Journal Home > Volume 16 , Issue 2

Chemical functionalization is an effective approach to address interfacial deterioration caused by environmental exposure in cellulose nanofiber (CNF)-epoxy nanocomposites. However, how functionalization affects interfacial deterioration and durability of nanocomposites in erosive environment is still lacked. In this work, the global mechanical properties and local interfacial intermolecular behavior of pristine and functionalized CNF-reinforced nanocomposites are investigated through molecular dynamics simulations. The results show that functionalization can enhance the interfacial energy barrier and debonding stress by 43% and 57%, respectively. Functionalized CNF inhibits the slippage of epoxy chains, ensuring better interfacial adhesion and efficient stress transfer between fiber and matrix. Functional groups promote the formation of interfacial bridging and topological structures and weaken the hydrogen bonding ability of water molecules, leading to stronger intermolecular adsorption effect and better interfacial integrity. The epoxy molecular configuration evolution and intermolecular interactions, caused by the functionalization of CNF in the interfacial region, enhance the interfacial erosion resistance, contributing to the durability of the nanocomposites. This study reveals the in-depth interfacial deterioration mechanism of functionalized nanocomposites under erosive environment, inspiring a novel strategy for the design of durable CNF-reinforced nanocomposites.


menu
Abstract
Full text
Outline
About this article

Atomic insight into the functionalization of cellulose nanofiber on durability of epoxy nanocomposites

Show Author's information Tiejun Liu1Kexuan Li1Ao Zhou1,2( )Zechuan Yu3Renyuan Qin4Dujian Zou1
School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong 999077, China
School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523830, China

Abstract

Chemical functionalization is an effective approach to address interfacial deterioration caused by environmental exposure in cellulose nanofiber (CNF)-epoxy nanocomposites. However, how functionalization affects interfacial deterioration and durability of nanocomposites in erosive environment is still lacked. In this work, the global mechanical properties and local interfacial intermolecular behavior of pristine and functionalized CNF-reinforced nanocomposites are investigated through molecular dynamics simulations. The results show that functionalization can enhance the interfacial energy barrier and debonding stress by 43% and 57%, respectively. Functionalized CNF inhibits the slippage of epoxy chains, ensuring better interfacial adhesion and efficient stress transfer between fiber and matrix. Functional groups promote the formation of interfacial bridging and topological structures and weaken the hydrogen bonding ability of water molecules, leading to stronger intermolecular adsorption effect and better interfacial integrity. The epoxy molecular configuration evolution and intermolecular interactions, caused by the functionalization of CNF in the interfacial region, enhance the interfacial erosion resistance, contributing to the durability of the nanocomposites. This study reveals the in-depth interfacial deterioration mechanism of functionalized nanocomposites under erosive environment, inspiring a novel strategy for the design of durable CNF-reinforced nanocomposites.

Keywords: nanocomposites, molecular dynamics, functionalization, interfacial interaction, environmental degradation, durability enhancement

References(47)

[1]

Wang, W.; Wang, S.; Xiang, C. X.; Xue, D.; Li, M. F.; Liu, Q. Z.; Piao, L. H.; Wang, D. Nanofiber-based transparent film with controllable optical transparency adjustment function for versatile bionic applications. Nano Res. 2022, 15, 564–572.

[2]

Hu, R. R.; Gao, E. L.; Xu, Z. P.; Liu, L. Q.; Wang, G. R.; Zhu, H. W.; Zhang, Z. Hierarchical-structure-dependent high ductility of electrospun polyoxymethylene nanofibers. J. Appl. Polym. Sci. 2019, 136, 47086.

[3]
Xiang, F. W.; Cheng, F.; Sun, Y. J.; Yang, X. P.; Lu, W.; Amal, R.; Dai, L. M. Recent advances in flexible batteries: From materials to applications. Nano Res., in press, https://doi.org/10.1007/s12274-021-3820-2.
[4]

Xiong, C. Y.; Wang, T. X.; Zhang, Y. K.; Zhu, M.; Ni, Y. H. Recent progress on green electromagnetic shielding materials based on macro wood and micro cellulose components from natural agricultural and forestry resources. Nano Res. 2022, 15, 7506–7532.

