Journal Home > Volume 16 , Issue 4

Dual-active sites (DASs) catalysts have positive potential applications in broad fields because of their specific active sites and synergistic catalytic effects. Therefore, the controllable synthesis and finely regulating the activity of such catalysts has become a hot research area for now. In this work, we developed a pyrolysis-etching-hydrogen activation strategy to prepare the DASs catalysts involving single-atom Cu and B on N-doped porous carbon material (Cu1-B/NPC). Numerous systematic characterization and density functional theoretical (DFT) calculation results showed that the Cu and B existed as Cu-N4 porphyrin-like unit and B-N3 unit in the obtained catalyst. DFT calculations further revealed that single-atom Cu and B sites were linked by bridging N atoms to form the Cu1-B-N6 dual-sites. The Cu1-B/NPC catalyst was more effective than the single-active site catalysts with B-N3 sites in NPC (B/NPC) and Cu-N4 porphyrin-like sites in NPC (Cu1/NPC), respectively, for the dehydrogenative coupling of dimethylphenylsilane (DiMPSH) with various alcohols, performing the great activity (> 99%) and selectivity (> 99%). The catalytic performances of the Cu1-B/NPC catalyst remained nearly unchanged after five cycles, also indicating its outstanding recyclability. DFT calculations showed that the Cu1-B-N6 dual-sites exhibited the lowest energy profile on the potential energy surface than that of sole B-N3 and Cu-N4 porphyrin-like sites. Furthermore, the rate-limiting step of dehydrogenation of DiMPSH on Cu1-B-N6 dual-sites also showed a much lower activation energy than the other two single sites. Benefitting from the superiority of the Cu1-B-N6 dual-sites, the Cu1-B/NPC catalyst can also be used for CO2 electroreduction to produce syngas. Thus, DASs catalysts are promising to achieve multifunctional catalytic properties and have aroused positive attention in the field of catalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Cu1-B dual-active sites catalysts for the efficient dehydrogenative coupling and CO2 electroreduction

Show Author's information Konglin Wu1,2,3Zhaobin Fang1,3Cheng Peng1,3Yining Zhang4,5Binbin Jiang6Yanshang Kang1,3Zhiming Chen2Mingfu Ye1,3,7Yuxi Wu1Xianwen Wei1,3Shoujie Liu4( )Sha Li4( )Jian Zhang8( )
Key Laboratory of Metallurgical Emission Reduction & Resources Recycling of Ministry of Education, Anhui University of Technology, Maanshan 243002, China
Anhui Laboratory of Clean Catalytic Engineering, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
Institute of Clean Energy and Advanced Nanocatalysis (iClean), School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, China
Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246001, China
Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, China
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China

Abstract

Dual-active sites (DASs) catalysts have positive potential applications in broad fields because of their specific active sites and synergistic catalytic effects. Therefore, the controllable synthesis and finely regulating the activity of such catalysts has become a hot research area for now. In this work, we developed a pyrolysis-etching-hydrogen activation strategy to prepare the DASs catalysts involving single-atom Cu and B on N-doped porous carbon material (Cu1-B/NPC). Numerous systematic characterization and density functional theoretical (DFT) calculation results showed that the Cu and B existed as Cu-N4 porphyrin-like unit and B-N3 unit in the obtained catalyst. DFT calculations further revealed that single-atom Cu and B sites were linked by bridging N atoms to form the Cu1-B-N6 dual-sites. The Cu1-B/NPC catalyst was more effective than the single-active site catalysts with B-N3 sites in NPC (B/NPC) and Cu-N4 porphyrin-like sites in NPC (Cu1/NPC), respectively, for the dehydrogenative coupling of dimethylphenylsilane (DiMPSH) with various alcohols, performing the great activity (> 99%) and selectivity (> 99%). The catalytic performances of the Cu1-B/NPC catalyst remained nearly unchanged after five cycles, also indicating its outstanding recyclability. DFT calculations showed that the Cu1-B-N6 dual-sites exhibited the lowest energy profile on the potential energy surface than that of sole B-N3 and Cu-N4 porphyrin-like sites. Furthermore, the rate-limiting step of dehydrogenation of DiMPSH on Cu1-B-N6 dual-sites also showed a much lower activation energy than the other two single sites. Benefitting from the superiority of the Cu1-B-N6 dual-sites, the Cu1-B/NPC catalyst can also be used for CO2 electroreduction to produce syngas. Thus, DASs catalysts are promising to achieve multifunctional catalytic properties and have aroused positive attention in the field of catalysis.

