Journal Home > Volume 16 , Issue 3

Many natural creatures have demonstrated unique abilities in directional liquid transport (DLT) for better adapting to the local environment, which, for a long time, have inspired the material fabrication for applications in microfluidics, self-cleaning, water collection, etc. Recently, DLTs aroused by the corner effect have been witnessed in various natural organisms, where liquid transports/spreads spontaneously along the corner structures in microgrooves, wedges or conical structures driven by micro-/nano- scaled capillary forces without external energy input. Particularly, these DLTs show advantages of ultrahigh speed, continuous proceeding, and/or external controllability. Here, we reviewed recent research advances on the bioinspired DLTs induced by the corner effect, as well as the involved mechanisms and the artificial counterpart materials with various applications. We also introduced some bioinspired materials that are capable of stimulus-responsive DLT under external fields. Finally, we suggested perspectives of the bioinspired DLTs in liquid manipulations.


menu
Abstract
Full text
Outline
About this article

Bioinspired directional liquid transport induced by the corner effect

Show Author's information Zhongyu Shi1Zhongxue Tang1Bojie Xu1Lei Jiang1,2Huan Liu1,2( )
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
Research Institute for Frontier Science, Beihang University, Beijing 100191, China

Abstract

Many natural creatures have demonstrated unique abilities in directional liquid transport (DLT) for better adapting to the local environment, which, for a long time, have inspired the material fabrication for applications in microfluidics, self-cleaning, water collection, etc. Recently, DLTs aroused by the corner effect have been witnessed in various natural organisms, where liquid transports/spreads spontaneously along the corner structures in microgrooves, wedges or conical structures driven by micro-/nano- scaled capillary forces without external energy input. Particularly, these DLTs show advantages of ultrahigh speed, continuous proceeding, and/or external controllability. Here, we reviewed recent research advances on the bioinspired DLTs induced by the corner effect, as well as the involved mechanisms and the artificial counterpart materials with various applications. We also introduced some bioinspired materials that are capable of stimulus-responsive DLT under external fields. Finally, we suggested perspectives of the bioinspired DLTs in liquid manipulations.

Keywords: Laplace pressure, bioinspired materials, directional liquid transport, corner effect, capillary rise

References(121)

[1]

Ju, J.; Bai, H.; Zheng, Y. M.; Zhao, T. Y.; Fang, R. C.; Jiang, L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 2012, 3, 1247.

[2]

Zheng, Y. M.; Bai, H.; Huang, Z. B.; Tian, X. L.; Nie, F. Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature 2010, 463, 640–643.

[3]

Xue, Y.; Wang, T.; Shi, W. W.; Sun, L. L.; Zheng, Y. M. Water collection abilities of green bristlegrass bristle. RSC Adv. 2014, 4, 40837–40840.

[4]

Zheng, Y. M.; Gao, X. F.; Jiang, L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter 2007, 3, 178–182.

[5]

Roth-Nebelsick, A.; Ebner, M.; Miranda, T.; Gottschalk, V.; Voigt, D.; Gorb, S.; Stegmaier, T.; Sarsour, J.; Linke, M.; Konrad, W. Leaf surface structures enable the endemic namib desert grass Stipagrostis sabulicola to irrigate itself with fog water. J. Roy. Soc. Interface 2012, 9, 1965–1974.

[6]

Feng, S. L.; Zhu, P. G.; Zheng, H. X.; Zhan, H. Y.; Chen, C.; Li, J. Q.; Wang, L. Q.; Yao, X.; Liu, Y. H.; Wang, Z. K. Three-dimensional capillary ratchet-induced liquid directional steering. Science 2021, 373, 1344–1348.

[7]

Comanns, P.; Buchberger, G.; Buchsbaum, A.; Baumgartner, R.; Kogler, A.; Bauer, S.; Baumgartner, W. Directional, passive liquid transport: The texas horned lizard as a model for a biomimetic “liquid diode”. J. Roy. Soc. Interface 2015, 12, 20150415.

[8]

Parker, A. R.; Lawrence, C. R. Water capture by a desert beetle. Nature 2001, 414, 33–34.

