Journal Home > Volume 16 , Issue 2

Oxygen evolution reaction (OER) is the core electrode reaction in energy-related technologies, such as electrolytic water, electrocatalytic carbon dioxide reduction, rechargeable metal-air batteries, and renewable fuel cells. Development of well-stocked, cost-effective, and high-performance OER electrocatalysts is the key to the improvement of energy efficiency and the large-scale commercial implementation of these technologies. Multicomponent transition metal oxides and (oxy)hydroxides are the most promising OER catalysts due to their low cost, adjustable structure, high electrocatalytic activity, and outstanding durability. In this review, a brief overview about the mechanisms of OER is first offered, accompanied with the theory and calculation criteria. Then, the latest advances in the rational design of the related OER electrocatalysts and the modulation of the electronic structure of active sites are comprehensively summarized. Specifically, various strategies (including element doping, defect engineering, and fabrication of binderless catalysts) used to improve the OER performance are detailedly discussed, emphasizing the structure–function relationships. Finally, the challenges and perspectives on this promising field are proposed.


menu
Abstract
Full text
Outline
About this article

Multicomponent transition metal oxides and (oxy)hydroxides for oxygen evolution

Show Author's information Jingyi HanJingqi Guan( )
Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China

Abstract

Oxygen evolution reaction (OER) is the core electrode reaction in energy-related technologies, such as electrolytic water, electrocatalytic carbon dioxide reduction, rechargeable metal-air batteries, and renewable fuel cells. Development of well-stocked, cost-effective, and high-performance OER electrocatalysts is the key to the improvement of energy efficiency and the large-scale commercial implementation of these technologies. Multicomponent transition metal oxides and (oxy)hydroxides are the most promising OER catalysts due to their low cost, adjustable structure, high electrocatalytic activity, and outstanding durability. In this review, a brief overview about the mechanisms of OER is first offered, accompanied with the theory and calculation criteria. Then, the latest advances in the rational design of the related OER electrocatalysts and the modulation of the electronic structure of active sites are comprehensively summarized. Specifically, various strategies (including element doping, defect engineering, and fabrication of binderless catalysts) used to improve the OER performance are detailedly discussed, emphasizing the structure–function relationships. Finally, the challenges and perspectives on this promising field are proposed.

Keywords: single-atom catalyst, oxygen evolution reaction, water splitting, mixed oxide, oxyhydroxide

References(318)

[1]

Koper, M. T. M. Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 2013, 4, 2710–2723.

[2]

Guan, J. Q.; Bai, X.; Tang, T. M. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 2022, 15, 818–837.

[3]

Devi, M. M.; Ojha, K. N.; Ganguli, A. K.; Jha, M. Transformation of waste tin-plated steel to iron nanosheets and their application in generation of oxygen. Int. J. Environ. Sci. Technol. 2019, 16, 3669–3678.

[4]

Li, L. L.; Sun, H. N.; Hu, Z. W.; Zhou, J.; Huang, Y. C.; Huang, H. L.; Song, S. Z.; Pao, C. W.; Chang, Y. C.; Komarek, A. C. et al. In situ/operando capturing unusual Ir6+ facilitating ultrafast electrocatalytic water oxidation. Adv. Funct. Mater. 2021, 31, 2104746.

[5]

Zheng, F. Q.; Zhang, W. F.; Zhang, X. X.; Zhang, Y. L.; Chen, W. Sub-2 nm ultrathin and robust 2D FeNi layered double hydroxide nanosheets packed with 1D FeNi-MOFs for enhanced oxygen evolution electrocatalysis. Adv. Funct. Mater. 2021, 31, 2103318.

[6]

Kwon, J.; Han, H.; Jo, S.; Choi, S.; Chung, K. Y.; Ali, G.; Park, K.; Paik, U.; Song, T. Amorphous nickel-iron borophosphate for a robust and efficient oxygen evolution reaction. Adv. Energy Mater. 2021, 11, 2100624.

[7]

Zhang, Q. Q.; Guan, J. Q. Applications of atomically dispersed oxygen reduction catalysts in fuel cells and zinc-air batteries. Energy Environ. Mater. 2021, 4, 307–335.

[8]

Liu, N.; Wang, Y.; Zhang, Q. Q.; Guan, J. Q. Trifunctional iridium-based electrocatalysts for overall water splitting and Zn-air batteries. Electrochim. Acta 2021, 380, 138215.

[9]

Han, L.; Dong, S. J.; Wang, E. K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266–9291.

[10]

Wu, H. X.; Wang, Y. B.; Shi, Z. P.; Wang, X.; Yang, J. H.; Xiao, M. L.; Ge, J. J.; Xing, W.; Liu, C. P. Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis. J. Mater. Chem. A 2022, 10, 13170–13189.

[11]

Liu, N.; Cheng, Y.; Qi, H.; Hou, C. M.; Zhang, Q. Q.; Guan, J. Q. Promotion of the water oxidation activity of iridium oxide by a nitrogen coordination strategy. Chem. Commun. 2020, 56, 14909–14912.

[12]

Liu, N.; Duan, Z. Y.; Zhang, Q. Q.; Guan, J. Q. Insights into active species of ultrafine iridium oxide nanoparticle electrocatalysts in hydrogen/oxygen evolution reactions. Chem. Eng. J. 2021, 419, 129567.

[13]

Qin, F.; Zhao, Z. H.; Alam, M. K.; Ni, Y. Z.; Robles-Hernandez, F.; Yu, L.; Chen, S.; Ren, Z. F.; Wang, Z. M.; Bao, J. M. Trimetallic NiFeMo for overall electrochemical water splitting with a low cell voltage. ACS Energy Lett. 2018, 3, 546–554.

[14]

McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

[15]

Xu, K.; Ding, H.; Lv, H. F.; Tao, S.; Chen, P. Z.; Wu, X. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Understanding structure-dependent catalytic performance of nickel selenides for electrochemical water oxidation. ACS Catal. 2017, 7, 310–315.

[16]

Wu, Z. P.; Lu, X. F.; Zang, S. Q.; Lou, X. W. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv. Funct. Mater. 2020, 30, 1910274.

[17]

Han, Q. L.; Luo, Y. H.; Li, J. D.; Du, X. H.; Sun, S. J.; Wang, Y. J.; Liu, G. H.; Chen, Z. W. Efficient NiFe-based oxygen evolution electrocatalysts and origin of their distinct activity. Appl. Catal. B: Environ. 2022, 304, 120937.

[18]

Yan, D. Q.; Zhang, L.; Chen, Z. P.; Xiao, W. P.; Yang, X. F. Nickel-based metal-organic framework-derived bifunctional electrocatalysts for hydrogen and oxygen evolution reactions. Acta Phys. Chim. Sin. 2021, 37, 2009054.

[19]

Qiao, X. S.; Kang, H. J.; Li, Y.; Cui, K.; Jia, X.; Wu, X. H.; Qin, W. Novel FeNi-based nanowires network catalyst involving hydrophilic channel for oxygen evolution reaction. Small 2022, 18, 2106378.

[20]

Huang, W. Z.; Li, J. T.; Liao, X. B.; Lu, R. H.; Ling, C. H.; Liu, X.; Meng, J. S.; Qu, L. B.; Lin, M. T.; Hong, X. F. et al. Ligand modulation of active sites to promote electrocatalytic oxygen evolution. Adv. Mater. 2022, 34, 2200270.

[21]

Haase, F. T.; Rabe, A.; Schmidt, F. P.; Herzog, A.; Jeon, H. S.; Frandsen, W.; Narangoda, P. V.; Spanos, I.; Friedel Ortega, K.; Timoshenko, J. et al. Role of Nanoscale inhomogeneities in Co2FeO4 catalysts during the oxygen evolution reaction. J. Am. Chem. Soc. 2022, 144, 12007–12019.

[22]

Han, J. Y.; Zhang, M. Z.; Bai, X.; Duan, Z. Y.; Tang, T. M.; Guan, J. Q. Mesoporous Mn-Fe oxyhydroxides for oxygen evolution. Inorg. Chem. Front. 2022, 9, 3559–3565.

[23]

Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 2016, 6, 8069–8097.

[24]

Li, J. H.; Wang, L. L.; He, H. J.; Chen, Y. Q.; Gao, Z. R.; Ma, N.; Wang, B.; Zheng, L. L.; Li, R. L.; Wei, Y. J. et al. Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction. Nano Res. 2022, 15, 4986–4995.

[25]

Xu, S. R.; Yu, X.; Luo, L.; Li, W. J.; Du, Y. S.; Kong, Q. Q.; Wu, Q. Multiscale manipulating induced flexible heterogeneous V-NiFe2O4@Ni2P electrocatalyst for efficient and durable oxygen evolution reaction. Nano Res. 2022, 15, 4942–4949.

[26]

Gan, Y. H.; Cui, M. L.; Dai, X. P.; Ye, Y.; Nie, F.; Ren, Z. T.; Yin, X. L.; Wu, B. Q.; Cao, Y. H.; Cai, R. et al. Mn-doping induced electronic modulation and rich oxygen vacancies on vertically grown NiFe2O4 nanosheet array for synergistically triggering oxygen evolution reaction. Nano Res. 2022, 15, 3940–3945.

[27]

Liao, H. X.; Zhang, X. D.; Niu, S. W.; Tan, P. F.; Chen, K. J.; Liu, Y.; Wang, G. M.; Liu, M.; Pan, J. Dynamic dissolution and re-adsorption of molybdate ion in iron incorporated nickel-molybdenum oxyhydroxide for promoting oxygen evolution reaction. Appl. Catal. B:Environ. 2022, 307, 121150.

[28]

Xu, B. Y.; Zhang, Y.; Pi, Y. C.; Shao, Q.; Huang, X. Q. Research progress of nickel-based metal-organic frameworks and their derivatives for oxygen evolution catalysis. Acta Phys. Chim. Sin. 2021, 37, 2009074.

[29]

Shi, Z. P.; Wang, X.; Ge, J. J.; Liu, C. P.; Xing, W. Fundamental understanding of the acidic oxygen evolution reaction: Mechanism study and state-of-the-art catalysts. Nanoscale 2020, 12, 13249–13275.

[30]

Bai, X.; Wang, L. M.; Nan, B.; Tang, T. M.; Niu, X. D.; Guan, J. Q. Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution. Nano Res. 2022, 15, 6019–6025.

[31]

Qin, R.; Wang, P. Y.; Lin, C.; Cao, F.; Zhang, J. Y.; Chen, L.; Mu, S. C. Transition metal nitrides: Activity origin, synthesis and electrocatalytic applications. Acta Phys. Chim. Sin. 2021, 37, 2009099.

[32]

Li, C. F.; Xie, L. J.; Zhao, J. W.; Gu, L. F.; Tang, H. B.; Zheng, L. R.; Li, G. R. Interfacial Fe-O-Ni-O-Fe bonding regulates the active Ni sites of Ni-MOFs via iron doping and decorating with FeOOH for super-efficient oxygen evolution. Angew. Chem., Int. Ed. 2022, 61, e202116934.

[33]

Wang, A. Y.; Niu, H.; Wang, X. T.; Wan, X. H.; Xie, L.; Zhang, Z. F.; Wang, J.; Guo, Y. Z. Two-dimensional metal-organic frameworks as efficient electrocatalysts for bifunctional oxygen evolution/reduction reactions. J. Mater. Chem. A 2022, 10, 13005–13012.

[34]

Liu, D.; Zhou, P. F.; Bai, H. Y.; Ai, H. Q.; Du, X. Y.; Chen, M. P.; Liu, D.; Ip, W. F.; Lo, K. H.; Kwok, C. T. et al. Development of perovskite oxide-based electrocatalysts for oxygen evolution reaction. Small 2021, 17, 2101605.

