. L. Direct observation of rare-earth ions in α-Sialon: Ce phosphors. Inorg. Chem. 2011, 50, 2905–2910.

[14]

Ida, S.; Koga, S.; Daio, T.; Hagiwara, H.; Ishihara, T. Direct imaging of light emission centers in two-dimensional crystals and their luminescence and photocatalytic properties. Angew. Chem., Int. Ed. 2014, 53, 13078–13082.

[15]

Li, G. G.; Lin, C. C.; Chen, W. T.; Molokeev, M. S.; Atuchin, V. V.; Chiang, C. Y.; Zhou, W. Z.; Wang, C. W.; Li, W. H.; Sheu, H. S. et al. Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms. Chem. Mater. 2014, 26, 2991–3001.

[16]

George, N. C.; Pell, A. J.; Dantelle, G.; Page, K.; Llobet, A.; Balasubramanian, M.; Pintacuda, G.; Chmelka, B. F.; Seshadri, R. Local environments of dilute activator ions in the solid-state lighting phosphor Y3−xCexAl5O12. Chem. Mater. 2013, 25, 3979–3995.

[17]

Watanabe, H.; Kijima, N. Crystal structure and luminescence properties of SrxCa1−xAlSiN3: Eu2+ mixed nitride phosphors. J. Alloys Compd. 2009, 475, 434–439.

[18]

Zhou, L.; Hong, J. Y.; Li, X. H.; Shi, J. X.; Tanner, P. A.; Wong, K. L.; Wu, M. M. Bright green emitting CaYAlO4: Tb3+, Ce3+ phosphor: Energy transfer and 3D-printing artwork. Adv. Opt. Mater. 2020, 8, 2000523.

[19]

Zhang, Y.; Li, X. J.; Li, K.; Lian, H. Z.; Shang, M. M.; Lin, J. Crystal-site engineering control for the reduction of Eu3+ to Eu2+ in CaYAlO4: Structure refinement and tunable emission properties. ACS Appl. Mater. Interfaces 2015, 7, 2715–2725.

[20]

Zhang, D. L.; Zhu, Y. H.; Liu, L. M.; Ying, X. R.; Hsiung, C. E.; Sougrat, R.; Li, K.; Han, Y. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science 2018, 359, 675–679.

[21]

Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; Van Dyck, D. Advanced electron microscopy for advanced materials. Adv. Mater. 2012, 24, 5655–5675.

[22]

Zhou, W.; Oxley, M. P.; Lupini, A. R.; Krivanek, O. L.; Pennycook, S. J.; Idrobo, J. C. Single atom microscopy. Microsc. Microanal. 2012, 18, 1342–1354.

[23]

Wei, J. K.; Feng, B.; Ishikawa, R.; Yokoi, T.; Matsunaga, K.; Shibata, N.; Ikuhara, Y. Direct imaging of atomistic grain boundary migration. Nat. Mater. 2021, 20, 951–955.

[24]

Ishikawa, R.; Lupini, A. R.; Oba, F.; Findlay, S. D.; Shibata, N.; Taniguchi, T.; Watanabe, K.; Hayashi, H.; Sakai, T.; Tanaka, I. et al. Atomic structure of luminescent centers in high-efficiency Ce-doped w-AlN single crystal. Sci. Rep. 2014, 4, 3778.

[25]

Xiong, P. X.; Huang, B. L.; Peng, D. F.; Viana, B.; Peng, M. Y.; Ma, Z. J. Self-recoverable mechanically induced instant luminescence from Cr3+-doped LiGa5O8. Adv. Funct. Mater. 2021, 31, 2010685.

[26]

Kim, Y. H.; Arunkumar, P.; Kim, B. Y.; Unithrattil, S.; Kim, E.; Moon, S. H.; Hyun, J. Y.; Kim, K. H.; Lee, D.; Lee, J. S. et al. A zero-thermal-quenching phosphor. Nat. Mater. 2017, 16, 543–550.

[27]

Huang, K. W.; Chen, W. T.; Chu, C. I.; Hu, S. F.; Sheu, H. S.; Cheng, B. M.; Chen, J. M.; Liu, R. S. Controlling the activator site to tune europium valence in oxyfluoride phosphors. Chem. Mater. 2012, 24, 2220–2227.

[28]

Bai, G. X.; Yuan, S. G.; Zhao, Y. D.; Yang, Z. B.; Choi, S. Y.; Chai, Y.; Yu, S. F.; Lau, S. P.; Hao, J. H. 2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence. Adv. Mater. 2016, 28, 7472–7477.

[29]

Hÿtch, M. J.; Putaux, J. L.; Pénisson, J. M. Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy. Nature 2003, 423, 270–273.

[30]

Smeaton, M. A.; El Baggari, I.; Balazs, D. M.; Hanrath, T.; Kourkoutis, L. F. Mapping defect relaxation in quantum dot solids upon in situ heating. ACS Nano 2021, 15, 719–726.

[31]

Tizei, L. H. G.; Nakanishi, R.; Kitaura, R.; Shinohara, H.; Suenaga, K. Core-level spectroscopy to probe the oxidation state of single europium atoms. Phys. Rev. Lett. 2015, 114, 197602.

[32]

Turner, S.; Lazar, S.; Freitag, B.; Egoavil, R.; Verbeeck, J.; Put, S.; Strauven, Y.; Van Tendeloo, G. High resolution mapping of surface reduction in ceria nanoparticles. Nanoscale 2011, 3, 3385–3390.

File
12274_2022_4881_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 June 2022
Revised: 19 July 2022
Accepted: 07 August 2022
Published: 21 September 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Nos. 52002357, 22105175, and 51932009). P. L. acknowledges the financial support from the Carlsberg Foundation (No. CF20-0612). We acknowledge Dr. Zhao for providing the sample and Center of Advanced Analysis & Gene Sequencing, Zhengzhou University for the advanced electron microscopy facilities.

Return