[5]

Kamble, Z.; Behera, B. K.; Mishra, R.; Behera, P. K. Influence of cellulosic and non-cellulosic particle fillers on mechanical, dynamic mechanical, and thermogravimetric properties of waste cotton fibre reinforced green composites. Compos. Part B:Eng. 2021, 207, 108595.

[6]

Chen, L. M.; Abdalkarim, S. Y. H.; Yu, H. Y.; Chen, X.; Tang, D. P.; Li, Y. Z.; Tam, K. C. Nanocellulose-based functional materials for advanced energy and sensor applications. Nano Res. 2022, 15, 7432–7452.

[7]

Saba, N.; Mohammad, F.; Pervaiz, M.; Jawaid, M.; Alothman, O. Y.; Sain, M. Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites. Int. J. Biol. Macromol. 2017, 97, 190–200.

[8]

Ansari, F.; Galland, S.; Johansson, M.; Plummer, C. J. G.; Berglund, L. A. Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Compos. Part A:Appl. Sci. Manuf. 2014, 63, 35–44.

[9]

Yan, L. B.; Kasal, B.; Huang, L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos. Part B:Eng. 2016, 92, 94–132.

[10]

Mak, K.; Fam, A. Freeze-thaw cycling effect on tensile properties of unidirectional flax fiber reinforced polymers. Compos. Part B:Eng. 2019, 174, 106960.

[11]

Kurita, H.; Ishigami, R.; Wu, C.; Narita, F. Experimental evaluation of tensile properties of epoxy composites with added cellulose nanofiber slurry. Strength Mater. 2020, 52, 798–804.

[12]

Abdelmouleh, M.; Boufi, S.; Belgacem, M. N.; Dufresne, A.; Gandini, A. Modification of cellulose fibers with functionalized silanes: Effect of the fiber treatment on the mechanical performances of cellulose-thermoset composites. J. Appl. Polym. Sci. 2005, 98, 974–984.

[13]

Dufresne, A. Cellulose nanomaterial reinforced polymer nanocomposites. Curr. Opin. Colloid Interface Sci. 2017, 29, 1–8.

[14]

Xia, W. J.; Qin, X.; Zhang, Y.; Sinko, R.; Keten, S. Achieving enhanced interfacial adhesion and dispersion in cellulose nanocomposites via amorphous interfaces. Macromolecules 2018, 51, 10304–10311.

[15]

Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994.

[16]

Yu, T. T.; Soomro, S. A.; Huang, F.; Wei, W.; Wang, B.; Zhou, Z. W.; Hui, D. Naturally or artificially constructed nanocellulose architectures for epoxy composites: A review. Nanotechnol. Rev. 2020, 9, 1643–1659.

[17]

Zhou, A.; Tam, L. H.; Yu, Z. C.; Lau, D. Effect of moisture on the mechanical properties of CFRP-wood composite: An experimental and atomistic investigation. Compos. Part B:Eng. 2015, 71, 63–73.

[18]

Neves, R. M.; Ornaghi, H. L. Jr.; Zattera, A. J.; Amico, S. C. Recent studies on modified cellulose/nanocellulose epoxy composites:A systematic review. Carbohydr. Polym. 2021, 255, 117366.

[19]

Anothumakkool, B.; Guyomard, D.; Gaubicher, J.; Madec, L. Interest of molecular functionalization for electrochemical storage. Nano Res. 2017, 10, 4175–4200.

[20]

Bulota, M.; Tanpichai, S.; Hughes, M.; Eichhorn, S. J. Micromechanics of TEMPO-oxidized fibrillated cellulose composites. ACS Appl. Mater. Interfaces 2012, 4, 331–337.