[35]

Bao, B.; Liu, Y. N.; Sun, M. Z.; Huang, B. L.; Hu, Y.; Da, P. F.; Ji, D. G.; Xi, P. X.; Yan, C. H. Boosting the electrocatalytic oxygen evolution of perovskite LaCo1−xFexO3 by the construction of yolk–shell nanostructures and electronic modulation. Small 2022, 18, 2201131.

[36]

Tang, L. N.; Yang, Y. L.; Guo, H. Q.; Wang, Y.; Wang, M. J.; Liu, Z. Q.; Yang, G. M.; Fu, X. Z.; Luo, Y.; Jiang, C. et al. High configuration entropy activated lattice oxygen for O2 formation on perovskite electrocatalyst. Adv. Funct. Mater. 2022, 32, 2112157.

[37]

Peng, Y.; Huang, C. R.; Huang, J. L.; Feng, M.; Qiu, X. Z.; Yue, X.; Huang, S. M. Filling octahedral interstices by building geometrical defects to construct active sites for boosting the oxygen evolution reaction on NiFe2O4. Adv. Funct. Mater. 2022, 32, 2201011.

[38]

Xiang, W. K.; Yang, N. T.; Li, X. P.; Linnemann, J.; Hagemann, U.; Ruediger, O.; Heidelmann, M.; Falk, T.; Aramini, M.; DeBeer, S. et al. 3D atomic-scale imaging of mixed Co-Fe spinel oxide nanoparticles during oxygen evolution reaction. Nat. Commun. 2022, 13, 179.

[39]

An, L.; Hu, Y.; Li, J. Y.; Zhu, J. M.; Sun, M. Z.; Huang, B. L.; Xi, P. X.; Yan, C. H. Tailoring oxygen reduction reaction pathway on spinel oxides via surficial geometrical-site occupation modification driven by the oxygen evolution reaction. Adv. Mater. 2022, 34, 2202874.

[40]

Ding, P.; Song, H. Q.; Chang, J. W.; Lu, S. Y. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res. 2022, 15, 7063–7070.

[41]

Karmakar, A.; Karthick, K.; Sankar, S. S.; Kumaravel, S.; Madhu, R.; Bera, K.; Dhandapani, H. N.; Nagappan, S.; Murugan, P.; Kundu, S. Stabilization of ruthenium nanoparticles over NiV-LDH surface for enhanced electrochemical water splitting: An oxygen vacancy approach. J. Mater. Chem. A 2022, 10, 3618–3632.

[42]

Cai, Z. Y.; Wang, P.; Zhang, J. J.; Chen, A. Y.; Zhang, J. W.; Yan, Y.; Wang, X. Y. Reinforced layered double hydroxide oxygen-evolution electrocatalysts: A polyoxometallic acid wet-etching approach and synergistic mechanism. Adv. Mater. 2022, 34, 2110696.

[43]

Wang, Y. Z.; Yang, M.; Ding, Y. M.; Li, N. W.; Yu, L. Recent advances in complex hollow electrocatalysts for water splitting. Adv. Funct. Mater. 2022, 32, 2108681.

[44]

Yang, M.; Zhang, C. H.; Li, N. W.; Luan, D. Y.; Yu, L.; Lou, X. W. Design and synthesis of hollow nanostructures for electrochemical water splitting. Adv. Sci. (Weinh) 2022, 9, 2105135.

[45]

Li, Y.; Hu, X. S.; Huang, J. W.; Wang, L.; She, H. D.; Wang, Q. Z. Development of iron-based heterogeneous cocatalysts for photoelectrochemical water oxidation. Acta Phys. Chim. Sin. 2021, 37, 2009022.

[46]

Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

[47]

Fan, K.; Zou, H. Y.; Ding, Y. X.; Dharanipragada, N. V. R. A.; Fan, L. Z.; Inge, A. K.; Duan, L. L.; Zhang, B. B.; Sun, L. C. Sacrificial W facilitates self-reconstruction with abundant active sites for water oxidation. Small 2022, 18, 2107249.

[48]

Qian, Y.; Xu, X. L.; He, Y.; Lei, L. C.; Xia, Y. H.; Zhang, X. W. A novel monoclinic metal oxide catalyst for oxygen evolution reactions in alkaline media. Inorg. Chem. Front. 2022, 9, 941–949.

[49]

Zhang, B.; Wu, Z. H.; Shao, W. J.; Gao, Y.; Wang, W. W.; Ma, T.; Ma, L.; Li, S.; Cheng, C.; Zhao, C. S. Interfacial atom-substitution engineered transition-metal hydroxide nanofibers with high-valence Fe for efficient electrochemical water oxidation. Angew. Chem., Int. Ed. 2022, 61, e202115331.

[50]

Wang, M. H.; Lou, Z. X.; Wu, X. F.; Liu, Y. W.; Zhao, J. Y.; Sun, K. Z.; Li, W. X.; Chen, J. C.; Yuan, H. Y.; Zhu, M. et al. Operando high-valence Cr-modified NiFe hydroxides for water oxidation. Small 2022, 18, 2200303.

[51]

Guan, J. Q. Effect of coordination surroundings of isolated metal sites on electrocatalytic performances. J. Power Sources 2021, 506, 230143.

[52]

Rao, R. R.; Corby, S.; Bucci, A.; García-Tecedor, M.; Mesa, C. A.; Rossmeisl, J.; Giménez, S.; Lloret-Fillol, J.; Stephens, I. E. L.; Durrant, J. R. Spectroelectrochemical analysis of the water oxidation mechanism on doped nickel oxides. J. Am. Chem. Soc. 2022, 144, 7622–7633.

[53]

Wang, J.; Kim, S. J.; Liu, J. P.; Gao, Y.; Choi, S.; Han, J.; Shin, H.; Jo, S.; Kim, J.; Ciucci, F. et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 2021, 4, 212–222.

[54]

Shrestha, N. K.; Patil, S. A.; Han, J.; Cho, S.; Inamdar, A. I.; Kim, H.; Im, H. Chemical etching induced microporous nickel backbones decorated with metallic Fe@hydroxide nanocatalysts: An efficient and sustainable OER anode toward industrial alkaline water-splitting. J. Mater. Chem. A 2022, 10, 8989–9000.

[55]

Wu, C. C.; Zhang, X. M.; Xia, Z. X.; Shu, M.; Li, H. Q.; Xu, X. L.; Si, R.; Rykov, A. I.; Wang, J. H.; Yu, S. S. et al. Insight into the role of Ni-Fe dual sites in the oxygen evolution reaction based on atomically metal-doped polymeric carbon nitride. J. Mater. Chem. A 2019, 7, 14001–14010.

[56]

Görlin, M.; Chernev, P.; de Araújo, J. F.; Reier, T.; Dresp, S.; Paul, B.; Krähnert, R.; Dau, H.; Strasser, P. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 2016, 138, 5603–5614.

[57]

Kasian, O.; Grote, J. P.; Geiger, S.; Cherevko, S.; Mayrhofer, K. J. J. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium. Angew. Chem., Int. Ed. 2018, 57, 2488–2491.

[58]

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

[59]

Reier, T.; Nong, H. N.; Teschner, D.; Schlögl, R.; Strasser, P. Electrocatalytic oxygen evolution reaction in acidic environments-reaction mechanisms and catalysts. Adv. Energy Mater. 2017, 7, 1601275.

[60]

Bai, X.; Duan, Z.; Nan, B.; Wang, L.; Tang, T.; Guan, J. Unveiling the active sites of ultrathin Co-Fe layered double hydroxides for the oxygen evolution reaction. Chin. J. Catal. 2022, 43, 2240–2248.

[61]

Rong, X.; Parolin, J.; Kolpak, A. M. A Fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 2016, 6, 1153–1158.

[62]

Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.

[63]

Miao, X. B.; Zhang, L. F.; Wu, L.; Hu, Z. P.; Shi, L.; Zhou, S. M. Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation. Nat. Commun. 2019, 10, 3809.

[64]

Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. ChemCatChem 2010, 2, 724–761.

[65]

Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

[66]

Grimaud, A.; Demortière, A.; Saubanère, M.; Dachraoui, W.; Duchamp, M.; Doublet, M. L.; Tarascon, J. M. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2017, 2, 16189.

[67]

Yoo, J. S.; Rong, X.; Liu, Y. S.; Kolpak, A. M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal. 2018, 8, 4628–4636.

[68]

Macounova, K.; Makarova, M.; Krtil, P. Oxygen evolution on nanocrystalline RuO2 and Ru0.9Ni0.1O2−δ electrodes-DEMS approach to reaction mechanism determination. Electrochem. Commun. 2009, 11, 1865–1868.

[69]

Rincón, R. A.; Ventosa, E.; Tietz, F.; Masa, J.; Seisel, S.; Kuznetsov, V.; Schuhmann, W. Evaluation of perovskites as electrocatalysts for the oxygen evolution reaction. ChemPhysChem 2014, 15, 2810–2816.

[70]

Kang, Y. K.; Zhang, F. R.; Liu, B. W.; Sun, Y. Q.; Zhang, X.; Song, W. Y.; Wei, Y. C.; Zhao, Z.; Liu, J. Breaking the scaling relationship via dual metal doping in a cobalt spinel for the OER: A computational prediction. Phys. Chem. Chem. Phys. 2020, 22, 18672–18680.

[71]

Kasian, O.; Geiger, S.; Stock, P.; Polymeros, G.; Breitbach, B.; Savan, A.; Ludwig, A.; Cherevko, S.; Mayrhofer, K. J. J. On the origin of the improved ruthenium stability in RuO2-IrO2 mixed oxides. J. Electrochem. Soc. 2016, 163, F3099–F3104.

[72]

Chang, S. H.; Connell, J. G.; Danilovic, N.; Subbaraman, R.; Chang, K. C.; Stamenkovic, V. R.; Markovic, N. M. Activity–stability relationship in the surface electrochemistry of the oxygen evolution reaction. Faraday Discuss. 2014, 176, 125–133.

[73]

Shan, J. Q.; Zheng, Y.; Shi, B. Y.; Davey, K.; Qiao, S. Z. Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation. ACS Energy Lett. 2019, 4, 2719–2730.

[74]

Shang, C. Y.; Cao, C.; Yu, D. Y.; Yan, Y.; Lin, Y. T.; Li, H. L.; Zheng, T. T.; Yan, X. P.; Yu, W. C.; Zhou, S. M. et al. Electron correlations engineer catalytic activity of pyrochlore iridates for acidic water oxidation. Adv. Mater. 2019, 31, 1805104.

[75]

Yagi, S.; Yamada, I.; Tsukasaki, H.; Seno, A.; Murakami, M.; Fujii, H.; Chen, H.; Umezawa, N.; Abe, H.; Nishiyama, N. et al. Covalency-reinforced oxygen evolution reaction catalyst. Nat. Commun. 2015, 6, 8249.

[76]

Nong, H. N.; Reier, T.; Oh, H. S.; Gliech, M.; Paciok, P.; Vu, T. H. T.; Teschner, D.; Heggen, M.; Petkov, V.; Schlögl, R. et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nat. Catal. 2018, 1, 841–851.

[77]
KimJ.ShihP. C.QinY.Al-BardanZ.SunC. J.YangH. A porous pyrochlore Y2[Ru1.6Y0.4]O7−δ electrocatalyst for enhanced performance towards the oxygen evolution reaction in acidic mediaAngew. Chem., Int. Ed.201857138771388110.1002/anie.201808825

Kim, J.; Shih, P. C.; Qin, Y.; Al-Bardan, Z.; Sun, C. J.; Yang, H. A porous pyrochlore Y2[Ru1.6Y0.4]O7−δ electrocatalyst for enhanced performance towards the oxygen evolution reaction in acidic media. Angew. Chem., Int. Ed. 2018, 57, 13877–13881.

