Journal Home > Volume 16 , Issue 1

Rational construction of high-efficiency electrocatalysts for oxygen evolution reaction

(OER) is critical for renewable-energy technologies, but it is highly challenging to rationally regulate their surface structures to improve the OER performance. Herein, we proposed a “model-etching” strategy to investigate chemical etching of Co3O4. The cubic Co3O4 nanocrystals enclosed by well-defined facets are synthesized as model crystals, whose uniform surface structures allow us to study the etching mechanism at atomic level. Etching kinetics study together with DFT calculations discloses that {111} facets, the highly active facets for OER, serve as etch-stop facets in the etching reaction and H2SO4 molecules play a special role in creating surface Co2+, the active center of OER. These results direct us to rationally optimize the surface structures of Co3O4 to develop highly active OER electrocatalysts. The favorable performance of overpotential (η) and the Tafel slope decrease even to 268 mV@10 mA·cm−2 and 74 mV·dec−1, respectively. In general, our study shows that chemical etching of model crystals could help us rationally construct high-efficiency electrocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rational construction of high-active Co3O4 electrocatalysts for oxygen evolution reaction

Show Author's information Tianyun Zhang1,§Shichao Zhao2,§Chuanming Zhu1Jing Shi3Chao Su1Jiawen Yang1Meng Wang1Jun Li1Junhui Li1Pingle Liu1( )Conghui Wang1( )
College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
Analytical Instrumentation center, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

§ Tianyun Zhang and Shichao Zhao contributed equally to this work.

Abstract

Rational construction of high-efficiency electrocatalysts for oxygen evolution reaction

(OER) is critical for renewable-energy technologies, but it is highly challenging to rationally regulate their surface structures to improve the OER performance. Herein, we proposed a “model-etching” strategy to investigate chemical etching of Co3O4. The cubic Co3O4 nanocrystals enclosed by well-defined facets are synthesized as model crystals, whose uniform surface structures allow us to study the etching mechanism at atomic level. Etching kinetics study together with DFT calculations discloses that {111} facets, the highly active facets for OER, serve as etch-stop facets in the etching reaction and H2SO4 molecules play a special role in creating surface Co2+, the active center of OER. These results direct us to rationally optimize the surface structures of Co3O4 to develop highly active OER electrocatalysts. The favorable performance of overpotential (η) and the Tafel slope decrease even to 268 mV@10 mA·cm−2 and 74 mV·dec−1, respectively. In general, our study shows that chemical etching of model crystals could help us rationally construct high-efficiency electrocatalysts.

Keywords: cobalt oxide, oxygen evolution reaction, surface structure, chemical etching, high active facets

References(76)

[1]

Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1: e9120027.

[2]

Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1: e9120029.

[3]

Frydendal, R.; Paoli, E. A.; Knudsen, B. P.; Wickman, B.; Malacrida, P.; Stephens, I. E. L.; Chorkendorff, I. Benchmarking the stability of oxygen evolution reaction catalysts: The importance of monitoring mass losses. ChemElectroChem 2014, 1, 2075–2081.

[4]

Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.

[5]

Rao, R. R.; Kolb, M. J.; Halck, N. B.; Pedersen, A. F.; Mehta, A.; You, H.; Stoerzinger, K. A.; Feng, Z. X.; Hansen, H. A.; Zhou, H. et al. Towards identifying the active sites on RuO2 (110) in catalyzing oxygen evolution. Energy Environ. Sci. 2017, 10, 2626–2637.

[6]

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

[7]

Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

[8]

Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474–6502.

[9]

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

[10]

Xie, Q. X.; Zhou, D. J.; Li, P. S.; Cai, Z.; Xie, T. H.; Gao, T. F.; Chen, R. D.; Kuang, Y.; Sun, X. M. Enhancing oxygen evolution reaction by cationic surfactants. Nano Res. 2019, 12, 2302–2306.

[11]

Wu, X. X.; Zhang, T.; Wei, J. X.; Feng, P. F.; Yan, X. B.; Tang, Y. Facile synthesis of Co and Ce dual-doped Ni3S2 nanosheets on Ni foam for enhanced oxygen evolution reaction. Nano Res. 2020, 13, 2130–2135.

[12]

Bu, X. M.; Liang, X. Y.; Egbo, K. O.; Li, Z. B.; Meng, Y.; Quan, Q.; Li, Y. Y.; Yu, K. M.; Wu, C. M. L.; Ho, J. C. Morphology and strain control of hierarchical cobalt oxide nanowire electrocatalysts via solvent effect. Nano Res. 2020, 13, 3130–3136.

