Journal Home > Volume 16 , Issue 2

Designing catalyst to achieve ammonia synthesis at mild conditions is a meaningful challenge in catalysis community. Defective g-C3N4 nanosheet supported single-cluster ruthenium and iron catalysts were investigated for their ammonia synthesis performance. Based on density functional theory (DFT) calculations and microkinetic simulations, Ru3 single-cluster anchored on defective g-C3N4 nanosheet (Ru3/Nv-g-C3N4) has a turnover frequency (TOF) 5.8 times higher than the Ru(0001) step surface at industrial reaction conditions of 673 K and 100 bar for ammonia synthesis. In other words, similar TOFs could be achieved on Ru3/Nv-g-C3N4 at much milder conditions (623 K, 30 bar) than on Ru(0001) (673 K, 100 bar). Our computations reveal the reaction proceeds parallelly on Ru3/Nv-g-C3N4 through both dissociative and alternative associative mechanisms at typical reaction conditions (600–700 K, 10–100 bar); N–N bond cleavage of *N2 and *NNH from the two respective pathways controls the reaction collectively. With increasing temperatures or decreasing pressures, the dissociative mechanism gradually prevails and associative mechanism recedes. In comparison, Fe3/Nv-g-C3N4 catalyst shows a much lower catalytic activity than Ru3/Nv-g-C3N4 by two orders of magnitude and the reaction occurs solely through the dissociative pathway. The finding provides a prospective candidate and deepens the mechanistic understanding for ammonia synthesis catalyzed by single-cluster catalysts (SCCs).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Defective g-C3N4 supported Ru3 single-cluster catalyst for ammonia synthesis through parallel reaction pathways

Show Author's information Yining Zhang1Sha Li2( )Chao Sun1Xiaorou Cao1Xi Wang3( )Jiannian Yao1,4
Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China

Abstract

Designing catalyst to achieve ammonia synthesis at mild conditions is a meaningful challenge in catalysis community. Defective g-C3N4 nanosheet supported single-cluster ruthenium and iron catalysts were investigated for their ammonia synthesis performance. Based on density functional theory (DFT) calculations and microkinetic simulations, Ru3 single-cluster anchored on defective g-C3N4 nanosheet (Ru3/Nv-g-C3N4) has a turnover frequency (TOF) 5.8 times higher than the Ru(0001) step surface at industrial reaction conditions of 673 K and 100 bar for ammonia synthesis. In other words, similar TOFs could be achieved on Ru3/Nv-g-C3N4 at much milder conditions (623 K, 30 bar) than on Ru(0001) (673 K, 100 bar). Our computations reveal the reaction proceeds parallelly on Ru3/Nv-g-C3N4 through both dissociative and alternative associative mechanisms at typical reaction conditions (600–700 K, 10–100 bar); N–N bond cleavage of *N2 and *NNH from the two respective pathways controls the reaction collectively. With increasing temperatures or decreasing pressures, the dissociative mechanism gradually prevails and associative mechanism recedes. In comparison, Fe3/Nv-g-C3N4 catalyst shows a much lower catalytic activity than Ru3/Nv-g-C3N4 by two orders of magnitude and the reaction occurs solely through the dissociative pathway. The finding provides a prospective candidate and deepens the mechanistic understanding for ammonia synthesis catalyzed by single-cluster catalysts (SCCs).

Keywords: density functional theory, ammonia synthesis, parallel reaction pathways, Ru3 cluster, microkinetic simulations

References(48)

[1]

Pfromm, P. H. Towards sustainable agriculture: Fossil-free ammonia. J. Renew. Sustainable Energy 2017, 9, 034702.

[2]

Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639.

[3]

Schlögl, R. Catalytic synthesis of ammonia-a “never-ending story”? Angew. Chem., Int. Ed. 2003, 42, 2004–2008.

[4]

Valera-Medina, A.; Xiao, H.; Owen-Jones, M.; David, W. I. F.; Bowen, P. J. Ammonia for power. Prog. Energy Combust. Sci. 2018, 69, 63–102.

[5]

van der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183–5191.

[6]

Zeinalipour-Yazdi, C. D.; Hargreaves, J. S. J.; Laassiri, S.; Catlow, C. R. A. A comparative analysis of the mechanisms of ammonia synthesis on various catalysts using density functional theory. Roy. Soc. Open Sci. 2021, 8, 210952.

[7]

Shi, L.; Yin, Y.; Wang, S. B.; Sun, H. Q. Rational catalyst design for N2 reduction under ambient conditions: Strategies toward enhanced conversion efficiency. ACS Catal. 2020, 10, 6870–6899.

[8]

Mao, C. L.; Wang, J. X.; Zou, Y. J.; Qi, G. D.; Loh, J. Y. Y.; Zhang, T. H.; Xia, M. K.; Xu, J.; Deng, F.; Ghoussoub, M. et al. Hydrogen spillover to oxygen vacancy of TIO2−xhy/Fe: Breaking the scaling relationship of ammonia synthesis. J. Am. Chem. Soc. 2020, 142, 17403–17412.