[78]

Kim, J.; Shih, P. C.; Tsao, K. C.; Pan, Y. T.; Yin, X.; Sun, C. J.; Yang, H. High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media. J. Am. Chem. Soc. 2017, 139, 12076–12083.

[79]

Sun, W.; Liu, J. Y.; Gong, X. Q.; Zaman, W. Q.; Cao, L. M.; Yang, J. OER activity manipulated by IrO6 coordination geometry: An insight from pyrochlore iridates. Sci. Rep. 2016, 6, 38429.

[80]

Kuznetsov, D. A.; Naeem, M. A.; Kumar, P. V.; Abdala, P. M.; Fedorov, A.; Müller, C. R. Tailoring lattice oxygen binding in ruthenium pyrochlores to enhance oxygen evolution activity. J. Am. Chem. Soc. 2020, 142, 7883–7888.

[81]

Suntivich, J.; Hong, W. T.; Lee, Y. L.; Rondinelli, J. M.; Yang, W. L.; Goodenough, J. B.; Dabrowski, B.; Freeland, J. W.; Shao-Horn, Y. Estimating hybridization of transition metal and oxygen states in perovskites from O K-edge X-ray absorption spectroscopy. J. Phys. Chem. C 2014, 118, 1856–1863.

[82]

Retuerto, M.; Pascual, L.; Calle-Vallejo, F.; Ferrer, P.; Gianolio, D.; Pereira, A. G.; García, Á.; Torrero, J.; Fernández-Díaz, M. T.; Bencok, P. et al. Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media. Nat. Commun. 2019, 10, 2041.

[83]

Cao, L. L.; Luo, Q. Q.; Chen, J. J.; Wang, L.; Lin, Y.; Wang, H. J.; Liu, X. K.; Shen, X. Y.; Zhang, W.; Liu, W. et al. Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849.

[84]

Laha, S.; Lee, Y.; Podjaski, F.; Weber, D.; Duppel, V.; Schoop, L. M.; Pielnhofer, F.; Scheurer, C.; Müller, K.; Starke, U. et al. Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium. Adv. Energy Mater. 2019, 9, 1803795.

[85]

Kim, J.; Min, B. J.; Kwon, T.; Kim, T.; Song, H. C.; Ham, H. C.; Baik, H.; Lee, K.; Kim, J. Y. Facile one-step synthesis of Ru doped NiCoP nanoparticles as highly efficient electrocatalysts for oxygen evolution reaction. Chem. Asian J. 2021, 16, 3630–3635.

[86]

Chen, Y. B.; Li, H. Y.; Wang, J. X.; Du, Y. H.; Xi, S. B.; Sun, Y. M.; Sherburne, M.; Ager III, J. W.; Fisher, A. C.; Xu, Z. J. Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat. Commun. 2019, 10, 572.

[87]

Binninger, T.; Mohamed, R.; Waltar, K.; Fabbri, E.; Levecque, P.; Kötz, R.; Schmidt, T. J. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci. Rep. 2015, 5, 12167.

[88]

Kötz, R.; Lewerenz, H. J.; Stucki, S. XPS studies of oxygen evolution on Ru and RuO2 anodes. J. Electrochem. Soc. 1983, 130, 825–829.

[89]

Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756.

[90]

Chen, Q. Q.; Hou, C. C.; Wang, C. J.; Yang, X.; Shi, R.; Chen, Y. Ir4+-doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting. Chem. Commun. 2018, 54, 6400–6403.

[91]

Zhou, H. Q.; Yu, F.; Zhu, Q.; Sun, J. Y.; Qin, F.; Yu, L.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Water splitting by electrolysis at high current densities under 1.6 volts. Energy Environ. Sci. 2018, 11, 2858–2864.

[92]

Balogun, M. S.; Qiu, W. T.; Yang, H.; Fan, W. J.; Huang, Y. C.; Fang, P. P.; Li, G. R.; Ji, H. B.; Tong, Y. X. A monolithic metal-free electrocatalyst for oxygen evolution reaction and overall water splitting. Energy Environ. Sci. 2016, 9, 3411–3416.

[93]

Liu, Y. X.; Bai, Y.; Han, Y.; Yu, Z.; Zhang, S. M.; Wang, G. H.; Wei, J. H.; Wu, Q. B.; Sun, K. N. Self-supported hierarchical FeCoNi-LTH/NiCo2O4/CC electrodes with enhanced bifunctional performance for efficient overall water splitting. ACS Appl. Mater. Interfaces 2017, 9, 36917–36926.

[94]

Li, S. S.; Sun, J. R.; Guan, J. Q. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. Chin. J. Catal. 2021, 42, 511–556.

[95]

Zhai, P. L.; Xia, M. Y.; Wu, Y. Z.; Zhang, G. H.; Gao, J. F.; Zhang, B.; Cao, S. Y.; Zhang, Y. T.; Li, Z. W.; Fan, Z. et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587.

[96]

Liu, M. J.; Min, K. A.; Han, B.; Lee, L. Y. S. Interfacing or doping? Role of Ce in highly promoted water oxidation of NiFe-layered double hydroxide. Adv. Energy Mater. 2021, 11, 2101281.

[97]

Cai, Z. Y.; Bu, X. M.; Wang, P.; Su, W. Q.; Wei, R. J.; Ho, J. C.; Yang, J. H.; Wang, X. Y. Simple and cost effective fabrication of 3D porous core–shell Ni nanochains@NiFe layered double hydroxide nanosheet bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2019, 7, 21722–21729.

[98]

Zhang, B.; Shan, J. W.; Wang, X. Y.; Hu, Y. J.; Li, Y. Y. Ru/Rh cation doping and oxygen-vacancy engineering of FeOOH nanoarrays@Ti3C2Tx MXene heterojunction for highly efficient and stable electrocatalytic oxygen evolution. Small 2022, 18, 2200173.

[99]

Tang, Y. J.; Zou, Y.; Zhu, D. D. Efficient water oxidation using an Fe-doped nickel telluride-nickel phosphide electrocatalyst by partial phosphating. J. Mater. Chem. A 2022, 10, 12438–12446.

[100]

Peng, X. R.; Chen, X. C.; Liu, T.; Lu, C. F.; Sun, M. M.; Ding, F.; Wang, Y. Y.; Zou, P.; Wang, X. X.; Zhao, Q. B. et al. Rose-like nanocomposite of Fe-Ni phosphides/iron oxide as efficient catalyst for oxygen evolution reaction. Chem. Asian J. 2019, 14, 2744–2750.

[101]

Hu, L. Y.; Zeng, X.; Wei, X. Q.; Wang, H. J.; Wu, Y.; Gu, W. L.; Shi, L.; Zhu, C. Z. Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures. Appl. Catal. B: Environ. 2020, 273, 119014.

[102]

Hua, W.; Sun, H. H.; Jiang, M. W.; Ren, L. B.; Zhang, Y.; Wang, J. G. Cascading reconstruction to induce highly disordered Fe-Ni(O)OH toward enhanced oxygen evolution reaction. J. Mater. Chem. A 2022, 10, 7366–7372.

[103]

Peng, W. F.; Deshmukh, A.; Chen, N.; Lv, Z. X.; Zhao, S. J.; Li, J.; Yan, B. M.; Gao, X.; Shang, L.; Gong, Y. T. et al. Deciphering the dynamic structure evolution of Fe- and Ni-codoped CoS2 for enhanced water oxidation. ACS Catal. 2022, 12, 3743–3751.

[104]

Wang, Y.; Li, X. P.; Zhang, M. M.; Zhang, J. F.; Chen, Z. L.; Zheng, X. R.; Tian, Z. L.; Zhao, N. Q.; Han, X. P.; Zaghib, K. et al. Highly active and durable single-atom tungsten-doped NiS0.5Se0.5 nanosheet@NiS0.5Se0.5 nanorod heterostructures for water splitting. Adv. Mater. 2022, 34, 2107053.

[105]

Tahir, M.; Pan, L.; Zhang, R. R.; Wang, Y. C.; Shen, G. Q.; Aslam, I.; Qadeer, M. A.; Mahmood, N.; Xu, W.; Wang, L. et al. High-valence-state NiO/Co3O4 nanoparticles on nitrogen-doped carbon for oxygen evolution at low overpotential. ACS Energy Lett. 2017, 2, 2177–2182.

[106]

Chen, J. S.; Li, H.; Yu, Z. X.; Liu, C.; Yuan, Z. W.; Wang, C. J.; Zhao, S. L.; Henkelman, G.; Li, S. Z.; Wei, L. et al. Octahedral coordinated trivalent cobalt enriched multimetal oxygen-evolution catalysts. Adv. Energy Mater. 2020, 10, 2002593.

[107]

Hoa, V. H.; Tran, D. T.; Nguyen, D. C.; Kim, D. H.; Kim, N. H.; Lee, J. H. Molybdenum and phosphorous dual doping in cobalt monolayer interfacial assembled cobalt nanowires for efficient overall water splitting. Adv. Funct. Mater. 2020, 30, 2002533.

[108]

Li, Y. K.; Zhang, G.; Lu, W. T.; Cao, F. F. Amorphous Ni-Fe-Mo suboxides coupled with Ni network as porous nanoplate array on nickel foam: A highly efficient and durable bifunctional electrode for overall water splitting. Adv. Sci. (Weinh) 2020, 7, 1902034.

[109]

Wang, S.; Li, Q.; Sun, S. J.; Ge, K.; Zhao, Y.; Yang, K.; Zhang, Z. H.; Cao, J. Y.; Lu, J.; Yang, Y. F. et al. Heterostructured ferroelectric BaTiO3@MOF-Fe/Co electrocatalysts for efficient oxygen evolution reaction. J. Mater. Chem. A 2022, 10, 5350–5360.

[110]

Balch, H. B.; Evans, A. M.; Dasari, R. R.; Li, H.; Li, R. F.; Thomas, S.; Wang, D. Q.; Bisbey, R. P.; Slicker, K.; Castano, I. et al. Electronically coupled 2D polymer/MoS2 heterostructures. J. Am. Chem. Soc. 2020, 142, 21131–21139.

[111]

Huang, Y.; Zhang, S. L.; Lu, X. F.; Wu, Z. P.; Luan, D. Y.; Lou, X. W. Trimetallic spinel NiCo2−xFexO4 nanoboxes for highly efficient electrocatalytic oxygen evolution. Angew. Chem., Int. Ed. 2021, 60, 11841–11846.

[112]

Li, R. C.; Hu, B. H.; Yu, T. W.; Chen, H. X.; Wang, Y.; Song, S. Q. Insights into correlation among surface-structure-activity of cobalt-derived pre-catalyst for oxygen evolution reaction. Adv. Sci. (Weinh) 2020, 7, 1902830.

[113]

Liu, Z.; Tang, B.; Gu, X. C.; Liu, H.; Feng, L. G. Selective structure transformation for NiFe/NiFe2O4 embedded porous nitrogen-doped carbon nanosphere with improved oxygen evolution reaction activity. Chem. Eng. J. 2020, 395, 125170.

[114]

Chen, X.; Wang, Q. C.; Cheng, Y. W.; Xing, H. L.; Li, J. Z.; Zhu, X. J.; Ma, L. B.; Li, Y. T.; Liu, D. M. S-doping triggers redox reactivities of both iron and lattice oxygen in FeOOH for low-cost and high-performance water oxidation. Adv. Funct. Mater. 2022, 32, 2112674.