[9]

Song, J. L.; Liu, Z. A.; Wang, X. Y.; Liu, H.; Lu, Y.; Deng, X.; Carmalt, C. J.; Parkin, I. P. High-efficiency bubble transportation in an aqueous environment on a serial wedge-shaped wettability pattern. J. Mater. Chem. A 2019, 7, 13567–13576.

[10]

Ju, J.; Xiao, K.; Yao, X.; Bai, H.; Jiang, L. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection. Adv. Mater. 2013, 25, 5937–5942.

[11]

Wang, Q. Q.; He, Y.; Geng, X. X.; Hou, Y. P.; Zheng, Y. M. Enhanced fog harvesting through capillary-assisted rapid transport of droplet confined in the given microchannel. ACS Appl. Mater. Interfaces 2021, 13, 48292–48300.

[12]

Feng, S. L.; Wang, Q. Q.; Xing, Y.; Hou, Y. P.; Zheng, Y. M. Continuous directional water transport on integrating tapered surfaces. Adv. Mater. Interfaces 2020, 7, 2000081.

[13]

Chen, H. W.; Zhang, P. F.; Zhang, L. W.; Liu, H. L.; Jiang, Y.; Zhang, D. Y.; Han, Z. W.; Jiang, L. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 2016, 532, 85–89.

[14]

Luan, K.; He, M. J.; Xu, B. J.; Wang, P. W.; Zhou, J. J.; Hu, B. B.; Jiang, L.; Liu, H. Spontaneous directional self-cleaning on the feathers of the aquatic bird Anser cygnoides domesticus induced by a transient superhydrophilicity. Adv. Funct. Mater. 2021, 31, 2010634.

[15]

Meng, Q. A.; Xu, B. J.; Tang, Z. X.; Wei, Y.; Jiang, L.; Liu, H. Controlling directional liquid transport on dual cylindrical fibers with oriented open-wedges. Adv. Mater. Interfaces 2022, 9, 2101749.

[16]

Chen, H. W.; Ran, T.; Gan, Y.; Zhou, J. J.; Zhang, Y.; Zhang, L. W.; Zhang, D. Y.; Jiang, L. Ultrafast water harvesting and transport in hierarchical microchannels. Nat. Mater. 2018, 17, 935–942.

[17]

Xu, B. J.; He, M. J.; Tang, Z. X.; Jiang, L.; Liu, H. Long-term super-amphiphilic shaped-fiber with multi-scale grooved structures: Toward spontaneous self-cleaning. Adv. Funct. Mater. 2021, 31, 2102877.

[18]

Wang, Z. M.; Lu, Y.; Huang, S.; Yin, S. H.; Chen, F. J. Bamboo-joint-like platforms for fast, long-distance, directional, and spontaneous transport of fluids. Biomicrofluidics 2020, 14, 034105.

[19]

Tenjimbayashi, M.; Kawamura, K.; Shiratori, S. Continuous directional water transport on hydrophobic slippery ventral skin of Lampropeltis pyromelana. Adv. Mater. Interfaces 2020, 7, 2000984.

[20]

Lee, M.; Oh, J.; Lim, H.; Lee, J. Enhanced liquid transport on a highly scalable, cost-effective, and flexible 3D topological liquid capillary diode. Adv. Funct. Mater. 2021, 31, 2011288.

[21]

Li, J. Q.; Li, Y. C.; Zheng, H. X.; Liu, M. J.; Gu, H. J.; Lu, K. Y.; Zhou, X. F.; Wang, Z. K. Strengthening unidirectional liquid pumping using multi-biomimetic structures. Extreme Mech. Lett. 2021, 43, 101144.

[22]

Xu, W. Z.; Xing, Y.; Liu, J.; Wu, H. P.; Cui, Y.; Li, D. W.; Guo, D. Y.; Li, C. R.; Liu, A. P.; Bai, H. Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS Nano 2019, 13, 7930–7938.

