Journal Home > Volume 15 , Issue 10

Seawater electrolysis is the most promising technology for large scale hydrogen production due to the abundance and low cost of seawater in nature. However, compared with the traditional freshwater electrolysis, the issues of electrode poisoning and corrosion will occur during the seawater electrolysis process, and active and stable electrocatalysts for the hydrogen evolution reaction (HER) are thus highly desired. In this work, N, O-doped carbon foam in-situ derived from commercial melamine foam is proposed as a high-active metal-free HER electrocatalyst for seawater splitting. In acidic seawater, our catalyst shows high hydrogen generation performance with small overpotential of 161 mV at 10 mA·cm−2, a low Tafel slop of 97.5 mV·dec−1, and outstanding stability.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

N, O-doped carbon foam as metal-free electrocatalyst for efficient hydrogen production from seawater

Show Author's information Qian Liu1Shengjun Sun2Longcheng Zhang2Yongsong Luo2Qin Yang2Kai Dong2Xiaodong Fang1Dongdong Zheng2Abdulmohsen Ali Alshehri3Xuping Sun2,4( )
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China

Abstract

Seawater electrolysis is the most promising technology for large scale hydrogen production due to the abundance and low cost of seawater in nature. However, compared with the traditional freshwater electrolysis, the issues of electrode poisoning and corrosion will occur during the seawater electrolysis process, and active and stable electrocatalysts for the hydrogen evolution reaction (HER) are thus highly desired. In this work, N, O-doped carbon foam in-situ derived from commercial melamine foam is proposed as a high-active metal-free HER electrocatalyst for seawater splitting. In acidic seawater, our catalyst shows high hydrogen generation performance with small overpotential of 161 mV at 10 mA·cm−2, a low Tafel slop of 97.5 mV·dec−1, and outstanding stability.

Keywords: electrocatalyst, hydrogen evolution reaction, carbon foam, seawater electrolysis

References(37)

1

Xu, S. R.; Zhao, H. T.; Li, T. S.; Liang, J.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Asiri, A. M.; Wu, Q.; Sun, X. P. Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: Recent advances and future prospects. J. Mater. Chem. A 2020, 8, 19729–19745.

2

Sun, F.; Qin, J. S.; Wang, Z. Y.; Yu, M. Z.; Wu, X. H.; Sun, X. M.; Qiu, J. S. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 2021, 12, 4182.

3

Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

4

Chen, S.; Duan, J. J.; Jaroniec, M.; Qiao, S. Z. Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2013, 52, 13567–13570.

5

Ye, C.; Zhang, L. C.; Yue, L. C.; Deng, B.; Cao, Y.; Liu, Q.; Luo, Y. L.; Lu, S. Y.; Zheng, B. Z.; Sun, X. P. A NiCo LDH nanosheet array on graphite felt: An efficient 3D electrocatalyst for the oxygen evolution reaction in alkaline media. Inorg. Chem. Front. 2021, 8, 3162–3166.

6

Shan, J. Q.; Zheng, Y.; Shi, B. Y.; Davey, K.; Qiao, S. Z. Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation. ACS Energy Lett. 2019, 4, 2719–2730.

7

Meng, C. Q.; Cao, Y.; Luo, Y. L.; Zhang, F.; Kong, Q. Q.; Alshehri, A. A.; Alzahrani, K. A.; Li, T. S.; Liu, Q.; Sun, X. P. A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media. Inorg. Chem. Front. 2021, 8, 3007–3011.

8

Xiu, L.; Pei, W.; Zhou, S.; Wang, Z. Y.; Yang, P. J.; Zhao, J. J.; Qiu, J. S. Multilevel hollow MXene tailored low-Pt catalyst for efficient hydrogen evolution in full-pH range and seawater. Adv. Funct. Mater. 2020, 30, 1910028.

9

Schmidt, O.; Gambhir, A.; Staffell, I.; Hawkes, A.; Nelson, J.; Few, S. Future cost and performance of water electrolysis: An expert elicitation study. Int. J. Hydrogen Energy 2017, 42, 30470–30492.