Keywords: porous carbon, single-atom catalysis, dual-active sites, dehydrogenative coupling

References(61)

[1]

Zhu, P.; Xiong, X.; Wang, D. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[2]

Wang, Y.; Wang, D.; Li, Y. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

[3]

Pan, Y.; Zhang, C.; Lin, Y.; Liu, Z.; Wang, M.; Chen, C. Electrocatalyst engineering and structure−activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Sci. China Mater. 2020, 63, 921–948.

[4]

Yang, J.; Li, W.; Wang, D.; Li, Y. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

[5]

Zhao, D.; Zhuang, Z.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

[6]

Hossain, M. D.; Liu, Z.; Zhuang, M.; Yan, X.; Xu, G. -L.; Gadre, C. A.; Tyagi, A.; Abidi, I. H.; Sun, C. -J.; Wong, H. et al. Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction. Adv. Energy Mater. 2019, 9, 1803689.

[7]

Jing, H.; Zhu, P.; Zheng, X.; Zhang, Z.; Wang, D.; Li, Y. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[8]

Xu, Q.; Zhang, J.; Wang, D.; Li, Y. Single-atom site catalysts supported on two-dimensional materials for energy applications. Chin. Chem. Lett. 2021, 32, 3771–3781.

[9]

Peng, Y.; Lu, B.; Chen, S. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 2018, 30, 1801995.

[10]

Wang, Y.; Chu, F.; Zeng, J.; Wang, Q.; Naren, T.; Li, Y.; Cheng, Y.; Lei, Y.; Wu, F. Single atom catalysts for fuel cells and rechargeable batteries: Principles, advances, and opportunities. ACS Nano 2021, 15, 210–239.

[11]

Min, Y.; Zhou, X.; Chen, J. -J.; Chen, W.; Zhou, F.; Wang, Z.; Yang, J.; Xiong, C.; Wang, Y.; Li, F. et al. Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design. Nat. Commun. 2021, 12, 303.

[12]

Xiong, C.; Tian, L.; Xiao, C.; Xue, Z.; Zhou, F.; Zhou, H.; Zhao, Y.; Chen, M.; Wang, Q.; Qu, Y. et al. Construction of highly accessible single Co site catalyst for glucose detection. Sci. Bull. 2020, 65, 2100–2106.

[13]

Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[14]

Kuai, L.; Chen, Z.; Liu, S.; Kan, E.; Yu, N.; Ren, Y.; Fang, C.; Li, X.; Li, Y.; Geng, B. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

[15]

Wei, S.; Li, A.; Liu, J. -C.; Li, Z.; Chen, W.; Gong, Y.; Zhang, Q.; Cheong, W. -C.; Wang, Y.; Zheng, L. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

[16]

Kuai, L.; Liu, S. J.; Cao, S. F.; Ren, Y. M.; Kan, E. J.; Zhao, Y. Y.; Yu, N.; Li, F.; Li, X. Y.; Wu, Z. C. et al. Atomically dispersed Pt/metal oxide mesoporous catalysts from synchronous pyrolysis deposition route for water–gas shift reaction. Chem. Mater. 2018, 30, 5534–5538.

[17]

Wang, B.; Chen, S.; Zhang, Z.; Wang, D. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat. 2022, 3, 84–110.

[18]

Yan, H.; Su, C.; He, J.; Chen, W. Single-atom catalysts and their applications in organic chemistry. J. Mater. Chem. A 2018, 6, 8793–8814.