[21]

Ran, Y.; Li, Y. D.; Zeng, J. B. Dynamic crosslinking towards well-dispersed cellulose nanofiber reinforced epoxy vitrimer composites. Compos. Commun. 2022, 33, 101228.

[22]

Qiu, B. W.; Sun, T.; Li, M. X.; Chen, Y.; Zhou, S. T.; Liang, M.; Zou, H. W. High micromechanical interlocking graphene oxide/carboxymethyl cellulose composite architectures for enhancing the interface adhesion between carbon fiber and epoxy. Compos. Part A:Appl. Sci. Manuf. 2020, 139, 106092.

[23]

Shrestha, S.; Chowdhury, R. A.; Toomey, M. D.; Betancourt, D.; Montes, F.; Youngblood, J. P. Surface hydrophobization of TEMPO-oxidized cellulose nanofibrils (CNFs) using a facile, aqueous modification process and its effect on properties of epoxy nanocomposites. Cellulose 2019, 26, 9631–9643.

[24]

Ly, B.; Thielemans, W.; Dufresne, A.; Chaussy, D.; Belgacem, M. N. Surface functionalization of cellulose fibres and their incorporation in renewable polymeric matrices. Compos. Sci. Technol. 2008, 68, 3193–3201.

[25]

Soleimany, M. R.; Jamal-Omidi, M.; Nabavi, S. M.; Tavakolian, M. Molecular dynamics predictions of thermo-mechanical properties of carbon nanotube/polymeric composites. Int. Nano Lett. 2021, 11, 179–194.

[26]

Li, X.; Yao, K. X.; Zhao, F. L.; Yang, X. T.; Li, J. W.; Li, Y. F.; Yuan, Q. Interface-rich Au-doped PdBi alloy nanochains as multifunctional oxygen reduction catalysts boost the power density and durability of a direct methanol fuel cell device. Nano Res. 2022, 15, 6036–6044.

[27]

Zhou, A.; Wei, H. N.; Liu, T. J.; Zou, D. J.; Li, Y.; Qin, R. Y. Interfacial technology for enhancement in steel fiber reinforced cementitious composite from nano to macroscale. Nanotechnol. Rev. 2021, 10, 636–652.

[28]

Wang, X. Q.; Jian, W.; Buyukozturk, O.; Leung, C. K. Y.; Lau, D. Degradation of epoxy/glass interface in hygrothermal environment: An atomistic investigation. Compos. Part B:Eng. 2021, 206, 108534.

[29]

Zhou, J. M.; Lucas, J. P. Hygrothermal effects of epoxy resin. Part II:Variations of glass transition temperature. Polymer 1999, 40, 5513–5522.

[30]

Gomes, T. C. F.; Skaf, M. S. Cellulose-builder: A toolkit for building crystalline structures of cellulose. J. Comput. Chem. 2012, 33, 1338–1346.

[31]

Wang, Y. X.; Yu, Z. C.; Dufresne, A.; Ye, Z. L.; Lin, N.; Zhou, J. Quantitative analysis of compatibility and dispersibility in nanocellulose-reinforced composites: Hansen solubility and Raman mapping. ACS Nano 2021, 15, 20148–20163.

[32]

Yamato, K.; Yoshida, Y.; Kumamoto, Y.; Isogai, A. Surface modification of TEMPO-oxidized cellulose nanofibers, and properties of their acrylate and epoxy resin composite films. Cellulose 2022, 29, 2839–2853.

[33]

Jin, Z. Q.; Li, S. C.; Song, H. M.; Li, Z.; Zhu, D. J. Experimental and simulative study of bonding properties on fiber/epoxy interfaces by digital image correlation (DIC) technique and molecular dynamics. Cem. Concr. Compos. 2022, 131, 104569.

[34]

Tam, L. H.; He, L.; Wu, C. Molecular dynamics study on the effect of salt environment on interfacial structure, stress, and adhesion of carbon fiber/epoxy interface. Compos. Interfaces 2019, 26, 431–447.