[9]

Abild-Pedersen, F.; Greeley, J.; Studt, F.; Rossmeisl, J.; Munter, T. R.; Moses, P. G.; Skúlason, E.; Bligaard, T.; Nørskov, J. K. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 2007, 99, 016105.

[10]

Munter, T. R.; Bligaard, T.; Christensen, C. H.; Nørskov, J. K. BEP relations for N2 dissociation over stepped transition metal and alloy surfaces. Phys. Chem. Chem. Phys. 2008, 10, 5202–5206.

[11]

Wang, S.; Petzold, V.; Tripkovic, V.; Kleis, J.; Howalt, J. G.; Skúlason, E.; Fernández, E. M.; Hvolbaek, B.; Jones, G.; Toftelund, A. et al. Universal transition state scaling relations for (de)hydrogenation over transition metals. Phys. Chem. Chem. Phys. 2011, 13, 20760–20765.

[12]

Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 2015, 328, 36–42.

[13]

Zhang, Y. N.; Li, S.; Sun, C.; Wang, P.; Yang, Y. J.; Yi, D.; Wang, X.; Yao, J. N. Understanding and modifying the scaling relations for ammonia synthesis on dilute metal alloys: From single-atom alloys to dimer alloys. ACS Catal. 2022, 12, 9201–9212.

[14]

Wang, P. K.; Chang, F.; Gao, W. B.; Guo, J. P.; Wu, G. T.; He, T.; Chen, P. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 2017, 9, 64–70.

[15]

Chang, F.; Guan, Y. Q.; Chang, X. H.; Guo, J. P.; Wang, P. K.; Gao, W. B.; Wu, G. T.; Zheng, J.; Li, X. G.; Chen, P. Alkali and alkaline earth hydrides-driven N2 activation and transformation over Mn nitride catalyst. J. Am. Chem. Soc. 2018, 140, 14799–14806.

[16]

Wang, Q. R.; Pan, J.; Guo, J. P.; Hansen, H. A.; Xie, H.; Jiang, L.; Hua, L.; Li, H. Y.; Guan, Y. Q.; Wang, P. K. et al. Ternary ruthenium complex hydrides for ammonia synthesis via the associative mechanism. Nat. Catal. 2021, 4, 959–967.

[17]

Ye, T. N.; Park, S. W.; Lu, Y. F.; Li, J.; Sasase, M.; Kitano, M.; Tada, T.; Hosono, H. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 2020, 583, 391–395.

[18]

Ye, T. N.; Park, S. W.; Lu, Y. F.; Li, J.; Sasase, M.; Kitano, M.; Hosono, H. Contribution of nitrogen vacancies to ammonia synthesis over metal nitride catalysts. J. Am. Chem. Soc. 2020, 142, 14374–14383.

[19]

Yao, Y.; Zhu, S. Q.; Wang, H. J.; Li, H.; Shao, M. H. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 2018, 140, 1496–1501.

[20]

Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.

[21]

Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.

[22]

Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 2018, 9, 1610.

[23]

Ma, X. L.; Liu, J. C.; Xiao, H.; Li, J. Surface single-cluster catalyst for N2-to-NH3 thermal conversion. J. Am. Chem. Soc. 2018, 140, 46–49.

[24]

Ma, X. L.; Yang, Y.; Xu, L. M.; Xiao, H.; Yao, W. Z.; Li, J. Theoretical investigation on hydrogenation of dinitrogen triggered by singly dispersed bimetallic sites. J. Mater. Chem. A 2022, 10, 6146–6152.

[25]

Zhu, H. D.; Aarons, J.; Peng, Q. High spin polarized Fe2 cluster combined with vicinal nonmetallic sites for catalytic ammonia synthesis from a theoretical perspective. Inorg. Chem. Front. 2021, 8, 5299–5311.

[26]

Li, D. Z.; Liu, Y.; Liu, Z.; Yang, J.; Hu, C. Q.; Feng, L. G. Electrochemical hydrogen evolution reaction efficiently catalyzed by Ru-N coupling in defect-rich Ru/g-C3N4 nanosheets. J. Mater. Chem. A 2021, 9, 15019–15026.

[27]

Tian, S. B.; Fu, Q.; Chen, W. X.; Feng, Q. C.; Chen, Z.; Zhang, J.; Cheong, W. C.; Yu, R.; Gu, L.; Dong, J. C. et al. Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 2018, 9, 2353.

[28]

Zhao, Z. M.; Long, Y.; Luo, S.; Luo, Y. T.; Chen, M.; Ma, J. T. Metal-Free C3N4 with plentiful nitrogen vacancy and increased specific surface area for electrocatalytic nitrogen reduction. J. Energy Chem. 2021, 60, 546–555.