[19]

Zheng, X.; Li, B.; Wang, Q.; Wang, D.; Li, Y. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[20]

Li, R.; Wang, D. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[21]

Zhang, Z.; Zhou, M.; Chen, Y.; Liu, S.; Wang, H.; Zhang, J.; Ji, S.; Wang, D.; Li, Y. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

[22]

Xiong, Y.; Sun, W.; Han, Y.; Xin, P.; Zheng, X.; Yan, W.; Dong, J.; Zhang, J.; Wang, D.; Li, Y. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

[23]

Zhuang, J.; Wang, D. Current advances and future challenges of single-atom catalysis. Chem. J. Chin. Univ. 2022, 43, 20220043.

[24]

Tian, S.; Hu, M.; Xu, Q.; Gong, W.; Chen, W.; Yang, J.; Zhu, Y.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2021, 64, 642–650.

[25]

Zhao, J.; Ji, S.; Guo, C.; Li, H.; Dong, J.; Guo, P.; Wang, D.; Li, Y.; Toste, F. D. A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nat. Catal. 2021, 4, 523–531.

[26]

Li, F.; Han, G. -F.; Noh, H. -J.; Kim, S. -J.; Lu, Y.; Jeong, H. Y.; Fu, Z.; Baek, J. -B. Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ. Sci. 2018, 11, 2263–2269.

[27]

Han, G.; Zheng, Y.; Zhang, X.; Wang, Z.; Gong, Y.; Du, C.; Banis, M. N.; Yiu, Y. -M.; Sham, T. -K.; Gu, L. et al. High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction. Nano Energy 2019, 66, 104088.

[28]

Wu, H.; Li, H.; Zhao, X.; Liu, Q.; Wang, J.; Xiao, J.; Xie, S.; Si, R.; Yang, F.; Miao, S. et al. Highly doped and exposed Cu(I)–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries. Energy Environ. Sci. 2016, 9, 3736–3745.

[29]

Li, P.; Jin, Z.; Qian, Y.; Fang, Z.; Xiao, D.; Yu, G. Supramolecular confinement of single Cu atoms in hydrogel frameworks for oxygen reduction electrocatalysis with high atom utilization. Mater. Today 2020, 35, 78–86.

[30]

Wang, X.; Shi, Q.; Zha, Z.; Zhu, D.; Zheng, L.; Shi, L.; Wei, X.; Lian, L.; Wu, K.; Cheng, L. Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact. Mater. 2021, 6, 4389–4401.

[31]

Wu, Q.; Wang, J.; Wang, Z.; Xu, Y.; Xing, Z.; Zhang, X.; Guan, Y.; Liao, G.; Li, X. High-loaded single Cu atoms decorated on N-doped graphene for boosting Fenton-like catalysis under neutral pH. J. Mater. Chem. A 2020, 8, 13685–13693.

[32]

Lin, Z.; Zheng, L.; Yao, W.; Liu, S.; Bu, Y.; Zeng, Q.; Zhang, X.; Deng, H.; Lin, X.; Chen, W. A facile route for constructing Cu–N–C peroxidase mimics. J. Mater. Chem. B 2020, 8, 8599–8606.

[33]

Chen, A.; Yu, X.; Zhou, Y.; Miao, S.; Li, Y.; Kuld, S.; Sehested, J.; Liu, J.; Aoki, T.; Hong, S. et al. Structure of the catalytically active copper–ceria interfacial perimeter. Nat. Catal. 2019, 2, 334–341.

[34]

Huang, F.; Deng, Y.; Chen, Y.; Cai, X.; Peng, M.; Jia, Z.; Xie, J.; Xiao, D.; Wen, X.; Wang, N. et al. Anchoring Cu1 species over nanodiamondgraphene for semi-hydrogenation of acetylene. Nat. Commun. 2019, 10, 4431.

[35]

Chen, S.; Li, W. -H.; Jiang, W.; Yang, J.; Zhu, J.; Wang, L.; Ou, H.; Zhuang, Z.; Chen, M.; Sun, X. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[36]

Wang, J.; Hei, T.; Zhu, B.; Tung, C. -W.; Yu, J.; Chen, H. M.; Antonietti, M.; Cao, S. A single Cu-center containing enzyme-mimic enabling full photosynthesis under CO2 reduction. ACS Nano 2020, 14, 8584–8593.