[23]

Li, J. Q.; Zheng, H. X.; Yang, Z. B.; Wang, Z. K. Breakdown in the directional transport of droplets on the peristome of pitcher plants. Commun. Phys. 2018, 1, 35.

[24]

Liu, J.; Cao, M.; Li, L.; Xu, X.; Zheng, J.; Yao, W.; Hou, X. Bioinspired interfacial design for gravity-independent fluid transport control. Giant 2022, 10, 100100.

[25]

Ju, J.; Zheng, Y. M.; Jiang, L. Bioinspired one-dimensional materials for directional liquid transport. Acc. Chem. Res. 2014, 47, 2342–2352.

[26]

Zhang, S. N.; Huang, J. Y.; Chen, Z.; Lai, Y. K. Bioinspired special wettability surfaces: From fundamental research to water harvesting applications. Small 2017, 13, 1602992.

[27]

Xu, T.; Lin, Y. C.; Zhang, M. X.; Shi, W. W.; Zheng, Y. M. High-efficiency fog collector: Water unidirectional transport on heterogeneous rough conical wires. ACS Nano 2016, 10, 10681–10688.

[28]

Liu, L. Y.; Liu, S. Y.; Schelp, M.; Chen, X. F. Rapid 3D printing of bioinspired hybrid structures for high-efficiency fog collection and water transportation. ACS Appl. Mater. Interfaces 2021, 13, 29122–29129.

[29]

Cheng, Y. Q.; Wang, M. M.; Sun, J.; Liu, M. J.; Du, B. G.; Liu, Y. B.; Jin, Y. K.; Wen, R. F.; Lan, Z.; Zhou, X. F. et al. Rapid and persistent suction condensation on hydrophilic surfaces for high-efficiency water collection. Nano Lett. 2021, 21, 7411–7418.

[30]

Li, K.; Ju, J.; Xue, Z. X.; Ma, J.; Feng, L.; Gao, S.; Jiang, L. Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nat. Commun. 2013, 4, 2276.

[31]

Cui, Z. H.; Xiao, L.; Li, Y. X.; Zhang, Y. B.; Li, G. Q.; Bai, H. Y.; Tang, X. X.; Zhou, M. L.; Fang, J. H.; Guo, L. et al. A fishbone-inspired liquid splitter enables directional droplet transportation and spontaneous separation. J. Mater. Chem. A 2021, 9, 9719–9728.

[32]

Li, N.; Yu, C. L.; Si, Y. F.; Song, M. R.; Dong, Z. C.; Jiang, L. Janus gradient meshes for continuous separation and collection of flowing oils under water. ACS Appl. Mater. Interfaces 2018, 10, 7504–7511.

[33]

Ji, J. W.; Jiao, Y. L.; Song, Q. R.; Zhang, Y.; Liu, X. J.; Liu, K. Bioinspired geometry-gradient metal slippery surface by one-step laser ablation for continuous liquid directional self-transport. Langmuir 2021, 37, 5436–5444.

[34]

Li, X.; Li, J. Q.; Dong, G. N. Bioinspired topological surface for directional oil lubrication. ACS Appl. Mater. Interfaces 2020, 12, 5113–5119.

[35]

Su, B.; Tian, Y.; Jiang, L. Bioinspired interfaces with superwettability: From materials to chemistry. J. Am. Chem. Soc. 2016, 138, 1727–1748.

[36]

Chen, P.; Li, X. D.; Ma, J. F.; Zhang, R.; Qin, F.; Wang, J. J.; Hu, T. S.; Zhang, Y. L.; Xu, Q. Bioinspired photodetachable dry self-cleaning surface. Langmuir 2019, 35, 6379–6386.

[37]

Peng, Z. T.; Chen, Y.; Wu, T. Z. Ultrafast microdroplet generation and high-density microparticle arraying based on biomimetic Nepenthes peristome surfaces. ACS Appl. Mater. Interfaces 2020, 12, 47299–47308.

[38]

Zarei, M. Advances in point-of-care technologies for molecular diagnostics. Biosens. Bioelectron. 2017, 98, 494–506.