[115]

Wang, K.; Du, H. F.; He, S.; Liu, L.; Yang, K.; Sun, J. M.; Liu, Y. H.; Du, Z. Z.; Xie, L. H.; Ai, W. et al. Kinetically controlled, scalable synthesis of γ-FeOOH nanosheet arrays on nickel foam toward efficient oxygen evolution: The key role of in-situ-generated γ-NiOOH. Adv. Mater. 2021, 33, 2005587.

[116]

Souza, A. S.; Bezerra, L. S.; Cardoso, E. S. F.; Fortunato, G. V.; Maia, G. Nickel pyrophosphate combined with graphene nanoribbon used as efficient catalyst for OER. J. Mater. Chem. A 2021, 9, 11255–11267.

[117]

Sheelam, A.; Balu, S.; Muneeb, A.; Bayikadi, K. S.; Namasivayam, D.; Siddharthan, E. E.; Inamdar, A. I.; Thapa, R.; Chiang, M. H.; Isaac Huang, S. J. et al. Improved oxygen redox activity by high-valent Fe and Co3+ sites in the perovskite LaNi1−xFe0.5xCo0.5xO3. ACS Appl. Energy Mater. 2022, 5, 343–354.

[118]

Ran, J.; Wang, T.; Zhang, J.; Liu, Y.; Xu, C.; Xi, S.; Gao, D. Modulation of electronics of oxide perovskites by sulfur doping for electrocatalysis in rechargeable Zn-air batteries. Chem. Mater. 2020, 32, 3439–3446.

[119]

Wang, H.; Qi, J.; Yang, N. L.; Cui, W.; Wang, J. Y.; Li, Q. H.; Zhang, Q. H.; Yu, X. Q.; Gu, L.; Li, J. et al. Dual-defects adjusted crystal-field splitting of LaCo1−xNixO3−δ hollow multishelled structures for efficient oxygen evolution. Angew. Chem., Int. Ed. 2020, 59, 19691–19695.

[120]

Qian, J. M.; Wang, T. T.; Zhang, Z. M.; Liu, Y. G.; Li, J. F.; Gao, D. Q. Engineered spin state in Ce doped LaCoO3 with enhanced electrocatalytic activity for rechargeable Zn-air batteries. Nano Energy 2020, 74, 104948.

[121]

Li, Z. S.; Li, J. G.; Ao, X.; Sun, H. C.; Wang, H. K.; Yuen, M. F.; Wang, C. D. Conductive metal-organic frameworks endow high-efficient oxygen evolution of La0·6Sr0·4Co0·8Fe0·2O3 perovskite oxide nanofibers. Electrochim. Acta 2020, 334, 135638.

[122]

Xu, K. L.; Song, F.; Gu, J.; Xu, X.; Liu, Z. N.; Hu, X. Solvent-induced surface hydroxylation of a layered perovskite Sr3FeCoO7−δ for enhanced oxygen evolution catalysis. J. Mater. Chem. A 2018, 6, 14240–14245.

[123]

Chen, D. W.; Qiao, M.; Lu, Y. R.; Hao, L.; Liu, D. D.; Dong, C. L.; Li, Y. F.; Wang, S. Y. Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2018, 57, 8691–8696.

[124]

Sun, H.; Chen, L.; Lian, Y. B.; Yang, W. J.; Lin, L.; Chen, Y. F.; Xu, J. B.; Wang, D.; Yang, X. Q.; Rümmerli, M. H. et al. Topotactically transformed polygonal mesopores on ternary layered double hydroxides exposing under-coordinated metal centers for accelerated water dissociation. Adv. Mater. 2020, 32, 2006784.

[125]

Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.

[126]

Xu, H. J.; Shan, C. F.; Wu, X. X.; Sun, M. Z.; Huang, B. L.; Tang, Y.; Yan, C. H. Fabrication of layered double hydroxide microcapsules mediated by cerium doping in metal-organic frameworks for boosting water splitting. Energy Environ. Sci. 2020, 13, 2949–2956.

[127]

Zhou, L.; Zhang, C.; Zhang, Y. Q.; Li, Z. H.; Shao, M. F. Host modification of layered double hydroxide electrocatalyst to boost the thermodynamic and kinetic activity of oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009743.

[128]

Zhang, L. C.; Wang, J. Q.; Liu, P. Y.; Liang, J.; Luo, Y. S.; Cui, G. W.; Tang, B.; Liu, Q.; Yan, X. D.; Hao, H. G. et al. Ni(OH)2 nanoparticles encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation. Nano Res. 2022, 15, 6084–6090.

[129]

Singh, R. N.; Singh, J. P.; Lal, B.; Thomas, M. J. K.; Bera, S. New NiFe2−xCrxO4 spinel films for O2 evolution in alkaline solutions. Electrochim. Acta 2006, 51, 5515–5523.

[130]

Huang, J. H.; Chen, J. T.; Yao, T.; He, J. F.; Jiang, S.; Sun, Z. H.; Liu, Q. H.; Cheng, W. R.; Hu, F. C.; Jiang, Y. et al. CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem., Int. Ed. 2015, 54, 8722–8727.

[131]

Xiao, C. L.; Li, Y. B.; Lu, X. Y.; Zhao, C. Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Adv. Funct. Mater. 2016, 26, 3515–3523.

[132]

Zhang, Z. Y.; Liu, S. S.; Xiao, F.; Wang, S. Facile synthesis of heterostructured nickel/nickel oxide wrapped carbon fiber: Flexible bifunctional gas-evolving electrode for highly efficient overall water splitting. ACS Sustainable Chem. Eng. 2017, 5, 529–536.

[133]

Thenuwara, A. C.; Attanayake, N. H.; Yu, J.; Perdew, J. P.; Elzinga, E. J.; Yan, Q. M.; Strongin, D. R. Cobalt intercalated layered NiFe double hydroxides for the oxygen evolution reaction. J. Phys. Chem. B 2018, 122, 847–854.

[134]

Wang, T. Y.; Nam, G.; Jin, Y.; Wang, X. Y.; Ren, P. J.; Kim, M. G.; Liang, J. S.; Wen, X. D.; Jang, H.; Han, J. T. et al. NiFe (oxy)hydroxides derived from NiFe disulfides as an efficient oxygen evolution catalyst for rechargeable Zn-air batteries: The effect of surface S residues. Adv. Mater. 2018, 30, 1800757.

[135]

Zhou, D. J.; Wang, S. Y.; Jia, Y.; Xiong, X. Y.; Yang, H. B.; Liu, S.; Tang, J. L.; Zhang, J. M.; Liu, D.; Zheng, L. R. et al. NiFe hydroxide lattice tensile strain: Enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angew. Chem., Int. Ed. 2019, 58, 736–740.

[136]

Kuai, C. G.; Zhang, Y.; Wu, D. Y.; Sokaras, D.; Mu, L. Q.; Spence, S.; Nordlund, D.; Lin, F.; Du, X. W. Fully oxidized Ni-Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction. ACS Catal. 2019, 9, 6027–6032.

[137]

Morales-Guio, C. G.; Liardet, L.; Hu, X. L. Oxidatively electrodeposited thin-film transition metal (oxy)hydroxides as oxygen evolution catalysts. J. Am. Chem. Soc. 2016, 138, 8946–8957.

[138]

Guan, B. Y.; Yu, L.; Lou, X. W. General synthesis of multishell mixed-metal oxyphosphide particles with enhanced electrocatalytic activity in the oxygen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 2386–2389.

[139]

Xiao, Y.; Pei, Y.; Hu, Y. F.; Ma, R. G.; Wang, D. Y.; Wang, J. C. Co2P@P-doped 3D porous carbon for bifunctional oxygen electrocatalysis. Acta Phys. Chim. Sin. 2021, 37, 2009051.

[140]

Zhu, H.; Gu, L.; Yu, D. N.; Sun, Y. J.; Wan, M.; Zhang, M.; Wang, L.; Wang, L. N.; Wu, W. W.; Yao, J. M. et al. The marriage and integration of nanostructures with different dimensions for synergistic electrocatalysis. Energy Environ. Sci. 2017, 10, 321–330.

[141]

Fu, G. T.; Yan, X. X.; Chen, Y. F.; Xu, L.; Sun, D. M.; Lee, J. M.; Tang, Y. W. Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles. Adv. Mater. 2018, 30, 1704609.

[142]

Du, J.; Chen, C. C.; Cheng, F. Y.; Chen, J. Rapid synthesis and efficient electrocatalytic oxygen reduction/evolution reaction of CoMn2O4 nanodots supported on graphene. Inorg. Chem. 2015, 54, 5467–5474.

[143]

Zhu, H.; Yu, D. N.; Zhang, S. G.; Chen, J. W.; Wu, W. B.; Wan, M.; Wang, L. N.; Zhang, M.; Du, M. L. Morphology and structure engineering in nanofiber reactor: Tubular hierarchical integrated networks composed of dual phase octahedral CoMn2O4/carbon nanofibers for water oxidation. Small 2017, 13, 1700468.

[144]

Yu, X. W.; Zhao, J.; Johnsson, M. Interfacial engineering of nickel hydroxide on cobalt phosphide for alkaline water electrocatalysis. Adv. Funct. Mater. 2021, 31, 2101578.

[145]

Xing, M.; Kong, L. B.; Liu, M. C.; Liu, L. Y.; Kang, L.; Luo, Y. C. Cobalt vanadate as highly active, stable, noble metal-free oxygen evolution electrocatalyst. J. Mater. Chem. A 2014, 2, 18435–18443.

[146]

Cao, L. M.; Wang, J. W.; Zhong, D. C.; Lu, T. B. Template-directed synthesis of sulphur doped NiCoFe layered double hydroxide porous nanosheets with enhanced electrocatalytic activity for the oxygen evolution reaction. J. Mater. Chem. A 2018, 6, 3224–3230.

[147]

Lu, B. G.; Cao, D. X.; Wang, P.; Wang, G. L.; Gao, Y. Y. Oxygen evolution reaction on Ni-substituted Co3O4 nanowire array electrodes. Int. J. Hydrogen Energy 2011, 36, 72–78.

[148]

Huang, L. L.; Chen, R.; Xie, C.; Chen, C.; Wang, Y. Y.; Zeng, Y. F.; Chen, D. W.; Wang, S. Y. Rapid cationic defect and anion dual-regulated layered double hydroxides for efficient water oxidation. Nanoscale 2018, 10, 13638–13644.

[149]

Muthurasu, A.; Maruthapandian, V.; Kim, H. Y. Metal-organic framework derived Co3O4/MoS2 heterostructure for efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction. Appl. Catal. B 2019, 248, 202–210.

[150]

Zhuang, L. Z.; Jia, Y.; Liu, H. L.; Li, Z. H.; Li, M. R.; Zhang, L. Z.; Wang, X.; Yang, D. J.; Zhu, Z. H.; Yao, X. D. Sulfur-Modified oxygen vacancies in iron-cobalt oxide nanosheets: Enabling extremely high activity of the oxygen evolution reaction to achieve the industrial water splitting benchmark. Angew. Chem., Int. Ed. 2020, 59, 14664–14670.

[151]

Lu, S. S.; Shi, Y. M.; Zhou, W.; Zhang, Z. P.; Wu, F.; Zhang, B. Dissolution of the heteroatom dopants and formation of ortho-quinone moieties in the doped carbon materials during water electrooxidation. J. Am. Chem. Soc. 2022, 144, 3250–3258.

[152]

Kim, Y.; Kim, S.; Shim, M.; Oh, Y.; Lee, K. S.; Jung, Y.; Byon, H. R. Alteration of oxygen evolution mechanisms in layered LiCoO2 structures by intercalation of alkali metal ions. J. Mater. Chem. A 2022, 10, 10967–10978.

