Journal Home > Volume 16 , Issue 2

Photocatalytic antibacterial approach shows great potential in treating multidrug-resistant bacterial infections. However, the bactericidal efficiency heavily depends on the photocatalytic activity of semiconductor materials, which is limited by the fast recombination of photogenerated electron–hole pairs. Janus nano-heterostructures with spatial control growth of TiO2 nanoparticles (NPs) at one end of gold nanorods (Au NRs) are designed via surface ligand regulation for photocatalytic sterilization and infected wound healing. The asymmetric nanostructure of Janus gold nanorod-titanium dioxide nanoparticles (Janus AuNR-TiO2 NPs) promotes the directional migration of charge carriers and is more conducive to the spatial separation of electron–hole pairs. Moreover, the injection of hot electrons and enhancement of plasmon near-fields from the surface plasmon resonance (SPR) effect further improve the photocatalytic efficiency of Janus AuNR-TiO2 NPs. Under simulated sunlight irradiation, large amounts of reactive oxygen species (ROS) are generated for photocatalytic antibacterial activity. Enhanced bactericidal efficiency up to 99.99% against methicillin-resistant Staphylococcus aureus (MRSA) is achieved in vitro. Furthermore, Janus AuNR-TiO2 NPs exhibit superior biocompatibility, structural stability, and also remarkably accelerate MRSA-infected wound healing. Taking the above all into consideration, Janus AuNR-TiO2 NPs, as an efficient antibacterial photocatalyst, offers a promising strategy for MRSA infectious therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Engineering Janus gold nanorod–titania heterostructures with enhanced photocatalytic antibacterial activity against multidrug-resistant bacterial infection

Show Author's information Shuqin Li1,§Hongqi Huo2,§Xing Gao1Luntao Liu3( )Shumin Wang4Jiamin Ye2Jing Mu4( )Jibin Song2( )
School of Chemical and Biological Engineering, Qilu Institute of Technology, Jinan 250200, China
Department of Nuclear Medicine, Han Dan Central Hospital, Handan 056001, China
Ministry of Education (MOE) Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China

§ Shuqin Li and Hongqi Huo contributed equally to this work.

Abstract

Photocatalytic antibacterial approach shows great potential in treating multidrug-resistant bacterial infections. However, the bactericidal efficiency heavily depends on the photocatalytic activity of semiconductor materials, which is limited by the fast recombination of photogenerated electron–hole pairs. Janus nano-heterostructures with spatial control growth of TiO2 nanoparticles (NPs) at one end of gold nanorods (Au NRs) are designed via surface ligand regulation for photocatalytic sterilization and infected wound healing. The asymmetric nanostructure of Janus gold nanorod-titanium dioxide nanoparticles (Janus AuNR-TiO2 NPs) promotes the directional migration of charge carriers and is more conducive to the spatial separation of electron–hole pairs. Moreover, the injection of hot electrons and enhancement of plasmon near-fields from the surface plasmon resonance (SPR) effect further improve the photocatalytic efficiency of Janus AuNR-TiO2 NPs. Under simulated sunlight irradiation, large amounts of reactive oxygen species (ROS) are generated for photocatalytic antibacterial activity. Enhanced bactericidal efficiency up to 99.99% against methicillin-resistant Staphylococcus aureus (MRSA) is achieved in vitro. Furthermore, Janus AuNR-TiO2 NPs exhibit superior biocompatibility, structural stability, and also remarkably accelerate MRSA-infected wound healing. Taking the above all into consideration, Janus AuNR-TiO2 NPs, as an efficient antibacterial photocatalyst, offers a promising strategy for MRSA infectious therapy.

Keywords: wound healing, photocatalytic antibacterial, Janus gold nanorod-titanium dioxide nanoparticles (Janus AuNR-TiO2 NPs), multidrug resistant bacterial infection

References(43)

[1]

Nguyen, V. N.; Zhao, Z.; Tang, B. Z.; Yoon, J. Organic photosensitizers for antimicrobial phototherapy. Chem. Soc. Rev. 2022, 51, 3324–3340.

[2]

Tang, N.; Zhang, R. J.; Zheng, Y. B.; Wang, J.; Khatib, M.; Jiang, X.; Zhou, C.; Omar, R.; Saliba, W.; Wu, W. W. et al. Highly efficient self-healing multifunctional dressing with antibacterial activity for sutureless wound closure and infected wound monitoring. Adv. Mater. 2022, 34, 2270025.