[39]

Charmet, J.; Arosio, P.; Knowles, T. P. J. Microfluidics for protein biophysics. J. Mol. Biol. 2018, 430, 565–580.

[40]

Li, H. L.; Liu, P.; Kaur, G.; Yao, X.; Yang, M. S. Transparent and gas-permeable liquid marbles for culturing and drug sensitivity test of tumor spheroids. Adv. Healthc. Mater. 2017, 6, 1700185.

[41]

Cho, H. J.; Preston, D. J.; Zhu, Y. Y.; Wang, E. N. Nanoengineered materials for liquid–vapour phase-change heat transfer. Nat. Rev. Mater. 2017, 2, 16092.

[42]

Chen, X. M.; Wu, J.; Ma, R. Y.; Hua, M.; Koratkar, N.; Yao, S. H.; Wang, Z. K. Nanograssed micropyramidal architectures for continuous dropwise condensation. Adv. Funct. Mater. 2011, 21, 4617–4623.

[43]

Wang, R.; Wu, F. F.; Yu, F. F.; Zhu, J.; Gao, X. F.; Jiang, L. Anti-vapor-penetration and condensate microdrop self-transport of superhydrophobic oblique nanowire surface under high subcooling. Nano Res. 2021, 14, 1429–1434.

[44]

Zhang, L.; Guo, Z. Q.; Sarma, J.; Zhao, W. W.; Dai, X. M. Gradient quasi-liquid surface enabled self-propulsion of highly wetting liquids. Adv. Funct. Mater. 2021, 31, 2008614.

[45]

Wang, T. Q.; Chen, H. X.; Liu, K.; Li, Y.; Xue, P. H.; Yu, Y.; Wang, S. L.; Zhang, J. H.; Kumacheva, E.; Yang, B. Anisotropic Janus Si nanopillar arrays as a microfluidic one-way valve for gas–liquid separation. Nanoscale 2014, 6, 3846–3853.

[46]

Shang, L. R.; Cheng, Y.; Zhao, Y. J. Emerging droplet microfluidics. Chem. Rev. 2017, 117, 7964–8040.

[47]

Kong, T.; Brien, R.; Njus, Z.; Kalwa, U.; Pandey, S. Motorized actuation system to perform droplet operations on printed plastic sheets. Lab Chip 2016, 16, 1861–1872.

[48]

Li, J. Q.; Zhou, X. F.; Li, J.; Che, L. F.; Yao, J.; McHale, G.; Chaudhury, M. K.; Wang, Z. K. Topological liquid diode. Sci. Adv. 2017, 3, eaao3530.

[49]

Su, B.; Wang, S. T.; Song, Y. L.; Jiang, L. A miniature droplet reactor built on nanoparticle-derived superhydrophobic pedestals. Nano Res. 2011, 4, 266–273.

[50]

Higuera, F. J.; Medina, A.; Liñán, A. Capillary rise of a liquid between two vertical plates making a small angle. Phys. Fluids 2008, 20, 102102.

[51]

Ponomarenko, A.; Quéré, D.; Clanet, C. A universal law for capillary rise in corners. J. Fluid Mech. 2011, 666, 146–154.

[52]

Concus, P.; Finn, R. On the behavior of a capillary surface in a wedge. Proc. Natl. Acad. Sci. USA 1969, 63, 292–299.

[53]

Thammanna Gurumurthy, V.; Roisman, I. V.; Tropea, C.; Garoff, S. Spontaneous rise in open rectangular channels under gravity. J. Colloid Interface Sci. 2018, 527, 151–158.

[54]

Deng, D. X.; Tang, Y.; Zeng, J.; Yang, S.; Shao, H. R. Characterization of capillary rise dynamics in parallel micro V-grooves. Int. J. Heat Mass Transf. 2014, 77, 311–320.

[55]

Prakash, M.; Quéré, D.; Bush, J. W. M. Surface tension transport of prey by feeding shorebirds: The capillary ratchet. Science 2008, 320, 931–934.

[56]

Renvoisé, P.; Bush, J. W. M.; Prakash, M.; Quéré, D. Drop propulsion in tapered tubes. Europhys. Lett. 2009, 86, 64003.