[153]

Cao, L.; Ma, Y. H.; Song, A. L.; Bai, L.; Zhang, P. P.; Li, X. H.; Shao, G. J. Stable composite of flower-like NiFe-layered double hydroxide nucleated on graphene oxide as an effective catalyst for oxygen reduction reaction. Int. J. Hydrogen Energy 2019, 44, 5912–5920.

[154]

Wu, Y. Z.; Zhao, Y. Y.; Zhai, P. L.; Wang, C.; Gao, J. F.; Sun, L. C.; Hou, J. G. Triggering lattice oxygen activation of single-atomic Mo sites anchored on Ni-Fe oxyhydroxides nanoarrays for electrochemical water oxidation. Adv. Mater. 2022, 34, 2202523.

[155]

Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.

[156]

Lin, C.; Zhao, Y. H.; Zhang, H. J.; Xie, S. H.; Li, Y. F.; Li, X. P.; Jiang, Z.; Liu, Z. P. Accelerated active phase transformation of NiO powered by Pt single atoms for enhanced oxygen evolution reaction. Chem. Sci. 2018, 9, 6803–6812.

[157]

Tian, B. L.; Shin, H.; Liu, S. T.; Fei, M. C.; Mu, Z. Y.; Liu, C.; Pan, Y. H.; Sun, Y. M.; Goddard III, W. A.; Ding, M. N. Double-exchange-induced in situ conductivity in nickel-based oxyhydroxides: An effective descriptor for electrocatalytic oxygen evolution. Angew. Chem., Int. Ed. 2021, 60, 16448–16456.

[158]

Yang, G. J.; Zhu, B. T.; Fu, Y. J.; Zhao, J.; Lin, Y. N.; Gao, D. Q.; Li, J. Y. High-valent zirconium-doping modified Co3O4 weave-like nanoarray boosts oxygen evolution reaction. J. Alloys Compd. 2021, 886, 161172.

[159]

Liu, X. M.; Fan, X.; Huang, H.; Lin, H. P.; Gao, J. Z. Electronic modulation of oxygen evolution on metal doped NiFe layered double hydroxides. J. Colloid Interface Sci. 2021, 587, 385–392.

[160]

Chen, J. S.; Li, H.; Chen, S. M.; Fei, J. Y.; Liu, C.; Yu, Z. X.; Shin, K.; Liu, Z. W.; Song, L.; Henkelman, G. et al. Co-Fe-Cr (oxy)hydroxides as efficient oxygen evolution reaction catalysts. Adv. Energy Mater. 2021, 11, 2003412.

[161]

Abellán, G.; Carrasco, J. A.; Coronado, E.; Romero, J.; Varela, M. Alkoxide-intercalated CoFe-layered double hydroxides as precursors of colloidal nanosheet suspensions: Structural, magnetic and electrochemical properties. J. Mater. Chem. C 2014, 2, 3723–3731.

[162]

Xu, A. N.; Dong, C. F.; Wu, A. J.; Li, R. X.; Wang, L.; Macdonald, D. D.; Li, X. G. Plasma-modified C-doped Co3O4 nanosheets for the oxygen evolution reaction designed by Butler-Volmer and first-principle calculations. J. Mater. Chem. A 2019, 7, 4581–4595.

[163]

Bo, X.; Li, Y. B.; Chen, X. J.; Zhao, C. High valence chromium regulated cobalt-iron-hydroxide for enhanced water oxidation. J. Power Sources 2018, 402, 381–387.

[164]

Yan, W. N.; Bian, W. Y.; Jin, C.; Tian, J. H.; Yang, R. Z. An efficient Bi-functional electrocatalyst based on strongly coupled CoFe2O4/carbon nanotubes hybrid for oxygen reduction and oxygen evolution. Electrochim. Acta 2015, 177, 65–72.

[165]

Kargar, A.; Yavuz, S.; Kim, T. K.; Liu, C. H.; Kuru, C.; Rustomji, C. S.; Jin, S.; Bandaru, P. R. Solution-processed CoFe2O4 nanoparticles on 3D carbon fiber papers for durable oxygen evolution reaction. ACS Appl. Mater. Interfaces 2015, 7, 17851–17856.

[166]

Nsanzimana, J. M. V.; Peng, Y. C.; Xu, Y. Y.; Thia, L.; Wang, C.; Xia, B. Y.; Wang, X. An efficient and earth-abundant oxygen-evolving electrocatalyst based on amorphous metal borides. Adv. Energy Mater. 2018, 8, 1701475.

[167]

Grewe, T.; Deng, X. H.; Tüysüz, H. Influence of Fe doping on structure and water oxidation activity of nanocast Co3O4. Chem. Mater. 2014, 26, 3162–3168.

[168]

Xu, Y. Q.; Zhang, W. F.; Li, Y. G.; Lu, P. F.; Wu, Z. S. A general bimetal-ion adsorption strategy to prepare nickel single atom catalysts anchored on graphene for efficient oxygen evolution reaction. J. Energy Chem. 2020, 43, 52–57.

[169]

Lee, S.; Bai, L. C.; Hu, X. L. Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel-iron layered double hydroxide. Angew. Chem., Int. Ed. 2020, 59, 8072–8077.

[170]

Lin, Y. C.; Tian, Z. Q.; Zhang, L. J.; Ma, J. Y.; Jiang, Z.; Deibert, B. J.; Ge, R. X.; Chen, L. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 2019, 10, 162.

[171]

Liu, C.; Qian, J.; Ye, Y. F.; Zhou, H.; Sun, C. J.; Sheehan, C.; Zhang, Z. Y.; Wan, G.; Liu, Y. S.; Guo, J. et al. Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nat. Catal. 2021, 4, 36–45.

[172]

Uyama, T.; Okazaki, Y.; Kawaguchi, S.; Yamada, I. Positive and negative synergistic effects of Fe-Co mixing on the oxygen and hydrogen evolution reaction activities of the quadruple perovskite CaCu3Fe4−xCoxO12. ACS Appl. Energy Mater. 2022, 5, 214–226.

[173]

Jin, D.; Kang, J.; Prabhakaran, S.; Lee, Y.; Kim, M. H.; Kim, D. H.; Lee, C. Chromium-rich CrxIr1−xO2 wire-in-tube alloys for boosted water oxidation with long standing electrocatalytic activity. J. Mater. Chem. A 2022, 10, 13803–13813.

[174]

Zhuang, Z. B.; Sheng, W. C.; Yan, Y. S. Synthesis of monodispere Au@Co3O4 core–shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Adv. Mater. 2014, 26, 3950–3955.

[175]

Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421.

[176]

García-Mota, M.; Bajdich, M.; Viswanathan, V.; Vojvodic, A.; Bell, A. T.; Nørskov, J. K. Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides. J. Phys. Chem. C 2012, 116, 21077–21082.

[177]
DionigiF.ZengZ. H.SinevI.MerzdorfT.DeshpandeS.LopezM. B.KunzeS.ZegkinoglouI.SarodnikH.FanD. X. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolutionNat. Commun.202011252210.1038/s41467-020-16237-1

Dionigi, F.; Zeng, Z. H.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D. X. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 2522.

[178]

Bo, X.; Li, Y. B.; Hocking, R. K.; Zhao, C. NiFeCr hydroxide holey nanosheet as advanced electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 2017, 9, 41239–41245.

[179]

Castro, A. J. R.; Marques, S. P. D.; Soares, J. M.; Filho, J. M.; Saraiva, G. D.; Oliveira, A. C. Nanosized aluminum derived oxides catalysts prepared with different methods for styrene production. Chem. Eng. J. 2012, 209, 345–355.

[180]

Li, X. H.; Walsh, F. C.; Pletcher, D. Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers. Phys. Chem. Chem. Phys. 2011, 13, 1162–1167.

[181]

Yang, Y.; Dang, L. N.; Shearer, M. J.; Sheng, H. Y.; Li, W. J.; Chen, J.; Xiao, P.; Zhang, Y. H.; Hamers, R. J.; Jin, S. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1703189.

[182]

Ouyang, D.; Xiao, J. Y.; Ye, F.; Huang, Z. F.; Zhang, H.; Zhu, L.; Cheng, J. Q.; Choy, W. C. H. Strategic synthesis of ultrasmall NiCo2O4 NPs as hole transport layer for highly efficient perovskite solar cells. Adv. Energy Mater. 2018, 8, 1702722.

[183]

Zhang, J. T.; Yu, L.; Chen, Y.; Lu, X. F.; Gao, S. Y.; Lou, X. W. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction. Adv. Mater. 2020, 32, 1906432.

[184]

Bates, M. K.; Jia, Q. Y.; Doan, H.; Liang, W. T.; Mukerjee, S. Charge-transfer effects in Ni-Fe and Ni-Fe-Co mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catal. 2016, 6, 155–161.

[185]

Liu, Y. Y.; Han, N.; Jiang, J.; Ai, L. H. Boosting the oxygen evolution electrocatalysis of layered nickel hydroxidenitrate nanosheets by iron doping. Int. J. Hydrogen Energy 2019, 44, 10627–10636.

[186]

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

[187]

You, H. H.; Wang, B.; Wang, Y. Z.; Cao, Y. P.; Wei, K.; Gao, F. M. Efficient fish-scale CeO2/NiFeCo composite material as electrocatalyst for oxygen evolution reaction. Nanotechnology 2021, 32, 365403.

[188]

Wu, Y. Y.; Tariq, M.; Zaman, W. Q.; Sun, W.; Zhou, Z. H.; Yang, J. Ni-Co codoped RuO2 with outstanding oxygen evolution reaction performance. ACS Appl. Energy Mater. 2019, 2, 4105–4110.

[189]

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

[190]

Yang, S. L.; Zhang, T. R.; Li, G. C.; Yang, L. Q.; Lee, J. Y. Facile synthesis of N/M/O (M = Fe, Co, Ni) doped carbons for oxygen evolution catalysis in acid solution. Energy Storage Mater. 2017, 6, 140–148.

[191]

Wang, Y. Z.; Liu, S. S.; Hao, X. F.; Luan, S. R.; You, H. H.; Zhou, J. S.; Song, D. D.; Wang, D.; Li, H.; Gao, F. M. Surface reorganization engineering of the N-doped MoS2 heterostructures MoOx@N-doped MoS2−x by in situ electrochemical oxidation activation for efficient oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 10572–10580.

[192]

Hang, L. F.; Sun, Y. Q.; Men, D. D.; Liu, S. W.; Zhao, Q.; Cai, W. P.; Li, Y. Hierarchical micro/nanostructured C doped Co/Co3O4 hollow spheres derived from PS@Co(OH)2 for the oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 11163–11170.

[193]

Zeng, M.; Liu, Y. L.; Zhao, F. P.; Nie, K. Q.; Han, N.; Wang, X. X.; Huang, W. J.; Song, X. N.; Zhong, J.; Li, Y. G. Metallic cobalt nanoparticles encapsulated in nitrogen-enriched graphene shells: Its bifunctional electrocatalysis and application in zinc-air batteries. Adv. Funct. Mater. 2016, 26, 4397–4404.

[194]

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

[195]

Lv, Q.; Wang, N.; Si, W. Y.; Hou, Z. F.; Li, X. D.; Wang, X.; Zhao, F. H.; Yang, Z.; Zhang, Y. L.; Huang, C. S. Pyridinic nitrogen exclusively doped carbon materials as efficient oxygen reduction electrocatalysts for Zn-air batteries. Appl. Catal. B: Environ. 2020, 261, 118234.

