Journal Home > Volume 16 , Issue 2

In heterogeneous catalytic reactions, supported metal catalysts have attracted increasing attention for the environmental remediation and industrial manufacture due to their inherent catalytic capacity. However, leaching, agglomeration, and poisoning of active metal particles lead to catalyst deactivation, thereby limiting their applications. To avoid this, strategies to protect the active metals from such inactivating processes are major areas of research. Emerging encapsulation strategies, in which active species are coated by protective shells, have proven to be a powerful technology to enhance catalytic performance by creating a well-developed structure about the active catalytic sites. This review highlights the recent advances on preparation method and application of encapsulated catalysts since 2016. Building upon the traditional confinement effect, new categories and extended concepts of encapsulation are introduced. In parallel, effects of encapsulation structure on performance and key factors controlling the structure of encapsulated catalyst are discussed definitely in this review. Finally, future perspectives on opportunities and challenges for further research in the field are given at the end of this paper.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Recent advances on the construction of encapsulated catalyst for catalytic applications

Show Author's information Minghui Li1,2Yaning Yang1Dailiang Yu1Wenwen Li1Xin Ning3Rui Wan1Hongjie Zhu4Junjie Mao2( )
School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China

Abstract

In heterogeneous catalytic reactions, supported metal catalysts have attracted increasing attention for the environmental remediation and industrial manufacture due to their inherent catalytic capacity. However, leaching, agglomeration, and poisoning of active metal particles lead to catalyst deactivation, thereby limiting their applications. To avoid this, strategies to protect the active metals from such inactivating processes are major areas of research. Emerging encapsulation strategies, in which active species are coated by protective shells, have proven to be a powerful technology to enhance catalytic performance by creating a well-developed structure about the active catalytic sites. This review highlights the recent advances on preparation method and application of encapsulated catalysts since 2016. Building upon the traditional confinement effect, new categories and extended concepts of encapsulation are introduced. In parallel, effects of encapsulation structure on performance and key factors controlling the structure of encapsulated catalyst are discussed definitely in this review. Finally, future perspectives on opportunities and challenges for further research in the field are given at the end of this paper.

Keywords: heterogeneous catalysis, catalyst design, catalytic performance, encapsulated catalyst, deactivation

References(220)

[1]

Vogt, C.; Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 2022, 6, 89–111.

[2]

Mao, J. J.; Li, J.; Pei, J. J.; Liu, Y.; Wang, D. S.; Li, Y. D. Structure regulation of noble-metal-based nanomaterials at an atomic level. Nano Today 2019, 26, 164–175.

[3]

Deng, L. M.; Hu, F.; Ma, M. Y.; Huang, S. C.; Xiong, Y. X.; Chen, H. Y.; Li, L. L.; Peng, S. J. Electronic modulation caused by interfacial Ni–O–M (M = Ru, Ir, Pd) bonding for accelerating hydrogen evolution kinetics. Angew. Chem., Int. Ed. 2021, 60, 22276–22282.

[4]

Mao, J. J.; Yin, J. S.; Pei, J. J.; Wang, D. S.; Li, Y. D. Single atom alloy: An emerging atomic site material for catalytic applications. Nano Today 2020, 34, 100917.

[5]

Wu, D.; Zhang, S. W.; Hernández, W. Y.; Baaziz, W.; Ersen, O.; Marinova, M.; Khodakov, A. Y.; Ordomsky, V. V. Dual metal–acid Pd-Br catalyst for selective hydrodeoxygenation of 5-hydroxymethylfurfural (HMF) to 2, 5-dimethylfuran at ambient temperature. ACS Catal. 2021, 11, 19–30.

[6]

Mao, J. J.; He, C. T.; Pei, J. J.; Chen, W. X.; He, D. S.; He, Y. Q.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Wang, D. S. et al. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun. 2018, 9, 4958.

[7]

Saveleva, V. A.; Ebner, K.; Ni, L. M.; Smolentsev, G.; Klose, D.; Zitolo, A.; Marelli, E.; Li, J. K.; Medarde, M.; Safonova, O. V. et al. Potential-induced spin changes in Fe/N/C electrocatalysts assessed by in situ X-ray emission spectroscopy. Angew. Chem., Int. Ed. 2021, 60, 11707–11712.

[8]

Wang, G.; Huang, R.; Zhang, J. W.; Mao, J. J.; Wang, D. S.; Li, Y. D. Synergistic modulation of the separation of photo-generated carriers via engineering of dual atomic sites for promoting photocatalytic performance. Adv. Mater. 2021, 33, 2105904.

[9]

Zhou, M.; Jiang, Y.; Wang, G.; Wu, W. J.; Chen, W. X.; Yu, P.; Lin, Y. Q.; Mao, J. J.; Mao, L. Q. Single-atom Ni-N4 provides a robust cellular NO sensor. Nat. Commun. 2020, 11, 3188.