[3]

Chen, M.; Winston, D. D.; Wang, M.; Niu, W.; Cheng, W.; Guo, Y.; Wang, Y. D.; Luo, M.; Xie, C. X.; Leng, T. T. et al. Hierarchically multifunctional bioactive nanoglass for integrated tumor/infection therapy and impaired wound repair. Mater. Today 2022, 53, 27–40.

[4]

Zhou, B. S.; Sun, X. L.; Dong, B.; Yu, S. Y.; Cheng, L.; Hu, S. T.; Liu, W.; Xu, L.; Bai, X.; Wang, L. et al. Antibacterial PDT nanoplatform capable of releasing therapeutic gas for synergistic and enhanced treatment against deep infections. Theranostics 2022, 12, 2580–2597.

[5]

Wang, Z. Q.; Koirala, B.; Hernandez, Y.; Zimmerman, M.; Park, S.; Perlin, D. S.; Brady, S. F. A naturally inspired antibiotic to target multidrug-resistant pathogens. Nature 2022, 601, 606–611.

[6]

Sun, D.; Pang, X.; Cheng, Y.; Ming, J.; Xiang, S. J.; Zhang, C.; Lv, P.; Chu, C. C.; Chen, X. L.; Liu, G. et al. Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection. ACS Nano 2020, 14, 2063–2076.

[7]

Zeng, J. Y.; Guo, Z. C.; Wang, Y. H.; Qin, Z. J.; Ma, Y.; Jiang, H.; Weizmann, Y.; Wang, X. M. Intelligent bio-assembly imaging-guided platform for real-time bacteria sterilizing and infectious therapy. Nano Res. 2022, 15, 4164–4174.

[8]

Stracy, M.; Snitser, O.; Yelin, I.; Amer, Y.; Parizade, M.; Katz, R.; Rimler, G.; Wolf, T.; Herzel, E.; Koren, G. et al. Minimizing treatment-induced emergence of antibiotic resistance in bacterial infections. Science 2022, 375, 889–894.

[9]

Ma, L. M.; Xie, X.; Liu, H. H.; Huang, Y.; Wu, H. M.; Jiang, M. L.; Xu, P. F.; Ye, X. Y.; Zhou, C. L. Potent antibacterial activity of MSI-1 derived from the magainin 2 peptide against drug-resistant bacteria. Theranostics 2020, 10, 1373–1390.

[10]

Pan, X. T.; Wu, N. E.; Tian, S. Y.; Guo, J.; Wang, C. H.; Sun, Y.; Huang, Z. Z.; Chen, F. Z.; Wu, Q. Y.; Jing, Y. et al. Inhalable MOF-derived nanoparticles for sonodynamic therapy of bacterial pneumonia. Adv. Funct. Mater. 2022, 32, 2112145.

[11]

Chen, L. F.; Xing, S. H.; Lei, Y. L.; Chen, Q. S.; Zou, Z.; Quan, K.; Qing, Z.; Liu, J. W.; Yang, R. H. A glucose-powered activatable nanozyme breaking pH and H2O2 limitations for treating diabetic infections. Angew. Chem., Int. Ed. 2021, 60, 23534–23539.

[12]

Li, J. F.; Li, Z. Y.; Liu, X. M.; Li, C. Y.; Zheng, Y. F.; Yeung, K. W. K.; Cui, Z. D.; Liang, Y. Q.; Zhu, S. L.; Hu, W. B. et al. Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing. Nat. Commun. 2021, 12, 1224.

[13]

Malysheva, A.; Ivask, A.; Doolette, C. L.; Voelcker, N. H.; Lombi, E. Cellular binding, uptake and biotransformation of silver nanoparticles in human T lymphocytes. Nat. Nanotechnol. 2021, 16, 926–932.

[14]

Wu, M. Q.; Zhang, Z. Y.; Liu, Z. R.; Zhang, J. M.; Zhang, Y. L.; Ding, Y. M.; Huang, T.; Xiang, D. L.; Wang, Z.; Dai, Y. J. et al. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today 2021, 37, 101104.

[15]

Matsunaga, T.; Tomoda, R.; Nakajima, T.; Wake, H. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol. Lett. 1985, 29, 211–214.

[16]

Wang, J. J.; Wang, Y.; Wang, W.; Peng, T.; Liang, J. J.; Li, P.; Pan, D. Q.; Fan, Q. H.; Wu, W. S. Visible light driven Ti3+ self-doped TiO2 for adsorption–photocatalysis of aqueous U(VI). Environ. Pollut. 2020, 262, 114373.