[13]

Stevens, M. B.; Enman, L. J.; Korkus, E. H.; Zaffran, J.; Trang, C. D. M.; Asbury, J.; Kast, M. G.; Toroker, M. C.; Boettcher, S. W. Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure. Nano Res. 2019, 12, 2288–2295.

[14]

Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de Araújo, J. F.; Reier, T.; Dau, H.; Strasser, P. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 2015, 6, 8625.

[15]

Wei, R. J.; Zhou, X. L.; Zhou, T. F.; Hu, J. C.; Ho, J. C. Co3O4 nanosheets with in-plane pores and highly active {112} exposed facets for high performance lithium storage. J. Phys. Chem. C 2017, 121, 19002–19009.

[16]

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

[17]

Dai, L.; Qin, Q.; Zhao, X. J.; Xu, C. F.; Hu, C. Y.; Mo, S. G.; Wang, Y. O.; Lin, S. C.; Tang, Z. C.; Zheng, N. F. Electrochemical partial reforming of ethanol into ethyl acetate using ultrathin Co3O4 nanosheets as a highly selective anode catalyst. ACS Cent. Sci. 2016, 2, 538–544.

[18]

Wei, R. J.; Fang, M.; Dong, G. F.; Lan, C. Y.; Shu, L.; Zhang, H.; Bu, X. M.; Ho, J. C. High-index faceted porous Co3O4 nanosheets with oxygen vacancies for highly efficient water oxidation. ACS Appl. Mater. Interfaces 2018, 10, 7079–7086.

[19]

Wang, H. Y.; Hung, S. F.; Chen, H. Y.; Chan, T. S.; Chen, H. M.; Liu, B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36–39.

[20]

Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Xie, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087–12095.

[21]

Zhang, Y. X.; Ding, F.; Deng, C.; Zhen S. Y.; Li X. Y.; Xue Y. F.; Yan Y. M.; Sun, K. N. Crystal plane-dependent electrocatalytic activity of Co3O4 toward oxygen evolution reaction. Catal. Commun. 2015, 67, 78–82.

[22]

Gao, R.; Zhu, J. Z.; Xiao, X. L.; Hu, Z. B.; Liu, J. J.; Liu, X. F. Facet-dependent electrocatalytic performance of Co3O4 for rechargeable Li-O2 battery. J. Phys. Chem. C 2015, 119, 4516–4523.

[23]

Xiao, X. L.; Liu, X. F.; Zhao, H.; Chen, D. F.; Liu, F. Z.; Xiang, J. H.; Hu, Z. B.; Li, Y. D. Facile shape control of Co3O4 and the effect of the crystal plane on electrochemical performance. Adv. Mater. 2012, 24, 5762–5766.

[24]

Su, D. W.; Dou, S. X.; Wang, G. X. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries. Sci. Rep. 2014, 4, 5767.

[25]

Liu, J.; Li, Z. Y.; Huo, X. G.; Li, J. L. Nanosphere-rod-like Co3O4 as high performance cathode material for aluminum ion batteries. J. Power Sources 2019, 422, 49–56.

[26]

Liang, H. Y.; Raitano, J. M.; Zhang, L. H.; Chan, S. W. Controlled synthesis of Co3O4 nanopolyhedrons and nanosheets at low temperature. Chem. Commun. 2009, 7569–7571.

[27]

Yu, X. Y.; Meng, Q. Q.; Luo, T.; Jia, Y.; Sun, B.; Li, Q. X.; Liu, J. H.; Huang, X. J. Facet-dependent electrochemical properties of Co3O4 nanocrystals toward heavy metal ions. Sci. Rep. 2013, 3, 2886.

[28]

Lyu, L. M.; Huang, M. H. Investigation of relative stability of different facets of Ag2O nanocrystals through face-selective etching. J. Phys. Chem. C 2011, 115, 17768–17773.

[29]

Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1: e9120010.

[30]

Han, X. G.; Zhou, X.; Jiang, Y. Q.; Xie, Z. X. The preparation of spiral ZnO nanostructures by top–down wet–chemical etching and their related properties. J. Mater. Chem. 2012, 22, 10924–10928.

[31]

Chen, J. S.; Zhu, T.; Yang, X. H.; Yang, H. G.; Lou, X. W. Top–down fabrication of α-Fe2O3 single-crystal nanodiscs and microparticles with tunable porosity for largely improved lithium storage properties. J. Am. Chem. Soc. 2010, 132, 13162–13164.