[196]

Liu, W. J.; Hu, X.; Li, H. C.; Yu, H. Q. Pseudocapacitive Ni-Co-Fe hydroxides/N-doped carbon nanoplates-based electrocatalyst for efficient oxygen evolution. Small 2018, 14, 1801878.

[197]

Chen, S.; Duan, J. J.; Jaroniec, M.; Qiao, S. Z. Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2013, 52, 13567–13570.

[198]

Chen, S.; Qiao, S. Z. Hierarchically porous nitrogen-doped graphene-NiCo2O4 hybrid paper as an advanced electrocatalytic water-splitting material. ACS Nano 2013, 7, 10190–10196.

[199]

Zhu, Y. L.; Zhou, W.; Sunarso, J.; Zhong, Y. J.; Shao, Z. P. Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution. Adv. Funct. Mater. 2016, 26, 5862–5872.

[200]

Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.

[201]

Wygant, B. R.; Jarvis, K. A.; Chemelewski, W. D.; Mabayoje, O.; Celio, H.; Mullins, C. B. Structural and catalytic effects of iron- and scandium-doping on a strontium cobalt oxide electrocatalyst for water oxidation. ACS Catal. 2016, 6, 1122–1133.

[202]

Han, B. H.; Risch, M.; Lee, Y. L.; Ling, C.; Jia, H. F.; Shao-Horn, Y. Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH. Phys. Chem. Chem. Phys. 2015, 17, 22576–22580.

[203]

Xiao, L.; Wang, Z.; Guan, J. 2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges. Coord. Chem. Rev. 2022, 472.

[204]

Wang, P. Y.; Zhang, L.; Wang, Z.; Bu, D. C.; Zhan, K.; Yan, Y.; Yang, J. H.; Zhao, B. N and Mn dual-doped cactus-like cobalt oxide nanoarchitecture derived from cobalt carbonate hydroxide as efficient electrocatalysts for oxygen evolution reactions. J. Colloid Interface Sci. 2021, 597, 361–369.

[205]

Qi, J. L.; Wang, H. H.; Lin, J. H.; Li, C.; Si, X. Q.; Cao, J.; Zhong, Z. X.; Feng, J. C. Mn and S dual-doping of MOF-derived Co3O4 electrode array increases the efficiency of electrocatalytic generation of oxygen. J. Colloid Interface Sci. 2019, 557, 28–33.

[206]

Meng, S. C.; Sun, S. C.; Liu, Y.; Lu, Y. K.; Chen, M. Synergistic modulation of inverse spinel Fe3O4 by doping with chromium and nitrogen for efficient electrocatalytic water splitting. J. Colloid Interface Sci. 2022, 624, 433–442.

[207]

Xue, Y. R.; Fang, J. J.; Wang, X. D.; Xu, Z. Y.; Zhang, Y. F.; Lv, Q. Q.; Liu, M. Y.; Zhu, W.; Zhuang, Z. B. Sulfate-functionalized RuFeOx as highly efficient oxygen evolution reaction electrocatalyst in acid. Adv. Funct. Mater. 2021, 31, 2101405.

[208]

Ye, Q.; Liu, J.; Lin, L.; Sun, M.; Wang, Y. F.; Cheng, Y. L. Fe and P dual-doped nickel carbonate hydroxide/carbon nanotube hybrid electrocatalysts for an efficient oxygen evolution reaction. Nanoscale 2022, 14, 6648–6655.

[209]

He, J.; Hu, Z. F.; Zhao, J. L.; Liu, P.; Lv, X. B.; Tian, W.; Wang, C. H.; Tan, S.; Ji, J. Y. Ni-decorated Fe-/N- co-doped carbon anchored on porous cobalt oxide nanowires arrays for efficient electrocatalytic oxygen evolution. Chem. Eng. Sci. 2021, 243, 116774.

[210]

Obodo, K. O.; Ouma, C. N. M.; Bessarabov, D. First principles evaluation of the OER properties of TM-X (TM = Cr, Mn, Fe, Mo, Ru, W and Os, and X = F and S) doped IrO2 (110) surface. Electrochim. Acta 2022, 403, 139562.

[211]

Li, D. G.; Park, E. J.; Zhu, W. L.; Shi, Q. R.; Zhou, Y.; Tian, H. Y.; Lin, Y. H.; Serov, A.; Zulevi, B.; Baca, E. D. et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat. Energy 2020, 5, 378–385.

[212]

Tang, T. M.; Wang, Z. L.; Guan, J. Q. A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction. Chin. J. Catal. 2022, 43, 636–678.

[213]

Zhou, B. H.; Gao, R. J.; Zou, J. J.; Yang, H. M. Surface design strategy of catalysts for water electrolysis. Small 2022, 18, 2202336.

[214]

Wang, Y. Y.; Xie, C.; Zhang, Z. Y.; Liu, D. D.; Chen, R.; Wang, S. Y. In situ exfoliated, N-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction. Adv. Funct. Mater. 2018, 28, 1703363.

[215]

Li, J. W.; Song, J. D.; Huang, B. Y.; Liang, G. E.; Liang, W. L.; Huang, G. J.; Jin, Y. Q.; Zhang, H.; Xie, F. Y.; Chen, J. et al. Enhancing the oxygen evolution reaction performance of NiFeOOH electrocatalyst for Zn-air battery by N-doping. J. Catal. 2020, 389, 375–381.

[216]

Zhang, Z. M.; Sun, H. N.; Li, J. F.; Shi, Z. H.; Fan, M. H.; Bian, H. Q.; Wang, T.; Gao, D. Q. S-doped CoMn2O4 with more high valence metallic cations and oxygen defects for zinc-air batteries. J. Power Sources 2021, 491, 229584.

[217]

Dai, W. J.; Bai, X. W.; Zhu, Y. A.; Zhang, Y.; Lu, T.; Pan, Y.; Wang, J. L. Surface reconstruction induced in situ phosphorus doping in nickel oxides for an enhanced oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 6432–6441.

[218]

Wang, Y. C.; Zhou, T.; Jiang, K.; Da, P. M.; Peng, Z.; Tang, J.; Kong, B.; Cai, W. B.; Yang, Z. Q.; Zheng, G. F. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696.

[219]

Zhang, J.; Cui, Y. X.; Jia, L. C.; He, B. B.; Zhang, K.; Zhao, L. Engineering anion defect in LaFeO2.85Cl0. 15 perovskite for boosting oxygen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 24077–24085.

[220]

Cai, Z.; Bi, Y. M.; Hu, E. Y.; Liu, W.; Dwarica, N.; Tian, Y.; Li, X. L.; Kuang, Y.; Li, Y. P.; Yang, X. Q. et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv. Energy Mater. 2018, 8, 1701694.

[221]

Arandiyan, H.; Mofarah, S. S.; Wang, Y.; Cazorla, C.; Jampaiah, D.; Garbrecht, M.; Wilson, K.; Lee, A. F.; Zhao, C.; Maschmeyer, T. Impact of surface defects on LaNiO3 perovskite electrocatalysts for the oxygen evolution reaction. Chem. —Eur. J. 2021, 27, 14418–14426.

[222]

Zhou, D. J.; Xiong, X. Y.; Cai, Z.; Han, N. N.; Jia, Y.; Xie, Q. X.; Duan, X. X.; Xie, T. H.; Zheng, X. L.; Sun, X. et al. Flame-engraved nickel-iron layered double hydroxide nanosheets for boosting oxygen evolution reactivity. Small Methods 2018, 2, 1800083.

[223]

Li, J. W.; Lian, R. Q.; Wang, J. Y.; He, S.; Jiang, S. P.; Rui, Z. B. Oxygen vacancy defects modulated electrocatalytic activity of iron-nickel layered double hydroxide on Ni foam as highly active electrodes for oxygen evolution reaction. Electrochim. Acta 2020, 331, 135395.

[224]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[225]

You, H. H.; Wu, D. S.; Si, D. H.; Cao, M. N.; Sun, F. F.; Zhang, H.; Wang, H. M.; Liu, T. F.; Cao, R. Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting. J. Am. Chem. Soc. 2022, 144, 9254–9263.

[226]

Han, N. N.; Luo, S. W.; Deng, C. W.; Zhu, S.; Xu, Q. J.; Min, Y. L. Defect-Rich FeN0.023/Mo2C Heterostructure as a highly efficient bifunctional catalyst for overall water-splitting. ACS Appl. Mater. Interfaces 2021, 13, 8306–8314.

[227]

Singh, T. I.; Rajeshkhanna, G.; Pan, U. N.; Kshetri, T.; Lin, H.; Kim, N. H.; Lee, J. H. Alkaline water splitting enhancement by MOF-derived Fe-Co-Oxide/Co@NC-mNS heterostructure: Boosting OER and HER through defect engineering and in situ oxidation. Small 2021, 17, 2101312.

[228]

Yin, H. J.; Yuan, K.; Zheng, Y. L.; Sun, X. C.; Zhang, Y. W. In situ synthesis of NiO/CuO nanosheet heterostructures rich in defects for efficient electrocatalytic oxygen evolution reaction. J. Phys. Chem. C 2021, 125, 16516–16523.

[229]

Wang, Y. Q.; Tao, S.; Lin, H.; Wang, G. P.; Zhao, K. N.; Cai, R. M.; Tao, K. W.; Zhang, C. X.; Sun, M. Z.; Hu, J. et al. Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor. Nano Energy 2021, 81, 105606.

[230]

Liu, R.; Wang, Y. Y.; Liu, D. D.; Zou, Y. Q.; Wang, S. Y. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater. 2017, 29, 1701546.

[231]

Ye, C.; Wang, M. Q.; Bao, S. J.; Ye, C. H. Micropore-boosted layered double hydroxide catalysts: EIS analysis in structure and activity for effective oxygen evolution reactions. ACS Appl. Mater. Interfaces 2019, 11, 30887–30893.

[232]

Zhang, H. J.; Li, X. P.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S. L.; Maijenburg, A. W.; Wehrspohn, R. B. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2018, 28, 1706847.

[233]

Ma, W.; Ma, R. Z.; Wang, C. X.; Liang, J. B.; Liu, X. H.; Zhou, K. C.; Sasaki, T. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 2015, 9, 1977–1984.

[234]

Li, J.; Gao, X.; Liu, B.; Feng, Q. L.; Li, X. B.; Huang, M. Y.; Liu, Z. F.; Zhang, J.; Tung, C. H.; Wu, L. Z. Graphdiyne: A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production. J. Am. Chem. Soc. 2016, 138, 3954–3957.

[235]

Wang, J. J.; Zeng, H. C. Three-dimensional hierarchical multimetal-LDH nanoflakes and their derived spinel oxides for efficient oxygen evolution. ACS Appl. Energy Mater. 2018, 1, 4998–5007.

[236]

Khan, S. B.; Khan, S. A.; Asiri, A. M. A fascinating combination of Co, Ni and Al nanomaterial for oxygen evolution reaction. Appl. Surf. Sci. 2016, 370, 445–451.

[237]

Li, Y.; Zhang, L.; Xiang, X.; Yan, D. P.; Li, F. Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation. J. Mater. Chem. A 2014, 2, 13250–13258.

[238]

Wang, W. X.; Lu, Y.; Zhao, M. L.; Luo, R. J.; Yang, Y.; Peng, T.; Yan, H. L.; Liu, X. M.; Luo, Y. S. Controllable tuning of cobalt nickel-layered double hydroxide arrays as multifunctional electrodes for flexible supercapattery device and oxygen evolution reaction. ACS Nano 2019, 13, 12206–12218.

[239]

Zhou, D. J.; Cai, Z.; Lei, X. D.; Tian, W. L.; Bi, Y. M.; Jia, Y.; Han, N. N.; Gao, T. F.; Zhang, Q.; Kuang, Y. et al. NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions. Adv. Energy Mater. 2018, 8, 1701905.