[57]

Lorenceau, L.; Quéré, D. Drops on a conical wire. J. Fluid Mech. 2004, 510, 29–45.

[58]

Bico, J.; Quéré, D. Self-propelling slugs. J. Fluid Mech. 2002, 467, 101–127.

[59]

Wang, Z. L.; Lin, K.; Zhao, Y. P. The effect of sharp solid edges on the droplet wettability. J. Colloid Interface Sci. 2019, 552, 563–571.

[60]

Grishaev, V.; Amirfazli, A.; Chikov, S.; Lyulin, Y.; Kabov, O. Study of edge effect to stop liquid spillage for microgravity application. Microgravity Sci. Technol. 2013, 25, 27–33.

[61]

Oliver, J. F.; Huh, C.; Mason, S. G. Resistance to spreading of liquids by sharp edges. J. Colloid Interface Sci. 1977, 59, 568–581.

[62]

Li, J.; Guo, Z. G. Spontaneous directional transportations of water droplets on surfaces driven by gradient structures. Nanoscale 2018, 10, 13814–13831.

[63]

Wu, Z. Y.; Huang, Y. Y.; Chen, X. Q.; Zhang, X. Capillary-driven flows along curved interior corners. Int. J. Multiphase Flow 2018, 109, 14–25.

[64]

Berthier, J.; Brakke, K. A.; Berthier, E. A general condition for spontaneous capillary flow in uniform cross-section microchannels. Microfluid. Nanofluid. 2014, 16, 779–785.

[65]

Bohn, H. F.; Federle, W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc. Natl. Acad. Sci. USA 2004, 101, 14138–14143.

[66]

Taylor, B. Concerning the ascent of water between two glass plates. Phil. Trans. Roy. Soc. Lond. 1712, 27, 538.

[67]

Hauksbee, F. X. An experiment touching the ascent of water between two glass plates in an hyperbolick figure. Phil. Trans. Roy. Soc. Lond. 1712, 27, 539–540.

[68]

Tuteja, A.; Choi, W.; Mabry, J. M.; McKinley, G. H.; Cohen, R. E. Robust omniphobic surfaces. Proc. Natl. Acad. Sci. USA 2008, 105, 18200–18205.

[69]

Bormashenko, E.; Bormashenko, Y.; Stein, T.; Whyman, G.; Bormashenko, E. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie–Baxter wetting hypothesis and Cassie–Wenzel capillarity-induced wetting transition. J. Colloid Interface Sci. 2007, 311, 212–216.

[70]

Kennedy, R. J. Directional water-shedding properties of feathers. Nature 1970, 227, 736–737.

[71]

Bico, J.; Roman, B.; Moulin, L.; Boudaoud, A. Elastocapillary coalescence in wet hair. Nature 2004, 432, 690.

[72]

Duprat, C.; Protière, S.; Beebe, A. Y.; Stone, H. A. Wetting of flexible fibre arrays. Nature 2012, 482, 510–513.

[73]

Wang, Q. B.; Su, B.; Liu, H.; Jiang, L. Chinese brushes: Controllable liquid transfer in ratchet conical hairs. Adv. Mater. 2014, 26, 4889–4894.

[74]

Yu, C. L.; Li, C. X.; Gao, C.; Dong, Z. C.; Wu, L.; Jiang, L. Time-dependent liquid transport on a biomimetic topological surface. ACS Nano 2018, 12, 5149–5157.

[75]

Wang, J.; Yi, S. Z.; Yang, Z. L.; Chen, Y.; Jiang, L. L.; Wong, C. P. Laser direct structuring of bioinspired spine with backward microbarbs and hierarchical microchannels for ultrafast water transport and efficient fog harvesting. ACS Appl. Mater. Interfaces 2020, 12, 21080–21087.

[76]

Lv, J. A.; Liu, Y. Y.; Wei, J.; Chen, E. Q.; Qin, L.; Yu, Y. L. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 2016, 537, 179–184.