[35]

Miyamoto, H.; Schnupf, U.; Crowley, M. F.; Brady, J. W. Comparison of the simulations of cellulosic crystals with three carbohydrate force fields. Carbohydr. Res. 2016, 422, 17–23.

[36]

Wang, S. Y.; Hou, K. Y.; Heinz, H. Accurate and compatible force fields for molecular oxygen, nitrogen, and hydrogen to simulate gases, electrolytes, and heterogeneous interfaces. J. Chem. Theory Comput. 2021, 17, 5198–5213.

[37]

Jamil, T.; Javadi, A.; Heinz, H. Mechanism of molecular interaction of acrylate-polyethylene glycol acrylate copolymers with calcium silicate hydrate surfaces. Green Chem. 2020, 22, 1577–1593.

[38]

Jian, W.; Lau, D. Understanding the effect of functionalization in CNT-epoxy nanocomposite from molecular level. Compos. Sci. Technol. 2020, 191, 108076.

[39]

Zhou, A.; Yu, Z. C.; Wei, H. N.; Tam, L. H.; Liu, T. J.; Zou, D. J. Understanding the toughening mechanism of silane coupling agents in the interfacial bonding in steel fiber-reinforced cementitious composites. ACS Appl. Mater. Interfaces 2020, 12, 44163–44171.

[40]

Qin, R. Y.; Zhou, A.; Yu, Z. C.; Wang, Q.; Lau, D. Role of carbon nanotube in reinforcing cementitious materials: An experimental and coarse-grained molecular dynamics study. Cem. Concr. Res. 2021, 147, 106517.

[41]

Li, K.; Li, Y.; Lian, Q. S.; Cheng, J.; Zhang, J. Y. Influence of cross-linking density on the structure and properties of the interphase within supported ultrathin epoxy films. J. Mater. Sci. 2016, 51, 9019–9030.

[42]
AbanillaM. A.LiY.KarbhariV. M. Durability characterization of wet layup graphite/epoxy composites used in external strengtheningCompos. Part B: Eng.2005–20063720021210.1016/j.compositesb.2005.05.016

Abanilla, M. A.; Li, Y.; Karbhari, V. M. Durability characterization of wet layup graphite/epoxy composites used in external strengthening. Compos. Part B: Eng. 2005–2006, 37, 200–212.

[43]

Mazeau, K.; Heux, L. Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J. Phys. Chem. B 2003, 107, 2394–2403.

[44]

Park, S.; Khalili-Araghi, F.; Tajkhorshid, E.; Schulten, K. Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality. J. Chem. Phys. 2003, 119, 3559–3566.

[45]

Shen, P. Z.; Tang, Q.; Chen, X.; Li, Z. L. Nanocrystalline cellulose extracted from bast fibers: Preparation, characterization, and application. Carbohydr. Polym. 2022, 290, 119462.

[46]

Wang, Y. X.; Liu, Q. S. Investigation on fundamental properties and chemical characterization of water-soluble epoxy resin modified cement grout. Constr. Build. Mater. 2021, 299, 123877.

[47]

Wang, P. G.; Jia, Y. T.; Li, T.; Hou, D. S.; Zheng, Q. Molecular dynamics study on ions and water confined in the nanometer channel of Friedel's salt: Structure, dynamics and interfacial interaction. Phys. Chem. Chem. Phys. 2018, 20, 27049–27058.

Publication history
Copyright
Acknowledgements

Publication history

Received: 11 May 2022
Revised: 03 August 2022
Accepted: 04 August 2022
Published: 21 September 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFF0500802); the National Science Fund for Distinguished Young Scholars (No. 52025081); Key Research and Development Program of Guangdong Province (No. 2019B111107001); Shenzhen Science and Technology Programs (No. RCBS20200714114819352); and Foundation for Distinguished Young Talents in Higher Education of Guangdong (No. 2021KQNCX096).

Return