10
Platzer, M. F.; Sarigul-Klijn, N. Hydrogen production methods. In The Green Energy Ship Concept: Renewable Energy from Wind Over Water. Platzer, M. F.; Sarigul-Klijn, N., Eds.; Springer: Cham, 2021; pp 59–62.
11
Zhang, L.; Liang, J.; Yue, L.; Dong, K.; Li, J.; Zhao, D.; Li, Z.; Sun, S.; Luo, Y.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, DOI: 10.26599/NRE.2022.9120028.
12

Zhang, L. C.; Wang, J. Q.; Liu, P. Y.; Liang, J.; Luo, Y. S.; Cui, G. W.; Tang, B.; Liu, Q.; Yan, X. D.; Hao, H. G. et al. Ni(OH)2 nanoparticles encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation. Nano Res. 2022, 15, 6084–6090.

13

Wu, X. H.; Zhou, S.; Wang, Z. Y.; Liu, J. S.; Pei, W.; Yang, P. J.; Zhao, J. J.; Qiu, J. S. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater. Adv. Energy Mater. 2019, 9, 1901333.

14

Ding, P.; Song, H. Q.; Chang, J. W.; Lu, S. Y. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res 2022, 15, 7063–7070.

15

Khan, M. A.; Al-Attas, T.; Roy, S.; Rahman, M. M.; Ghaffour, N.; Thangadurai, V.; Larter, S.; Hu, J. G.; Ajayan, P. M.; Kibria, M. G. Seawater electrolysis for hydrogen production: A solution looking for a problem? Energy Environ. Sci. 2021, 14, 4831–4839.

16

Zhang, L. Y.; Wang, Z. Y.; Qiu, J. S. Energy-saving hydrogen production by seawater electrolysis coupling sulfion degradation. Adv. Mater. 2022, 34, 2109321.

17

Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

18

Zhai, Q. F.; Pan, Y.; Dai, L. M. Carbon-based metal-free electrocatalysts: Past, present, and future. Acc. Mater. Res. 2021, 2, 1239–1250.

19

Ouyang, L.; Zhou, Q.; Liang, J.; Zhang, L. C.; Yue, L. C.; Li, Z. R.; Li, J.; Luo, Y. S.; Liu, Q.; Li, N. et al. High-efficiency NO electroreduction to NH3 over honeycomb carbon nanofiber at ambient conditions. J. Colloid Interf. Sci. 2022, 616, 261–267.

20

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.

21

Cui, W.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. A. Activated carbon nanotubes: A highly-active metal-free electrocatalyst for hydrogen evolution reaction. Chem. Commun. 2014, 50, 9340–9342.

22

Cheng, N. Y.; Liu, Q.; Tian, J. Q.; Xue, Y. R.; Asiri, A. M.; Jiang, H. F.; He, Y. Q.; Sun, X. P. Acidically oxidized carbon cloth: A novel metal-free oxygen evolution electrode with high catalytic activity. Chem. Commun. 2015, 51, 1616–1619.

23

Jia, N.; Weng, Q.; Shi, Y. R.; Shi, X. Y.; Chen, X. B.; Chen, P.; An, Z. W.; Chen, Y. N-doped carbon nanocages: Bifunctional electrocatalysts for the oxygen reduction and evolution reactions. Nano Res 2018, 11, 1905–1916.

24

Dong, K.; Liang, J.; Wang, Y. Y.; Xu, Z. Q.; Liu, Q.; Luo, Y. L.; Li, T. S.; Li, L.; Shi, X. F.; Asiri, A. M. et al. Honeycomb carbon nanofibers: A superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction. Angew. Chem. , Int. Ed. 2021, 60, 10583–10587.