[77]

Xu, B.; Zhu, C. Y.; Qin, L.; Wei, J.; Yu, Y. L. Light-directed liquid manipulation in flexible bilayer microtubes. Small 2019, 15, 1901847.

[78]

Feng, W. Q.; Ueda, E.; Levkin, P. A. Droplet microarrays: From surface patterning to high-throughput applications. Adv. Mater. 2018, 30, 1706111.

[79]

Ichimura, K.; Oh, S. K.; Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science 2000, 288, 1624–1626.

[80]

An, S.; Zhu, M. Y.; Gu, K.; Jiang, M. D.; Shen, Q. C.; Fu, B. W.; Song, C. Y.; Tao, P.; Deng, T.; Shang, W. Light-driven motion of water droplets with directional control on nanostructured surfaces. Nanoscale 2020, 12, 4295–4301.

[81]

Xiao, Y.; Zarghami, S.; Wagner, K.; Wagner, P.; Gordon, K. C.; Florea, L.; Diamond, D.; Officer, D. L. Moving droplets in 3D using light. Adv. Mater. 2018, 30, 1801821.

[82]

Kwon, G.; Panchanathan, D.; Mahmoudi, S. R.; Gondal, M. A.; McKinley, G. H.; Varanasi, K. K. Visible light guided manipulation of liquid wettability on photoresponsive surfaces. Nat. Commun. 2017, 8, 14968.

[83]

Wang, S. L.; Zhou, R. M.; Hou, Y. Q.; Wang, M.; Hou, X. Photochemical effect driven fluid behavior control in microscale pores and channels. Chin. Chem. Lett. 2022, 33, 3650–3656.

[84]

Cao, M. Y.; Jin, X.; Peng, Y.; Yu, C. M.; Li, K.; Liu, K. S.; Jiang, L. Unidirectional wetting properties on multi-bioinspired magnetocontrollable slippery microcilia. Adv. Mater. 2017, 29, 1606869.

[85]

Lei, W. W.; Hou, G. L.; Liu, M. J.; Rong, Q. F.; Xu, Y. C.; Tian, Y.; Jiang, L. High-speed transport of liquid droplets in magnetic tubular microactuators. Sci. Adv. 2018, 4, eaau8767.

[86]

Liu, H.; Zheng, S.; Yang, X.; Liao, W. B.; Wang, C.; Miao, W. N.; Tang, J. Y.; Wang, D. Y.; Tian, Y. Magnetic actuation multifunctional platform combining microdroplets delivery and stirring. ACS Appl. Mater. Interfaces 2019, 11, 47642–47648.

[87]

García-Torres, J.; Calero, C.; Sagués, F.; Pagonabarraga, I.; Tierno, P. Magnetically tunable bidirectional locomotion of a self-assembled nanorod–sphere propeller. Nat. Commun. 2018, 9, 1663.

[88]

Wang, W. D.; Timonen, J. V. I.; Carlson, A.; Drotlef, D. M.; Zhang, C. T.; Kolle, S.; Grinthal, A.; Wong, T. S.; Hatton, B.; Kang, S. H. et al. Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature 2018, 559, 77–82.

[89]

Guo, J. C.; Wang, D. H.; Sun, Q. Q.; Li, L. X.; Zhao, H. X.; Wang, D. D.; Cui, J. X.; Chen, L. Q.; Deng, X. Omni-liquid droplet manipulation platform. Adv. Mater. Interfaces 2019, 6, 1900653.

[90]

Liu, J.; Xu, X.; Lei, Y.; Zhang, M. C.; Sheng, Z. Z.; Wang, H. M.; Cao, M.; Zhang, J.; Hou, X. Liquid gating meniscus-shaped deformable magnetoelastic membranes with self-driven regulation of gas/liquid release. Adv. Mater. 2022, 34, 2107327.

[91]

Li, J. Q.; Zhou, X. F.; Tao, R.; Zheng, H. X.; Wang, Z. K. Directional liquid transport from the cold region to the hot region on a topological surface. Langmuir 2021, 37, 5059–5065.