[37]

Long, R.; Li, Y.; Liu, Y.; Chen, S.; Zheng, X.; Gao, C.; He, C.; Chen, N.; Qi, Z.; Song, L. et al. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc. 2017, 139, 4486–4492.

[38]

Jiao, J.; Lin, R.; Liu, S.; Cheong, W. -C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J.; Wu, K.; Hung, S. -F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 11, 222–228.

[39]

Wang, Y.; Chen, Z.; Han, P.; Du, Y.; Gu, Z.; Xu, X.; Zheng, G. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 2018, 8, 7113–7119.

[40]

Jiao, Y.; Zheng, Y.; Chen, P.; Jaroniec, M.; Qiao, S. -Z. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J. Am. Chem. Soc. 2017, 139, 18093–18100.

[41]

Jia, L.; Yan, C.; Zhu, P.; Ma, C.; Wu, W.; Wei, C.; Shen, Y.; Chu, S.; Wang, J.; Du, Y. et al. One-pot synthesis of porous 1T-phase MoS2 integrated with single-atom Cu doping for enhancing electrocatalytic hydrogen evolution reaction. Appl. Catal. B: Environ. 2019, 251, 87–93.

[42]

Zhang, T.; Zhang, D.; Han, X.; Dong, T.; Guo, X.; Song, C.; Si, R.; Liu, W.; Liu, Y.; Zhao, Z. Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu−N3 sites for selective oxidation of benzene to phenol. J. Am. Chem. Soc. 2018, 140, 16936–16940.

[43]

Zhang, J.; Wang, Z.; Chen, W.; Xiong, Y.; Cheong, W. -C.; Zheng, L.; Yan, W.; Gu, L.; Chen, C.; Peng, Q. et al. Tuning polarity of Cu–O bond in heterogeneous Cu catalyst to promote additive-free hydroboration of alkynes. Chem 2020, 6, 725–737.

[44]

Xu, Q.; Guo, C.; Li, B.; Zhang, Z.; Qiu, Y.; Tian, S.; Zheng, L.; Gu, L.; Yan, W.; Wang, D. et al. Al3+ dopants induced Mg2+ vacancies stabilizing single-atom Cu catalyst for efficient free-radical hydrophosphinylation of alkenes. J. Am. Chem. Soc. 2022, 144, 4321–4326.

[45]

Xiong, Y.; Wang, S.; Chen, W.; Zhang, J.; Li, Q.; Hu, H. -S.; Zheng, L.; Yan, W.; Gu, L.; Wang, D. et al. Construction of dual-active-site copper catalyst containing both Cu-N3 and Cu-N4 sites. Small 2021, 17, 2006834.

[46]

Wang, M.; Zheng, X.; Qin, D.; Li, M.; Sun, K.; Liu, C.; Cheong, W. -C.; Liu, Z.; Chen, Y.; Liu, S. et al. Atomically dispersed CoN3C1-TeN1C3 diatomic sites anchored in N-doped carbon as efficient bifunctional catalyst for synergistic electrocatalytic hydrogen evolution and oxygen reduction. Small 2022, 18, 2201974.

[47]

Li, J. -C.; Zhong, H.; Xu, M.; Li, T.; Wang, L.; Shi, Q.; Feng, S.; Lyu, Z.; Liu, D.; Du, D. et al. Boosting the activity of Fe–Nx moieties in Fe–N–C electrocatalysts via phosphorus doping for oxygen reduction reaction. Sci. China Mater. 2020, 63, 965–971.

[48]

Pan, Y.; Chen, Y.; Wu, K.; Chen, Z.; Liu, S.; Cao, X.; Cheong, W. -C.; Meng, T.; Luo, J.; Zheng, L. et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun. 2019, 10, 4290.

[49]

Luo, F.; Zhu, J.; Ma, S.; Li, M.; Xu, R.; Zhang, Q.; Yang, Z.; Qu, K.; Cai, W.; Chen, Z. Regulated coordination environment of Ni single atom catalyst toward high-efficiency oxygen electrocatalysis for rechargeable zinc-air batteries. Energy Storage Mater. 2021, 35, 723–730.