25

Ren, J. T.; Wan, C. Y.; Pei, T. Y.; Lv, X. W.; Yuan, Z. Y. Promotion of electrocatalytic nitrogen reduction reaction on N-doped porous carbon with secondary heteroatoms. Appl. Catal. B:Environ. 2020, 266, 118633.

26

Xia, L.; Wu, X. F.; Wang, Y.; Niu, Z. G.; Liu, Q.; Li, T. S.; Shi, X. F.; Asiri, A. M.; Sun, X. P. S-doped carbon nanosphere: An efficient electrocatalyst toward artificial N2 fixation to NH3. Small Methods 2019, 3, 1800251.

27

Chen, M. J.; Wang, S.; Zhang, H. Y.; Zhang, P.; Tian, Z. Q.; Lu, M.; Xie, X. J.; Huang, L.; Huang, W. Intrinsic defects in biomass-derived carbons facilitate electroreduction of CO2. Nano Res. 2020, 13, 729–735.

28

Chang, K.; Zhang, H. C.; Chen, J. G.; Lu, Q.; Cheng, M. J. Constant electrode potential quantum mechanical study of CO2 electrochemical reduction catalyzed by N-doped graphene. ACS Catal. 2019, 9, 8197–8207.

29

Huang, S. C.; Meng, Y. Y.; Cao, Y. F.; He, S. M.; Li, X. H.; Tong, S. F.; Wu, M. M. N-, O- and P-doped hollow carbons: Metal-free bifunctional electrocatalysts for hydrogen evolution and oxygen reduction reactions. Appl. Catal. B: Environ. 2019, 248, 239–248.

30

Stolz, A.; Le Floch, S.; Reinert, L.; Ramos, S. M. M.; Tuaillon-Combes, J.; Soneda, Y.; Chaudet, P.; Baillis, D.; Blanchard, N.; Duclaux, L. et al. Melamine-derived carbon sponges for oil–water separation. Carbon 2016, 107, 198–208.

31

Wang, Y.; Kong, D. Z.; Huang, S. Z.; Shi, Y. M.; Ding, M.; Von Lim, Y.; Xu, T. T.; Chen, F. M.; Li, X. J.; Yang, H. Y. 3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries. J. Mater. Chem. A 2018, 6, 10813–10824.

32

Shi, Y. Y.; Liu, G. J.; Jin, R. C.; Xu, H.; Wang, Q. Y.; Gao, S. M. Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: A review. Carbon Energy 2019, 1, 253–275.

33

Zhang, P.; Wang, R. T.; He, M.; Lang, J. W.; Xu, S.; Yan, X. B. 3D hierarchical Co/CoO-graphene-carbonized melamine foam as a superior cathode toward long-life lithium oxygen batteries. Adv. Funct. Mater. 2016, 26, 1354–1364.

34

An, Y. B.; Zhu, Q. Z.; Hu, L. F.; Yu, S. K.; Zhao, Q.; Xu, B. A hollow carbon foam with ultra-high sulfur loading for an integrated cathode of lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 15605–15611.

35

Zhang, R.; Jing, X. X.; Chu, Y. T.; Wang, L.; Kang, W. J.; Wei, D. H.; Li, H. B.; Xiong, S. L. Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors. J. Mater. Chem. A 2018, 6, 17730–17739.

36

Schindler, M.; Hawthorne, F. C.; Freund, M. S.; Burns, P. C. XPS spectra of uranyl minerals and synthetic uranyl compounds II: The O 1s spectrum. Geochim. Cosmochim. Acta 2009, 73, 2488–2509.

37

Gangadharan, P. K.; Unni, S. M.; Kumar, N.; Ghosh, P.; Kurungot, S. Nitrogen-doped graphene with a three-dimensional architecture assisted by carbon nitride tetrapods as an efficient metal-free electrocatalyst for hydrogen evolution. ChemElectroChem 2017, 4, 2643–2652.

File
12274_2022_4869_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 July 2022
Revised: 30 July 2022
Accepted: 04 August 2022
Published: 19 August 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22072015).

Return