[92]

Li, C. X.; Yu, C. L.; Hao, D. Z.; Wu, L.; Dong, Z. C.; Jiang, L. Smart liquid transport on dual biomimetic surface via temperature fluctuation control. Adv. Funct. Mater. 2018, 28, 1707490.

[93]

Li, J.; Hou, Y. M.; Liu, Y. H.; Hao, C. L.; Li, M. F.; Chaudhury, M. K.; Yao, S. H.; Wang, Z. K. Directional transport of high-temperature Janus droplets mediated by structural topography. Nat. Phys. 2016, 12, 606–612.

[94]

Yakhshi-Tafti, E.; Cho, H. J.; Kumar, R. Droplet actuation on a liquid layer due to thermocapillary motion: Shape effect. Appl. Phys. Lett. 2010, 96, 264101.

[95]

Yarin, A. L.; Liu, W. X.; Reneker, D. H. Motion of droplets along thin fibers with temperature gradient. J. Appl. Phys. 2002, 91, 4751–4760.

[96]

Al-Sharafi, A.; Yilbas, B. S.; Ali, H. Water droplet mobility on a hydrophobic surface under a thermal radiative heating. Appl. Therm. Eng. 2018, 128, 92–106.

[97]

Han, Y. H.; Zhang, Y. M.; Zhang, M. C.; Chen, B. Y.; Chen, X. Y.; Hou, X. Photothermally induced liquid gate with navigation control of the fluid transport. Fundam. Res. 2021, 1, 800–806.

[98]

Sun, Q. Q.; Wang, D. H.; Li, Y. N.; Zhang, J. H.; Ye, S. J.; Cui, J. X.; Chen, L. Q.; Wang, Z. K.; Butt, H. J.; Vollmer, D. et al. Surface charge printing for programmed droplet transport. Nat. Mater. 2019, 18, 936–941.

[99]

Li, N.; Yu, C. L.; Dong, Z. C.; Jiang, L. Finger directed surface charges for local droplet motion. Soft Matter 2020, 16, 9176–9182.

[100]

Yang, X. L.; Li, Y. M.; Zheng, H. X.; Lu, Y. Saturated surface charging on micro/nanoporous polytetrafluoroethylene for droplet manipulation. ACS Appl. Nano Mater. 2022, 5, 3342–3351.

[101]

Wang, F. X.; Sun, Y. Y.; Zong, G. G.; Liang, W. Y.; Yang, B.; Guo, F. Z.; Yangou, C.; Wang, Y. B.; Zhang, Z. C. Electrothermally assisted surface charge density gradient printing to drive droplet transport. ACS Appl. Mater. Interfaces 2022, 14, 3526–3535.

[102]

Wang, Q. B.; Xu, B. J.; Hao, Q.; Wang, D.; Liu, H.; Jiang, L. In situ reversible underwater superwetting transition by electrochemical atomic alternation. Nat. Commun. 2019, 10, 1212.

[103]

Wang, J.; Sun, L. Y.; Zou, M. H.; Gao, W.; Liu, C. H.; Shang, L. R.; Gu, Z. Z.; Zhao, Y. J. Bioinspired shape-memory graphene film with tunable wettability. Sci. Adv. 2017, 3, e1700004.

[104]

Gao, W.; Wang, J.; Zhang, X. X.; Sun, L. Y.; Chen, Y. P.; Zhao, Y. J. Electric-tunable wettability on a paraffin-infused slippery pattern surface. Chem. Eng. J. 2020, 381, 122612.

[105]

Lu, X. Y.; Kong, Z.; Xiao, G. Z.; Teng, C.; Li, Y. N.; Ren, G. Y.; Wang, S. B.; Zhu, Y.; Jiang, L. Polypyrrole whelk-like arrays toward robust controlling manipulation of organic droplets underwater. Small 2017, 13, 1701938.

[106]

Mannetje, D.; Ghosh, S.; Lagraauw, R.; Otten, S.; Pit, A.; Berendsen, C.; Zeegers, J.; van den Ende, D.; Mugele, F. Trapping of drops by wetting defects. Nat. Commun. 2014, 5, 3559.