[50]

Wan, J.; Zhao, Z.; Shang, H.; Peng, B.; Chen, W.; Pei, J.; Zheng, L.; Dong, J.; Cao, R.; Sarangi, R. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal−organic frameworks to design atomic Co1−P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431–8439.

[51]

Hou, Y.; Qiu, M.; Kim, G.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X.; Yang, B.; Cho, J.; Chen, M. et al. Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.

[52]

Chen, Y.; Gao, R.; Ji, S.; Li, H.; Tang, K.; Jiang, P.; Hu, H.; Zhang, Z.; Hao, H.; Qu, Q. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal–organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

[53]

Zhang, N.; Zhang, X.; Kang, Y.; Ye, C.; Jin, R.; Yan, H.; Lin, R.; Yang, J.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

[54]

Zhang, J.; Huang, Q.; Wang, J.; Wang, J.; Zhang, J.; Zhao, Y. Supported dual-atom catalysts: Preparation, characterization, and potential applications. Chin. J. Catal. 2020, 41, 783–798.

[55]

Cui, T.; Wang, Y. -P.; Ye, T.; Wu, J.; Chen, Z.; Li, J.; Lei, Y.; Wang, D.; Li, Y. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[56]

Chen, P.; Zhou, T.; Xing, L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L.; Yan, W.; Chu, W.; Wu, C. et al. Atomically dispersed iron–nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610–614.

[57]

Chen, S.; Chen, Z.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y.; Yan, X.; Nilsson, E. et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2018, 140, 7851–7859.

[58]

Shang, S.; Chen, P. -P.; Wang, L.; Lv, Y.; Li, W. -X.; Gao, S. Metal-free nitrogen- and boron-codoped mesoporous carbons for primary amides synthesis from primary alcohols via direct oxidative dehydrogenation. ACS Catal. 2018, 8, 9936–9944.

[59]

Schiros, T.; Nordlund, D.; Palova, L.; Zhao, L.; Levendorf, M.; Jaye, C.; Reichman, D. J.; Park, M.; Hybertsen, A.; Pasupathy. Atomistic interrogation of B−N Co-dopant structures and their electronic effects in graphene. ACS Nano 2016, 10, 6574–6584.

[60]

Wu, T.; Li, S.; Liu, S.; Cheong, W. -C.; Peng, C.; Yao, K.; Li, Y.; Wang, J.; Jiang, B.; Chen, Z. et al. Biomass-assisted approach for large-scale construction of multi-functional isolated single-atom site catalysts. Nano Res. 2022, 15, 3980–3990.

[61]

Briihwiler, P. A.; Maxwell, A. J.; Puglia, C.; Nilsson, A.; Andersson, S.; Mårtensson, N. π* and σ* excitons in C 1s absorption of graphite. Phys. Rev. Lett. 1995, 74, 614–617.

File
12274_2022_4862_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 July 2022
Revised: 02 August 2022
Accepted: 03 August 2022
Published: 16 September 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51902003, 22002085, 21771003, 21501004), the University Synergy Innovation Program of Anhui Province (No. GXXT-2021-020), the Anhui Province Natural Science Foundation (Nos. 2108085QB71 and 2008085QB53), the Natural Science Research Project of Anhui Province Education Department (No. KJ2019A0581), the Open Project of Key Laboratory of Metallurgical Emission Reduction & Resources Recycling of Ministry of Education (No. JKF21-03), the Open Foundation of Anhui Laboratory of Clean Catalytic Engineering (No. LCCE-01), and the Open Research Funds of Jiangxi Province Engineering Research Center of Ecological Chemical Industry (STKF2109). We acknowledge the 1W1B beamline station of Beijing Synchrotron Radiation Facility (BSRF), the Institute of Physics of Chinese Academy of Sciences, and the National Synchrotron Radiation Laboratory (NSRL) of Hefei. We also thank Prof. L. R. Zheng, Prof. W. S. Yan, and Prof. Q. H. Zhang for their help in catalyst characterizations. Thanks to Prof. C. Chen and Dr. W. -C. Cheong of Tsinghua University for their help in materials characterizations.

Return