[17]

Duan, S.; Wu, R. N.; Xiong, Y. H.; Ren, H. M.; Lei, C. Y.; Zhao, Y. Q.; Zhang, X. Y.; Xu, F. J. Multifunctional antimicrobial materials: From rational design to biomedical applications. Prog. Mater. Sci. 2022, 125, 100887.

[18]

Wang, D.; Wang, H. Z.; Ji, L.; Xu, M.; Bai, B.; Wan, X. D.; Hou, D. Y.; Qiao, Z. Y.; Wang, H.; Zhang, J. T. Hybrid plasmonic nanodumbbells engineering for multi-intensified second near-infrared light induced photodynamic therapy. ACS Nano. 2021, 15, 8694–8705.

[19]

Zeng, J. Y.; Li, Z. M.; Jiang, H.; Wang, X. M. Progress on photocatalytic semiconductor hybrids for bacterial inactivation. Mater. Horiz. 2021, 8, 2964–3008.

[20]

Li, L.; Cao, S. J.; Wu, Z. H.; Guo, R. Q.; Xie, L.; Wang, L. Y.; Tang, Y. J.; Li, Q.; Luo, X. L.; Ma, L. et al. Modulating electron transfer in vanadium-based artificial enzymes for enhanced ROS-catalysis and disinfection. Adv. Mater. 2022, 34, 2108646.

[21]

Tu, Y. S.; Li, P.; Sun, J. J.; Jiang, J.; Dai, F. F.; Li, C. Z.; Wu, Y. Y.; Chen, L.; Shi, G. S.; Tan, Y. W. et al. Remarkable antibacterial activity of reduced graphene oxide functionalized by copper ions. Adv. Funct. Mater. 2021, 31, 2008018.

[22]

Yang, M. G.; Qiu, S.; Coy, E.; Li, S. J.; Załęski, K.; Zhang, Y.; Pan, H. B.; Wang, G. C. NIR-responsive TiO2 biometasurfaces: Toward in situ photodynamic antibacterial therapy for biomedical implants. Adv. Mater. 2022, 34, 2106314.

[23]

Zeng, X. K.; Wang, Z. Y.; Wang, G.; Gengenbach, T. R.; McCarthy, D. T.; Deletic, A.; Yu, J. G.; Zhang, X. W. Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection. Appl. Catal. B: Environ. 2017, 218, 163–173.

[24]

Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem., Int. Ed. 2020, 59, 5218–5225.

[25]

Li, X. Y.; Sun, H. B.; Xie, Y. Y.; Liang, Y. S.; Gong, X. M.; Qin, P. F.; Jiang, L. B.; Guo, J. Y.; Liu, C.; Wu, Z. B. Principles, synthesis and applications of dual Z-scheme photocatalysts. Coord. Chem. Rev. 2022, 467, 214596.

[26]

Liu, Y. W.; Cullen, D. A.; Lian, T. Q. Slow auger recombination of trapped excitons enables efficient multiple electron transfer in CdS-Pt nanorod heterostructures. J. Am. Chem. Soc. 2021, 143, 20264–20273.

[27]

Gudjonsdottir, S.; Van Der Stam, W.; Kirkwood, N.; Evers, W. H.; Houtepen, A. J. The role of dopant ions on charge injection and transport in electrochemically doped quantum dot films. J. Am. Chem. Soc. 2018, 140, 6582–6590.

[28]

Gong, S. Q.; Niu, Y. L.; Teng, X.; Liu, X.; Xu, M. Z.; Xu, C.; Meyer, T. J.; Chen, Z. F. Visible light-driven, selective CO2 reduction in water by in-doped Mo2C based on defect engineering. Appl. Catal. B:Environ. 2022, 310, 121333.

[29]

Zhou, D. X.; Xue, X. D.; Wang, X.; Luan, Q. J.; Li, A.; Zhang, L. G.; Li, B. Z.; Dong, W. J.; Wang, G.; Hou, C. M. Ni, In co-doped ZnIn2S4 for efficient hydrogen evolution: Modulating charge flow and balancing H adsorption/desorption. Appl. Catal. B: Environ. 2022, 310, 121337.

[30]

Zhao, J. M.; Liu, L. T.; Zhang, Y.; Feng, Z. Y.; Zhao, F. F.; Wang, W. S. Light-responsive color switching of self-doped TiO2−x/WO3·0.33H2O hetero-nanoparticles for highly efficient rewritable paper. Nano Res. 2021, 14, 165–171.