[32]

Zhai, G. J.; Wang, J. G.; Chen, Z. M.; An, W.; Men, Y. Boosting soot combustion efficiency of Co3O4 nanocrystals via tailoring crystal facets. Chem. Eng. J. 2018, 337, 488–498.

[33]

Ding, Y. X.; Schlögl, R.; Heumann, S. The role of supported atomically distributed metal species in electrochemistry and how to create them. ChemElectroChem 2019, 6, 3860–3877.

[34]

Shirai, H.; Morioka, Y.; Nakagawa, I. Infrared and Raman spectra and lattice vibrations of some oxide spinels. J. Phys. Soc. Japan 1982, 51, 592–597.

[35]

Bai, B. Y.; Li, J. H. Positive effects of K+ ions on three-dimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation. ACS Catal. 2014, 4, 2753–2762.

[36]

He, L.; Li, Z. C.; Zhang, Z. J. Rapid, low-temperature synthesis of single-crystalline Co3O4 nanorods on silicon substrates on a large scale. Nanotechnology 2008, 19, 155606.

[37]

Zhao, S.; Hu, F. Y.; Li, J. H. Hierarchical core–shell Al2O3@Pd-CoAlO microspheres for low-temperature toluene combustion. ACS Catal. 2016, 6, 3433–3441.

[38]

Ma, X. Y.; Yu, X. L.; Yang, X. Q.; Lin, M. Y.; Ge, M. F. Hydrothermal synthesis of a novel double-sided nanobrush Co3O4 catalyst and its catalytic performance for benzene oxidation. ChemCatChem 2019, 11, 1214–1221.

[39]

Makhlouf, M. T.; Abu-Zied, B. M.; Mansoure, T. H. Effect of calcination temperature on the H2O2 decomposition activity of nano-crystalline Co3O4 prepared by combustion method. Appl. Surf. Sci. 2013, 274, 45–52.

[40]

Lopes, I.; El Hassan, N.; Guerba, H.; Wallez, G.; Davidson, A. Size-induced structural modifications affecting Co3O4 nanoparticles patterned in SBA-15 silicas. Chem. Mater. 2006, 18, 5826–5828.

[41]

Nguyen, T. T.; Nguyen, V. H.; Deivasigamani, R. K.; Kharismadewi, D.; Iwai, Y.; Shim, J. J. Facile synthesis of cobalt oxide/reduced graphene oxide composites for electrochemical capacitor and sensor applications. Solid State Sci. 2016, 53, 71–77.

[42]

Wang, C. B.; Tang, C. W.; Gau, S. J.; Chien, S. H. Effect of the surface area of cobaltic oxide on carbon monoxide oxidation. Catal. Lett. 2005, 101, 59–63.

[43]

Patil, D.; Patil, P.; Subramanian, V.; Joy, P. A.; Potdar, H. S. Highly sensitive and fast responding CO sensor based on Co3O4 nanorods. Talanta 2010, 81, 37–43.

[44]

Liu, Y. X.; Dai, H. X.; Deng, J. G.; Xie, S. H.; Yang, H. G.; Tan, W.; Han, W.; Jiang, Y.; Guo, G. S. Mesoporous Co3O4-supported gold nanocatalysts: Highly active for the oxidation of carbon monoxide, benzene, toluene, and o-xylene. J. Catal. 2014, 309, 408–418.

[45]

Wang, Y. Z.; Zhao, Y. X.; Gao, C. G.; Liu, D. S. Preparation and catalytic performance of Co3O4 catalysts for low-temperature CO oxidation. Catal. Lett. 2007, 116, 136–142.

[46]

Bao, L. R.; Chang, L.; Yao, L. S.; Meng, W. H.; Yu, Q.; Zhang, X.; Liu, X. H.; Wang, X. F.; Chen, W.; Li, X. Y. Acid etching induced defective Co3O4 as an efficient catalyst for methane combustion reaction. New J. Chem. 2021, 45, 3546–3551.

[47]

Zhang, W. D.; Hu, L. J.; Wu, F.; Li, J. J. Decreasing Co3O4 particle sizes by ammonia-etching and catalytic oxidation of propane. Catal. Lett. 2017, 147, 407–415.

[48]

Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.

[49]

Liu, H.; Yang, J.; Jia, Y. Y.; Wang, Z. Q.; Jiang, M. X.; Shen, K.; Zhao, H. L.; Guo, Y. L.; Guo, Y.; Wang, L. et al. Significant improvement of catalytic performance for chlorinated volatile organic compound oxidation over RuOx supported on acid-etched Co3O4. Environ. Sci. Technol. 2021, 55, 10734–10743.