[107]

Pan, Z.; Pitt, W. G.; Zhang, Y. M.; Wu, N.; Tao, Y.; Truscott, T. T. The upside–down water collection system of Syntrichia caninervis. Nat. Plants 2016, 2, 16076.

[108]

Li, C. X.; Yu, C. L.; Zhou, S.; Dong, Z. C.; Jiang, L. Liquid harvesting and transport on multiscaled curvatures. Proc. Natl. Acad. Sci. USA 2020, 117, 23436–23442.

[109]

Li, C. X.; Dai, H. Y.; Gao, C.; Wang, T.; Dong, Z. C.; Jiang, L. Bioinspired inner microstructured tube controlled capillary rise. Proc. Natl. Acad. Sci. USA 2019, 116, 12704–12709.

[110]

Teh, S. Y.; Lin, R.; Hung, L. H.; Lee, A. P. Droplet microfluidics. Lab Chip 2008, 8, 198–220.

[111]

Guo, M. T.; Rotem, A.; Heyman, J. A.; Weitz, D. A. Droplet microfluidics for high-throughput biological assays. Lab Chip 2012, 12, 2146–2155.

[112]

Jiao, Z. J.; Nguyen, N. T.; Huang, X. Y.; Ang, Y. Z. Reciprocating thermocapillary plug motion in an externally heated capillary. Microfluid. Nanofluid. 2006, 3, 39–46.

[113]

Li, C. X.; Wu, L.; Yu, C. L.; Dong, Z. C.; Jiang, L. Peristome-mimetic curved surface for spontaneous and directional separation of micro water-in-oil drops. Angew. Chem., Int. Ed. 2017, 56, 13623–13628.

[114]

Narayanamurthy, V.; Nagarajan, S.; Firus Khan, A. Y.; Samsuri, F.; Sridhar, T. M. Microfluidic hydrodynamic trapping for single cell analysis: Mechanisms, methods and applications. Anal. Methods 2017, 9, 3751–3772.

[115]

Nilsson, J.; Evander, M.; Hammarström, B.; Laurell, T. Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta 2009, 649, 141–157.

[116]

Lin, C. M.; Lai, Y. S.; Liu, H. P.; Chen, C. Y.; Wo, A. M. Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications. Anal. Chem. 2008, 80, 8937–8945.

[117]

Olanrewaju, A.; Beaugrand, M.; Yafia, M.; Juncker, D. Capillary microfluidics in microchannels: From microfluidic networks to capillaric circuits. Lab Chip 2018, 18, 2323–2347.

[118]

Zhou, S.; Yu, C. L.; Li, C. X.; Jiang, L.; Dong, Z. C. Droplets crawling on peristome-mimetic surfaces. Adv. Funct. Mater. 2020, 30, 1908066.

[119]

Li, C. X.; Li, N.; Zhang, X. S.; Dong, Z. C.; Chen, H. W.; Jiang, L. Uni-directional transportation on peristome-mimetic surfaces for completely wetting liquids. Angew. Chem., Int. Ed. 2016, 55, 14988–14992.

[120]

Tang, X. X.; Liu, H. W.; Xiao, L.; Zhou, M. L.; Bai, H. Y.; Fang, J. H.; Cui, Z. H.; Cheng, H.; Li, G. Q.; Zhang, Y. B. et al. A hierarchical origami moisture collector with laser-textured microchannel array for a plug-and-play irrigation system. J. Mater. Chem. A 2021, 9, 5630–5638.

[121]

Li, J.; Zhou, Y. L.; Cong, J. P.; Xu, C. Y.; Ren, L. Q. Bioinspired integrative surface with hierarchical texture and wettable gradient-driven water collection. Langmuir 2020, 36, 14737–14747.

Publication history
Copyright
Acknowledgements

Publication history

Received: 29 May 2022
Revised: 08 July 2022
Accepted: 03 August 2022
Published: 24 September 2022
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFA0704801), the National Natural Science Foundation of China for Distinguished Young Scholar (No. 22125201), and the National Natural Science Foundation of China (Nos. 21872002 and 22105013).

Return