[240]

Zhang, Q. R.; Bedford, N. M.; Pan, J.; Lu, X. Y.; Amal, R. A fully reversible water electrolyzer cell made up from FeCoNi (oxy)hydroxide atomic layers. Adv. Energy Mater. 2019, 9, 1901312.

[241]

Lu, Z. Y.; Qian, L.; Tian, Y.; Li, Y. P.; Sun, X. M.; Duan, X. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chem. Commun. 2016, 52, 908–911.

[242]

Liu, H. X.; Wang, Y. R.; Lu, X. Y.; Hu, Y.; Zhu, G. Y.; Chen, R. P.; Ma, L. B.; Zhu, H. F.; Tie, Z. X.; Liu, J. et al. The effects of Al substitution and partial dissolution on ultrathin NiFeAl trinary layered double hydroxide nanosheets for oxygen evolution reaction in alkaline solution. Nano Energy 2017, 35, 350–357.

[243]

Qian, L.; Lu, Z. Y.; Xu, T. H.; Wu, X. C.; Tian, Y.; Li, Y. P.; Huo, Z. Y.; Sun, X. M.; Duan, X. Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. Adv. Energy Mater. 2015, 5, 1500245.

[244]

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

[245]

Fan, K.; Chen, H.; Ji, Y. F.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F. S.; Luo, Y. et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 2016, 7, 11981.

[246]

Liang, H. F.; Li, L. S.; Meng, F.; Dang, L. N.; Zhuo, J. Q.; Forticaux, A.; Wang, Z. C.; Jin, S. Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting. Chem. Mater. 2015, 27, 5702–5711.

[247]

Dong, C. L.; Yuan, X. T.; Wang, X. Y.; Liu, X. Y.; Dong, W. J.; Wang, R. Q.; Duan, Y. H.; Huang, F. Q. Rational design of cobalt-chromium layered double hydroxide as a highly efficient electrocatalyst for water oxidation. J. Mater. Chem. A 2016, 4, 11292–11298.

[248]

Liang, H. F.; Meng, F.; Cabán-Acevedo, M.; Li, L. S.; Forticaux, A.; Xiu, L.; Wang, Z. C.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 2015, 15, 1421–1427.

[249]

Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

[250]

Zhang, W.; Wu, Y. Z.; Qi, J.; Chen, M. X.; Cao, R. A thin NiFe hydroxide film formed by stepwise electrodeposition strategy with significantly improved catalytic water oxidation efficiency. Adv. Energy Mater. 2017, 7, 1602547.

[251]

Yan, X. D.; Li, K. X.; Lyu, L.; Song, F.; He, J.; Niu, D. M.; Liu, L.; Hu, X. L.; Chen, X. B. From water oxidation to reduction: Transformation from NixCo3−xO4 nanowires to NiCo/NiCoOx heterostructures. ACS Appl. Mater. Interfaces 2016, 8, 3208–3214.

[252]

Gao, T. T.; Jin, Z. Y.; Liao, M.; Xiao, J. L.; Yuan, H. Y.; Xiao, D. A trimetallic V-Co-Fe oxide nanoparticle as an efficient and stable electrocatalyst for oxygen evolution reaction. J. Mater. Chem. A 2015, 3, 17763–17770.

[253]

Zhao, Y. F.; Zhang, X.; Jia, X. D.; Waterhouse, G. I. N.; Shi, R.; Zhang, X. R.; Zhan, F.; Tao, Y.; Wu, L. Z.; Tung, C. H. et al. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 2018, 8, 1703585.

[254]

Yuan, Z. J.; Bak, S. M.; Li, P. S.; Jia, Y.; Zheng, L. R.; Zhou, Y.; Bai, L.; Hu, E. Y.; Yang, X. Q.; Cai, Z. et al. Activating layered double hydroxide with multivacancies by memory effect for energy-efficient hydrogen production at neutral pH. ACS Energy Lett. 2019, 4, 1412–1418.

[255]

Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 5867–5871.

[256]

Zhou, P.; Wang, Y. Y.; Xie, C.; Chen, C.; Liu, H. W.; Chen, R.; Huo, J.; Wang, S. Y. Acid-etched layered double hydroxides with rich defects for enhancing the oxygen evolution reaction. Chem. Commun. 2017, 53, 11778–11781.

[257]

Wang, Z. Q.; Zeng, S.; Liu, W. H.; Wang, X. W.; Li, Q. W.; Zhao, Z. G.; Geng, F. X. Coupling molecularly ultrathin sheets of NiFe-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity. ACS Appl. Mater. Interfaces 2017, 9, 1488–1495.

[258]

Liu, J.; Wang, J. S.; Zhang, B.; Ruan, Y. J.; Lv, L.; Ji, X.; Xu, K.; Miao, L.; Jiang, J. J. Hierarchical NiCo2S4@NiFe LDH heterostructures supported on nickel foam for enhanced overall-water-splitting activity. ACS Appl. Mater. Interfaces 2017, 9, 15364–15372.

[259]

Chi, J.; Yu, H. M.; Qin, B. W.; Fu, L.; Jia, J.; Yi, B. L.; Shao, Z. G. Vertically aligned FeOOH/NiFe layered double hydroxides electrode for highly efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 464–471.

[260]

Hou, Y.; Lohe, M. R.; Zhang, J.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: An efficient 3D electrode for overall water splitting. Energy Environ. Sci. 2016, 9, 478–483.

[261]

Andronescu, C.; Barwe, S.; Ventosa, E.; Masa, J.; Vasile, E.; Konkena, B.; Möller, S.; Schuhmann, W. Powder catalyst fixation for post-electrolysis structural characterization of NiFe layered double hydroxide based oxygen evolution reaction electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 11258–11262.

[262]

Jia, Y.; Zhang, L. Z.; Gao, G. P.; Chen, H.; Wang, B.; Zhou, J. Z.; Soo, M. T.; Hong, M.; Yan, X. C.; Qian, G. R. et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 2017, 29, 1700017.

[263]

Cai, Z.; Zhou, D. J.; Wang, M. Y.; Bak, S. M.; Wu, Y. S.; Wu, Z. S.; Tian, Y.; Xiong, X. Y.; Li, Y. P.; Liu, W. et al. Introducing Fe2+ into nickel-iron layered double hydroxide: Local structure modulated water oxidation activity. Angew. Chem., Int. Ed. 2018, 57, 9392–9396.

[264]

Chen, G. B.; Wang, T.; Zhang, J.; Liu, P.; Sun, H. J.; Zhuang, X. D.; Chen, M. W.; Feng, X. L. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 2018, 30, 1706279.

[265]

Dang, L. N.; Liang, H. F.; Zhuo, J. Q.; Lamb, B. K.; Sheng, H. Y.; Yang, Y.; Jin, S. Direct synthesis and anion exchange of noncarbonate-intercalated NiFe-layered double hydroxides and the influence on electrocatalysis. Chem. Mater. 2018, 30, 4321–4330.

[266]

Kashale, A. A.; Yi, C. H.; Cheng, K. Y.; Guo, J. S.; Pan, Y. H.; Chen, I. W. P. Binder-free heterostructured NiFe2O4/NiFe LDH nanosheet composite electrocatalysts for oxygen evolution reactions. ACS Appl. Energy Mater. 2020, 3, 10831–10840.

[267]

Yan, F.; Guo, D.; Kang, J. Y.; Liu, L. N.; Zhu, C. L.; Gao, P.; Zhang, X. T.; Chen, Y. J. Fast fabrication of ultrathin CoMn LDH nanoarray as flexible electrode for water oxidation. Electrochim. Acta 2018, 283, 755–763.

[268]

Song, F.; Hu, X. L. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481–16484.

[269]

Liu, Z. B.; Yu, C.; Han, X. T.; Yang, J.; Zhao, C. T.; Huang, H. W.; Qiu, J. S. CoMn layered double hydroxides/carbon nanotubes architectures as high-performance electrocatalysts for the oxygen evolution reaction. ChemElectroChem 2016, 3, 906–912.

[270]

Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2017, 7, 1700467.

[271]

Jia, G.; Hu, Y. F.; Qian, Q. F.; Yao, Y. F.; Zhang, S. Y.; Li, Z. S.; Zou, Z. G. Formation of hierarchical structure composed of (Co/Ni)Mn-LDH nanosheets on MWCNT backbones for efficient electrocatalytic water oxidation. ACS Appl. Mater. Interfaces 2016, 8, 14527–14534.

[272]

Tang, C.; Wang, H. S.; Wang, H. F.; Zhang, Q.; Tian, G. L.; Nie, J. Q.; Wei, F. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 2015, 27, 4516–4522.

[273]

Zhang, C.; Zhao, J. W.; Zhou, L.; Li, Z. H.; Shao, M. F.; Wei, M. Layer-by-layer assembly of exfoliated layered double hydroxide nanosheets for enhanced electrochemical oxidation of water. J. Mater. Chem. A 2016, 4, 11516–11523.

[274]

Long, X.; Xiao, S.; Wang, Z. L.; Zheng, X. L.; Yang, S. H. Co intake mediated formation of ultrathin nanosheets of transition metal LDH—An advanced electrocatalyst for oxygen evolution reaction. Chem. Commun. 2015, 51, 1120–1123.

[275]

Qiao, C.; Zhang, Y.; Zhu, Y. Q.; Cao, C. B.; Bao, X. H.; Xu, J. Q. One-step synthesis of zinc-cobalt layered double hydroxide (Zn-Co-LDH) nanosheets for high-efficiency oxygen evolution reaction. J. Mater. Chem. A 2015, 3, 6878–6883.

[276]

Bai, X.; Guan, J. Q. MXenes for electrocatalysis applications: Modification and hybridization. Chin. J. Catal. 2022, 43, 2057–2090.

[277]

Dai, J.; Zhu, Y. L.; Zhong, Y. J.; Miao, J.; Lin, B. W.; Zhou, W.; Shao, Z. P. Enabling high and stable electrocatalytic activity of iron-based perovskite oxides for water splitting by combined bulk doping and morphology designing. Adv. Mater. Interfaces 2019, 6, 1801317.

[278]

Yu, H. R.; Chu, F. Q.; Zhou, X.; Ji, J. L.; Liu, Y.; Bu, Y. F.; Kong, Y.; Tao, Y. X.; Li, Y. X.; Qin, Y. A perovskite oxide with a tunable pore-size derived from a general salt-template strategy as a highly efficient electrocatalyst for the oxygen evolution reaction. Chem. Commun. 2019, 55, 2445–2448.

[279]

Cheng, X.; Fabbri, E.; Yamashita, Y.; Castelli, I. E.; Kim, B.; Uchida, M.; Haumont, R.; Puente-Orench, I.; Schmidt, T. J. Oxygen evolution reaction on perovskites: A multieffect descriptor study combining experimental and theoretical methods. ACS Catal. 2018, 8, 9567–9578.

[280]

Zhang, J. H.; Fu, X. B.; Xia, F. J.; Zhang, W. Q.; Ma, D. S.; Zhou, Y.; Peng, H.; Wu, J. S.; Gong, X. Q.; Wang, D. et al. Core–shell nanostructured Ru@Ir-O electrocatalysts for superb oxygen evolution in acid. Small 2022, 18, 2108031.

[281]

Chen, M. X.; Lu, S. L.; Fu, X. Z.; Luo, J. L. Core–shell structured NiFeSn@NiFe (oxy)hydroxide nanospheres from an electrochemical strategy for electrocatalytic oxygen evolution reaction. Adv. Sci. (Weinh) 2020, 7, 1903777.