[31]

Tian, N.; Hu, C.; Wang, J. J.; Zhang, Y. H.; Ma, T. Y.; Huang, H. W. Layered bismuth-based photocatalysts. Coord. Chem. Rev. 2022, 463, 214515.

[32]

Liao, G. F.; Tao, X. Y.; Fang, B. Z. An innovative synthesis strategy for high-efficiency and defects-switchable-hydrogenated TiO2 photocatalysts. Matter 2022, 5, 377–379.

[33]

Wang, T.; Chen, L.; Chen, C.; Huang, M. T.; Huang, Y. J.; Liu, S. J.; Li, B. X. Engineering catalytic interfaces in Cuδ+/CeO2-TiO2 photocatalysts for synergistically boosting CO2 reduction to ethylene. ACS Nano 2022, 16, 2306–2318.

[34]

Huang, H. W.; Verhaeghe, D.; Weng, B.; Ghosh, B.; Zhang, H. W.; Hofkens, J.; Steele, J. A.; Roeffaers, M. B. J. Metal halide perovskite based heterojunction photocatalysts. Angew. Chem., Int. Ed. 2022, 61, e202203261.

[35]

Torras, M.; Molet, P.; Soler, L.; Llorca, J.; Roig, A.; Mihi, A. Au/TiO2 2D-photonic crystals as UV–visible photocatalysts for H2 production. Adv. Energy Mater. 2022, 12, 2103733.

[36]

Lu, Z. X.; Wu, X.; Chen, N. Y.; Cao, M. F.; Sartin, M. M.; Ren, B. Photoinduced charge transfer from a semiconductor to a metal probed at the single-nanoparticle level. ACS Energy Lett. 2021, 6, 3473–3480.

[37]

Khan, R.; Naveen, M. H.; Abbas, M. A.; Lee, J.; Kim, H.; Bang, J. H. Photoelectrochemistry of Au nanocluster-sensitized TiO2: Intricacy arising from the light-induced transformation of nanoclusters into nanoparticles. ACS Energy Lett. 2021, 6, 24–32.

[38]

Seh, Z. W.; Liu, S. H.; Low, M.; Zhang, S. Y.; Liu, Z. L.; Mlayah, A.; Han, M. Y. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv. Mater. 2012, 24, 2310–2314.

[39]

Cai, R.; Xiang, H. D.; Yang, D.; Lin, K. T.; Wu, Y. Z.; Zhou, R. Y.; Gu, Z. J.; Yan, L.; Zhao, Y. L.; Tan, W. H. Plasmonic AuPt@CuS heterostructure with enhanced synergistic efficacy for radiophotothermal therapy. J. Am. Chem. Soc. 2021, 143, 16113–16127.

[40]

Liang, S.; Deng, X. R.; Chang, Y.; Sun, C. Q.; Shao, S.; Xie, Z. X.; Xiao, X.; Ma, P.; Zhang, H. Y.; Cheng, Z. Y. et al. Intelligent hollow Pt-CuS Janus architecture for synergistic catalysis-enhanced sonodynamic and photothermal cancer therapy. Nano Lett. 2019, 19, 4134–4145.

[41]

Ben-Shahar, Y.; Philbin, J. P.; Scotognella, F.; Ganzer, L.; Cerullo, G.; Rabani, E.; Banin, U. Charge carrier dynamics in photocatalytic hybrid semiconductor-metal nanorods: Crossover from auger recombination to charge transfer. Nano Lett. 2018, 18, 5211–5216.

[42]

Vigderman, L.; Zubarev, E. R. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1,200 nm using hydroquinone as a reducing agent. Chem. Mater. 2013, 25, 1450–1457.

[43]

Chen, T.; Chen, G.; Xing, S. X.; Wu, T.; Chen, H. Y. Scalable routes to Janus Au-SiO2 and ternary Ag-Au-SiO2 nanoparticles. Chem. Mater. 2010, 22, 3826–3828.

File
12274_2022_4876_MOESM1_ESM.pdf (882.5 KB)
12274_2022_4876_MOESM2_ESM.pdf (3.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 June 2022
Revised: 02 August 2022
Accepted: 06 August 2022
Published: 27 September 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 21874024, 32101074, and U21A20377), the Joint Research Program of Health and Education Commission of Fujian Province (No. 2019-WJ-20), and the Natural Science Foundation of Fujian Province (No. 2020J02012).

Return