[29]

An, S. F.; Zhang, G. H.; Wang, T. W.; Zhang, W. N.; Li, K. Y.; Song, C. S.; Miller, J. T.; Miao, S.; Wang, J. H.; Guo, X. W. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano 2018, 12, 9441–9450.

[30]

Oh, W. D.; Chang, V. W. C.; Hu, Z. T.; Goei, R.; Lim, T. T. Enhancing the catalytic activity of g-C3N4 through Me doping (Me = Cu, Co and Fe) for selective sulfathiazole degradation via redox-based advanced oxidation process. Chem. Eng. J. 2017, 323, 260–269.

[31]

Kong, N. N.; Fan, X.; Liu, F. F.; Wang, L.; Lin, H. P.; Li, Y. Y.; Lee, S. T. Single vanadium atoms anchored on graphitic carbon nitride as a high-performance catalyst for non-oxidative propane dehydrogenation. ACS Nano 2020, 14, 5772–5779.

[32]

Lv, L.; Shen, Y. Q.; Liu, J. J.; Meng, X. H.; Gao, X.; Zhou, M.; Zhang, Y.; Gong, D. W.; Zheng, Y. D.; Zhou, Z. X. Computational screening of high activity and selectivity TM/g-C3N4 single-atom catalysts for electrocatalytic reduction of nitrates to ammonia. J. Phys. Chem. Lett. 2021, 12, 11143–11150.

[33]

Yang, L.; Feng, S. H.; Zhu, W. H. Tuning nitrate electroreduction activity via an equilibrium adsorption strategy: A computational study. J. Phys. Chem. Lett. 2022, 13, 1726–1733.

[34]

Roongcharoen, T.; Impeng, S.; Chitpakdee, C.; Rungrotmongkol, T.; Jitwatanasirikul, T.; Jungsuttiwong, S.; Namuangruk, S. Intrinsic property and catalytic performance of single and double metal atoms incorporated g-C3N4 for O2 activation: A DFT insight. Appl. Surf. Sci. 2021, 541, 148671.

[35]

Yang, N. T.; Zhao, Y. H.; Wu, P.; Liu, G. J.; Sun, F. F.; Ma, J. Y.; Jiang, Z.; Sun, Y. H.; Zeng, G. F. Defective C3N4 frameworks coordinated diatomic copper catalyst: Towards mild oxidation of methane to C1 oxygenates. Appl. Catal. B 2021, 299, 120682.

[36]

Ji, S. F.; Chen, Y. J.; Fu, Q.; Chen, Y. F.; Dong, J. C.; Chen, W. X.; Li, Z.; Wang, Y.; Gu, L.; He, W. et al. Confined pyrolysis within metal-organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 2017, 139, 9795–9798.

[37]

Li, L. L.; Jiang, Y. F.; Zhang, T. H.; Cai, H. F.; Zhou, Y. L.; Lin, B. Y.; Lin, X. Y.; Zheng, Y.; Zheng, L. R.; Wang, X. Y. et al. Size sensitivity of supported Ru catalysts for ammonia synthesis: From nanoparticles to subnanometric clusters and atomic clusters. Chem 2022, 8, 749–768.

[38]

Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[39]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[40]

Paier, J.; Hirschl, R.; Marsman, M.; Kresse, G. The Perdew−Burke−Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J. Chem. Phys. 2005, 122, 234102.

[41]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[42]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[43]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[44]

Hjorth Larsen, A.; JøMortensen, J.; Blomqvist, J.; Castelli, I. E.; Christensen, R.; Dulak, M.; Friis, J.; Groves, M. N.; Hammer, B.; Hargus, C. et al. The atomic simulation environment—A Python library for working with atoms. J. Phys. Condens. Matter 2017, 29, 273002.

[45]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[46]

Wang, W.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT:A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

[47]

Medford, A. J.; Shi, C.; Hoffmann, M. J.; Lausche, A. C.; Fitzgibbon, S. R.; Bligaard, T.; Nørskov, J. K. CatMAP: A software package for descriptor-based microkinetic mapping of catalytic trends. Catal. Lett. 2015, 145, 794–807.

[48]

Wu, H. Z.; Bandaru, S.; Liu, J.; Li, L. L.; Wang, Z. L. Adsorption of H2O, H2, O2, CO, NO, and CO2 on graphene/g-C3N4 nanocomposite investigated by density functional theory. Appl. Surf. Sci. 2018, 430, 125–136.

File
12274_2022_4865_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 May 2022
Revised: 03 August 2022
Accepted: 03 August 2022
Published: 27 September 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Nos. 91961125 and 22002085). This work was also supported by the “Fundamental Research Funds for the Central Universities” (No. 2018JBZ107), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110832), “Key Program for International S&T Cooperation Projects of China” from the Ministry of Science and Technology of China (No. 2018YFE0124600), Chemistry and Chemical Engineering Guangdong Laboratory (No. 1932004), Science and Technology Project of Guangdong Province (No. 2020B0101370001), and the Project from China Petrochemical Corporation (No. S20L00151).

Return