[282]

Mu, Y.; Zhang, Y. F.; Pei, X. Y.; Dong, X. Y.; Kou, Z. K.; Cui, M.; Meng, C. G. Dispersed FeOx nanoparticles decorated with Co2SiO4 hollow spheres for enhanced oxygen evolution reaction. J. Colloid Interface Sci. 2022, 611, 235–245.

[283]

Fu, L.; Zhou, J.; Zhou, L. K.; Yang, J. M.; Liu, Z. R.; Wu, K.; Zhao, H. F.; Wang, J. K.; Wu, K. Facile fabrication of exsolved nanoparticle-decorated hollow ferrite fibers as active electrocatalyst for oxygen evolution reaction. Chem. Eng. J. 2021, 418, 129422.

[284]
Tang, T. M.; Li, S. S.; Sun, J. R.; Wang, Z. L.; Guan, J. Q. Advances and challenges in two-dimensional materials for oxygen evolution. Nano Res., in press, https://doi.org/10.1007/s12274-022-4575-0.
[285]

Li, D. J.; Liu, S. Q.; Ye, G. Y.; Zhu, W. W.; Zhao, K. M.; Luo, M.; He, Z. One-step electrodeposition of NixFe3−xO4/Ni hybrid nanosheet arrays as highly active and robust electrocatalysts for the oxygen evolution reaction. Green Chem. 2020, 22, 1710–1719.

[286]

Wang, C.; Qi, L. M. Heterostructured inter-doped ruthenium-cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 17219–17224.

[287]

Li, Y.; Wu, Y. Y.; Hao, H. R.; Yuan, M. K.; Lv, Z.; Xu, L. L.; Wei, B. In situ unraveling surface reconstruction of Ni5P4@FeP nanosheet array for superior alkaline oxygen evolution reaction. Appl. Catal. B: Environ. 2022, 305, 121033.

[288]

Zhang, Y. Q.; Ye, L.; Zhang, M. L.; Ma, L. F.; Gong, Y. Q. A nanoflower composite catalyst in situ grown on conductive iron foam: Revealing the enhancement of OER activity by cooperating of amorphous Ni based nanosheets with spinel NiFe2O4. Appl. Surf. Sci. 2022, 589, 152957.

[289]

Zai, S. F.; Gao, X. Y.; Yang, C. C.; Jiang, Q. Ce-modified Ni(OH)2 nanoflowers supported on NiSe2 octahedra nanoparticles as high-efficient oxygen evolution electrocatalyst. Adv. Energy Mater. 2021, 11, 2101266.

[290]

Qayum, A.; Peng, X.; Yuan, J. F.; Qu, Y. D.; Zhou, J. H.; Huang, Z. L.; Xia, H.; Liu, Z.; Tan, D. Q.; Chu, P. K. et al. Highly durable and efficient Ni-FeOx/FeNi3 electrocatalysts synthesized by a facile in situ combustion-based method for overall water splitting with large current densities. ACS Appl. Mater. Interfaces 2022, 14, 27842–27853.

[291]

Chen, X.; Pu, J.; Hu, X. H.; Yao, Y. C.; Dou, Y. B.; Jiang, J. J.; Zhang, W. J. Janus hollow nanofiber with bifunctional oxygen electrocatalyst for rechargeable Zn-Air battery. Small 2022, 18, 2200578.

[292]

Jiang, X. L.; Tang, M. Y.; Tang, L.; Jiang, N.; Zheng, Q. J.; Xie, F. Y.; Lin, D. M. Hornwort-like hollow porous MoO3/NiF2 heterogeneous nanowires as high-performance electrocatalysts for efficient water oxidation. Electrochim. Acta 2021, 379, 138146.

[293]

Liang, C. W.; Zou, P. C.; Nairan, A.; Zhang, Y. Q.; Liu, J. X.; Liu, K. W.; Hu, S. Y.; Kang, F. Y.; Fan, H. J.; Yang, C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95.

[294]

Gou, Y.; Liu, Q.; Liu, Z. A.; Asiri, A. M.; Sun, X. P.; Hu, J. M. FeMoO4 nanorod array: A highly active 3D anode for water oxidation under alkaline conditions. Inorg. Chem. Front. 2018, 5, 665–668.

[295]

Qian, M. M.; Cui, S. S.; Jiang, D. C.; Zhang, L.; Du, P. W. Highly efficient and stable water-oxidation electrocatalysis with a very low overpotential using FeNiP substitutional-solid-solution nanoplate arrays. Adv. Mater. 2017, 29, 1704075.

[296]

Zhang, X. L.; Liu, R. L.; Tao, C. Y.; Wu, S. S.; Huang, F.; Wang, H. W. 3D metal dendrite-derived petaloid shaped NiFe2O4@ NFM as binderless electrode for oxygen evolution reaction and electrochemical energy storage. J. Alloys Compd. 2020, 813, 152219.

[297]

Etesami, M.; Mohamad, A. A.; Nguyen, M. T.; Yonezawa, T.; Pornprasertsuk, R.; Somwangthanaroj, A.; Kheawhom, S. Benchmarking superfast electrodeposited bimetallic (Ni, Fe, Co, and Cu) hydroxides for oxygen evolution reaction. J. Alloys Compd. 2021, 889, 161738.

[298]

Hai, Y.; Liu, L.; Gong, Y. Iron coordination polymer, Fe(oxalate)(H2O)2 nanorods grown on nickel foam via one-step electrodeposition as an efficient electrocatalyst for oxygen evolution reaction. Inorg. Chem. 2021, 60, 5140–5152.

[299]

Shin, C. H.; Wei, Y.; Park, G. S.; Kang, J.; Yu, J. S. High performance binder-free Fe-Ni hydroxides on nickel foam prepared in piranha solution for the oxygen evolution reaction. Sustainable Energy Fuels 2020, 4, 6311–6320.

[300]

Wang, W.; Jiang, Y. L.; Hu, Y. C.; Liu, Y. C.; Li, J.; Chen, S. L. Top-open hollow nanocubes of Ni-doped Cu oxides on Ni foam: Scalable oxygen evolution electrode via galvanic displacement and face-selective etching. ACS Appl. Mater. Interfaces 2020, 12, 11600–11606.

[301]

Wang, H.; Chen, H. Z.; Wang, H. J.; Wu, L.; Wu, Q. X.; Luo, Z. K.; Wang, F. Hierarchical porous FeCo2O4@Ni as a carbon- and binder-free cathode for lithium-oxygen batteries. J. Alloys Compd. 2019, 780, 107–115.

[302]

Zheng, T. L.; He, J.; Cai, P. W.; Liu, X.; Wu, D. J.; Song, L. T.; He, Q. G.; Tang, Y. Z.; Wang, G. J.; Gu, M. et al. Enhanced oxygen evolution reaction electrocatalysis on Co(OH)2@MnO2 decorated carbon nanoarrays: Effect of heterostructure, conductivity and charge storgae capability. J. Electrochem. Soc. 2021, 168, 114515.

[303]

Guo, X.; Zhang, J. Q.; Zhao, Y. F.; Sun, B.; Liu, H.; Wang, G. X. Ultrathin porous NiCo2O4 nanosheets for lithium-oxygen batteries: An excellent performance deriving from an enhanced solution mechanism. ACS Appl. Energy Mater. 2019, 2, 4215–4223.

[304]

Zhang, Y.; Guo, H. R.; Ren, J. K.; Li, X. P.; Ren, W. L.; Song, R. MoO3 crystal facets modulation by doping heteroatom Fe from polyoxometalate for quasi-industrial oxygen evolution reaction. Appl. Catal. B: Environ. 2021, 298, 120582.

[305]

Zhang, M.; Chen, M. W.; Bi, Y. F.; Huang, L. L.; Zhou, K.; Zheng, Z. P. A bimetallic Co4Mo8 cluster built from Mo8 oxothiomolybdate capped by a Co4-thiacalix[4]arene unit: The observation of the Co-Mo synergistic effect for binder-free electrocatalysts. J. Mater. Chem. A 2019, 7, 12893–12899.

[306]

Bahadur, A.; Hussain, W.; Iqbal, S.; Ullah, F.; Shoaib, M.; Liu, G. C.; Feng, K. J. A morphology controlled surface sulfurized CoMn2O4 microspike electrocatalyst for water splitting with excellent OER rate for binder-free electrocatalytic oxygen evolution. J. Mater. Chem. A 2021, 9, 12255–12264.

[307]

Xie, X. H.; Du, L.; Yan, L. T.; Park, S.; Qiu, Y.; Sokolowski, J.; Wang, W.; Shao, Y. Y. Oxygen evolution reaction in alkaline environment: Material challenges and solutions. Adv. Funct. Mater. 2022, 32, 2110036.

[308]

Guo, T. Q.; Li, L. D.; Wang, Z. C. Recent development and future perspectives of amorphous transition metal-based electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2022, 12, 2200827.

[309]

Tang, T. M.; Wang, Z. L.; Guan, J. Q. Optimizing the electrocatalytic selectivity of carbon dioxide reduction reaction by regulating the electronic structure of single-atom M-N-C materials. Adv. Funct. Mater. 2022, 32, 2111504.

[310]

Li, A. L.; Ooka, H.; Bonnet, N.; Hayashi, T.; Sun, Y. M.; Jiang, Q. K.; Li, C.; Han, H. X.; Nakamura, R. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions. Angew. Chem., Int. Ed. 2019, 58, 5054–5058.

[311]

Huynh, M.; Ozel, T.; Liu, C.; Lau, E. C.; Nocera, D. G. Design of template-stabilized active and earth-abundant oxygen evolution catalysts in acid. Chem. Sci. 2017, 8, 4779–4794.

[312]

Frydendal, R.; Paoli, E. A.; Chorkendorff, I.; Rossmeisl, J.; Stephens, I. E. L. Toward an active and stable catalyst for oxygen evolution in acidic media: Ti-stabilized MnO2. Adv. Energy Mater. 2015, 5, 1500991.

[313]

Tao, H. B.; Xu, Y. H.; Huang, X.; Chen, J. Z.; Pei, L. J.; Zhang, J. M.; Chen, J. G.; Liu, B. A general method to probe oxygen evolution intermediates at operating conditions. Joule 2019, 3, 1498–1509.

[314]

Govindarajan, N.; García-Lastra, J. M.; Meijer, E. J.; Calle-Vallejo, F. Does the breaking of adsorption-energy scaling relations guarantee enhanced electrocatalysis? Curr. Opin. Electrochem. 2018, 8, 110–117.

[315]

Zhao, Z. J.; Liu, S. H.; Zha, S.; Cheng, D. F.; Studt, F.; Henkelman, G.; Gong, J. L. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 2019, 4, 792–804.

[316]

Pérez-Ramírez, J.; López, N. Strategies to break linear scaling relationships. Nat. Catal. 2019, 2, 971–976.

[317]

Mehta, P.; Barboun, P.; Herrera, F. A.; Kim, J.; Rumbach, P.; Go, D. B.; Hicks, J. C.; Schneider, W. F. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nat. Catal. 2018, 1, 269–275.

[318]

Pegis, M. L.; Wise, C. F.; Koronkiewicz, B.; Mayer, J. M. Identifying and breaking scaling relations in molecular catalysis of electrochemical reactions. J. Am. Chem. Soc. 2017, 139, 11000–11003.

Publication history
Copyright
Acknowledgements

Publication history

Received: 11 June 2022
Revised: 24 July 2022
Accepted: 05 August 2022
Published: 03 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22075099), the Natural Science Foundation of Jilin Province (No. 20220101051JC), and the Education Department of Jilin Province (No. JJKH20220967KJ).

Return