[50]

Zeng, Y. K.; Zhong, J. P.; Wang, H. B.; Fu, M. L.; Ye, D. Q.; Hu, Y. Synergistic effect of tunable oxygen-vacancy defects and graphene on accelerating the photothermal degradation of methanol over Co3O4/rGO nanocomposites. Chem. Eng. J. 2021, 425, 131658.

[51]

Hou, Y.; Hou, C. X.; Zhai, Y. J.; Li, H. Y.; Chen, T. T.; Fan, Y. Q.; Wang, H. C.; Wang, W. L. Enhancing the electrocatalytic activity of 2D micro-assembly Co3O4 nanosheets for Li-O2 batteries by tuning oxygen vacancies and Co3+/Co2+ ratio. Electrochim. Acta 2019, 324, 134884.

[52]

Xu, W. W.; Xie, W. W.; Wang, Y. Co3O4−x-Carbon@Fe2−yCoyO3 heterostructural hollow polyhedrons for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 28642–28649.

[53]

Yakusheva, E. A.; Gorichev, I. G.; Atanasyan, T. K.; Lainer, Y. A. Kinetics of the dissolution of cobalt, nickel, and iron oxides in sulfuric acid. Russ. Metall. (Metally) 2012, 2012, 198–202.

[54]

Rodenas, L. A. G.; Blesa, M. A.; Morando, P. J. Reactivity of metal oxides: Thermal and photochemical dissolution of MO and MFe2O4 (M = Ni, Co, Zn). J. Solid State Chem. 2008, 181, 2350–2358.

[55]

Wang, Y. C.; Zhou, T.; Jiang, K.; Da, P. M.; Peng, Z.; Tang, J.; Kong, B.; Cai, W. B.; Yang, Z. Q.; Zheng, G. F. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696.

[56]

Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584–7588.

[57]

Tung, C. W.; Hsu, Y. Y.; Shen, Y. P.; Zheng, Y. X.; Chan, T. S.; Sheu, H. S.; Cheng, Y. C.; Chen, H. M. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat. Commun. 2015, 6, 8106.

[58]

Liu, S. X.; Zhang, R.; Lv, W. X.; Kong, F. Y.; Wang, W. Controlled synthesis of Co3O4 electrocatalysts with different morphologies and their application for oxygen evolution reaction. Int. J. Electrochem. Sci. 2018, 13, 3843–3854.

[59]

Yang, X. B.; Chen, J.; Chen, Y. Q.; Feng, P. J.; Lai, H. X.; Li, J. T.; Luo, X. T. Novel Co3O4 nanoparticles/nitrogen-doped carbon composites with extraordinary catalytic activity for oxygen evolution reaction (OER). Nano-Micro Lett. 2018, 10, 15.

[60]

Li, T. F.; Li, S. L.; Liu, Q. Y.; Tian, Y. C.; Zhang, Y. W.; Fu, G. T.; Tang, Y. W. Hollow Co3O4/CeO2 heterostructures in situ embedded in N-doped carbon nanofibers enable outstanding oxygen evolution. ACS Sustainable Chem. Eng. 2019, 7, 17950–17957.

[61]

Saad, A.; Liu, D. Q.; Wu, Y. C.; Song, Z. Q.; Li, Y.; Najam, T.; Zong, K.; Tsiakaras, P.; Cai, X. K. Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance. Appl. Catal. B:Environ. 2021, 298, 120529.

[62]

Li, R. C.; Guo, Y. G.; Chen, H. X.; Wang, K.; Tan, R. T.; Long, B.; Tong, Y. X.; Tsiakaras, P.; Song, S. Q.; Wang, Y. Anion–cation double doped Co3O4 microtube architecture to promote high-valence co species formation for enhanced oxygen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 11901–11910.

[63]

Qi, J. L.; Wang, H. H.; Lin, J. H.; Li, C.; Si, X. Q.; Cao, J.; Zhong, Z. X.; Feng, J. C. Mn and S dual-doping of MOF-derived Co3O4 electrode array increases the efficiency of electrocatalytic generation of oxygen. J. Colloid Interf. Sci. 2019, 557, 28–33.

[64]

Qiu, B. C.; Wang, C.; Zhang, N.; Cai, L. J.; Xiong, Y. J.; Chai, Y. CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation. ACS Catal. 2019, 9, 6484–6490.

[65]

Liu, N.; Guan, J. Core–shell Co3O4@FeOx catalysts for efficient oxygen evolution reaction. Mater. Today Energy 2021, 21, 100715.

[66]

Sidhureddy, B.; Dondapati, J. S.; Chen, A. C. Shape-controlled synthesis of Co3O4 for enhanced electrocatalysis of the oxygen evolution reaction. Chem. Commun. (Camb. ) 2019, 55, 3626–3629.

[67]

Li, X. R.; You, S. J.; Du, J. N.; Dai, Y.; Chen, H.; Cai, Z.; Ren, N. Q.; Zou, J. L. ZIF-67-derived Co3O4@carbon protected by oxygen-buffering CeO2 as an efficient catalyst for boosting oxygen reduction/evolution reactions. J. Mater. Chem. A 2019, 7, 25853–25864.

[68]

Zhang, C. M.; Zheng, F. Q.; Zhang, Z. W.; Xiang, D.; Cheng, C. F.; Zhuang, Z. H.; Li, P.; Li, X. K.; Chen, W. Fabrication of hollow pompon-like Co3O4 nanostructures with rich defects and high-index facet exposure for enhanced oxygen evolution catalysis. J. Mater. Chem. A 2019, 7, 9059–9067.

[69]

Bathula, C.; Ahmed, A. T. A.; Kadam, A.; Sekar, S.; Hwang, J. H.; Lee, S. H.; Kim, H. S. Multi-functional Co3O4 embedded carbon nanotube architecture for oxygen evolution reaction and benzoin oxidation. J. Mol. Liq. 2021, 343, 117616.

[70]

Chen, X. D.; Chen, Y.; Luo, X.; Guo, H. L.; Wang, N. N.; Su, D. W.; Zhang, C.; Liu, T. X.; Wang, G. X.; Cui, L. F. Polyaniline engineering defect-induced nitrogen doped carbon-supported Co3O4 hybrid composite as a high-efficiency electrocatalyst for oxygen evolution reaction. Appl. Surf. Sci. 2020, 526, 146626.

[71]

Zhang, L. J.; Mi, T. Q.; Ziaee, M. A.; Liang, L. F.; Wang, R. H. Hollow POM@MOF hybrid-derived porous Co3O4/CoMoO4 nanocages for enhanced electrocatalytic water oxidation. J. Mater. Chem. A 2018, 6, 1639–1647.

[72]

Dai, Y. W.; Yu, J.; Wang, J.; Shao, Z. P.; Guan, D. Q.; Huang, Y. C.; Ni, M. Bridging the charge accumulation and high reaction order for high-rate oxygen evolution and long stable Zn–Air batteries. Adv. Funct. Mater. 2022, 32, 2111989.

[73]

Chen, R. Z.; Tan, Y. Y.; Zhang, Z. Y.; Lei, Z.; Wu, W.; Cheng, N. C.; Mu, S. C. Hydrazine hydrate induced two-dimensional porous Co3+ enriched Co3O4 nanosheets for enhanced water oxidation catalysis. ACS Sustainable Chem. Eng. 2020, 8, 9813–9821.

[74]

Paul, B.; Bhanja, P.; Sharma, S.; Yamauchi, Y.; Alothman, Z. A.; Wang, Z. L.; Bal, R.; Bhaumik, A. Morphologically controlled cobalt oxide nanoparticles for efficient oxygen evolution reaction. J. Colloid Interf. Sci. 2021, 582, 322–332.

[75]

Yang, H.; Sun, H.; Fan, X. C.; Wang, X. Z.; Yang, Q. F.; Lai, X. Y. Hollow Co3O4 dodecahedrons with controlled crystal orientation and oxygen vacancies for the high performance oxygen evolution reaction. Mater. Chem. Front. 2021, 5, 259–267.

[76]

Li, Y.; Li, F. M.; Meng, X. Y.; Li, S. N.; Zeng, J. H.; Chen, Y. Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal. 2018, 8, 1913–1920.

File
12274_2022_4879_MOESM1_ESM.pdf (4.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 May 2022
Revised: 25 July 2022
Accepted: 08 August 2022
Published: 20 September 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21802114 and 21802115), China Postdoctoral Science Foundation (No. 2019M662794), Natural Science Foundation of Hunan Province (Nos. 2017XK2048, 2018JJ3501, and 2019JJ50601), and Project of Education Department of Hunan Province (No. 21B0141).

Return