[10]

Zhang, J. T.; Zhang, Z.; Ji, Y. F.; Yang, J. D.; Fan, K.; Ma, X. Z.; Wang, C.; Shu, R. Y.; Chen, Y. Surface engineering induced hierarchical porous Ni12P5-Ni2P polymorphs catalyst for efficient wide pH hydrogen production. Appl. Catal. B Environ. 2021, 282, 119609.

[11]

Xia, H.; Xie, Q. F.; Tian, Y. H.; Chen, Q.; Wen, M.; Zhang, J. L.; Wang, Y.; Tang, Y. P.; Zhang, S. Q. High-efficient CoPt/activated functional carbon catalyst for Li-O2 batteries. Nano Energy 2021, 84, 105877.

[12]

Zhao, Y. X.; Jalal, A.; Uzun, A. Interplay between copper nanoparticle size and oxygen vacancy on Mg-doped ceria controls partial hydrogenation performance and stability. ACS Catal. 2021, 11, 8116–8131.

[13]

Xiong, Y.; Zhao, Y. M.; Qi, X. K.; Qi, J. Y.; Cui, Y. Y.; Yu, H. B.; Cao, Y. Strong structural modification of Gd to Co3O4 for catalyzing N2O decomposition under simulated real tail gases. Environ. Sci. Technol. 2021, 55, 13335–13344.

[14]

Long, X. X.; Yang, S. J.; Qiu, X. J.; Ding, D. H.; Feng, C. P.; Chen, R. Z.; Tan, J. H.; Wang, X. M.; Chen, N.; Lei, Q. Heterogeneous activation of peroxymonosulfate for bisphenol A degradation using CoFe2O4 derived by hybrid cobalt-ion hexacyanoferrate nanoparticles. Chem. Eng. J. 2021, 404, 127052.

[15]

Min, K.; Hwang, M.; Shim, S. E.; Lim, D.; Baeck, S. H. Defect-rich Fe-doped Co3O4 derived from bimetallic-organic framework as an enhanced electrocatalyst for oxygen evolution reaction. Chem. Eng. J. 2021, 424, 130400.

[16]

Chen, S. H.; Wang, B. Q.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhang, Z. D.; Liang, X.; Zheng, L. R.; Zhou, L.; Su, Y. Q. et al. Lewis acid site-promoted single-atomic Cu catalyzes electrochemical CO2 methanation. Nano Lett. 2021, 21, 7325–7331.

[17]

Li, R.; Zhu, Y. J.; Zhang, Z. P.; Zhang, C. Q.; Fu, G. Y.; Yi, X. F.; Huang, Q. T.; Yang, F.; Liang, W. C.; Zheng, A. M. et al. Remarkable performance of selective catalytic reduction of NOx by ammonia over copper-exchanged SSZ-52 catalysts. Appl. Catal. B: Environ. 2021, 283, 119641.

[18]

Yan, P. H.; Kennedy, E.; Stockenhuber, M. Hydrodeoxygenation of guiacol over ion-exchanged ruthenium ZSM-5 and BEA zeolites. J. Catal. 2021, 396, 157–165.

[19]

Kale, M. B.; Borse, R. A.; Mohamed, A. G. A.; Wang, Y. B. Electrocatalysts by electrodeposition: Recent advances, synthesis methods, and applications in energy conversion. Adv. Funct. Mater. 2021, 31, 2101313.

[20]

Yang, H.; Liu, X. L.; Hao, M. J.; Xie, Y. H.; Wang, X. K.; Tian, H.; Waterhouse, G. I. N.; Kruger, P. E.; Telfer, S. G.; Ma, S. Q. Functionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Adv. Mater. 2021, 33, 2106621.

[21]

Metzger, K. E.; Moyer, M. M.; Trewyn, B. G. Tandem catalytic systems integrating biocatalysts and inorganic catalysts using functionalized porous materials. ACS Catal. 2021, 11, 110–122.

[22]

Lin, B. Y.; Fang, B. Y.; Wu, Y. Y.; Li, C. Y.; Ni, J.; Wang, X. Y.; Lin, J. X.; Au, C. T.; Jiang, L. L. Enhanced ammonia synthesis activity of ceria-supported ruthenium catalysts induced by CO activation. ACS Catal. 2021, 11, 1331–1339.

[23]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[24]

Hyun, K.; Park, Y.; Lee, S.; Lee, J.; Choi, Y.; Shin, S. J.; Kim, H.; Choi, M. Tailoring a dynamic metal−polymer interaction to improve catalyst selectivity and longevity in hydrogenation. Angew. Chem., Int. Ed. 2021, 60, 12482–12489.

[25]

Li, R. Z.; Wang, D. S. Understanding the structure−performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[26]

Kim, J.; Choi, H.; Kim, D.; Park, J. Y. Operando surface studies on metal–oxide interfaces of bimetal and mixed catalysts. ACS Catal. 2021, 11, 8645–8677.

[27]

Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

[28]

Zhou, J.; Wu, K.; Wang, W. J.; Han, Y. X.; Xu, Z. Y.; Wan, H. Q.; Zheng, S. R.; Zhu, D. Q. Simultaneous removal of monochloroacetic acid and bromate by liquid phase catalytic hydrogenation over Pd/Ce1−xZrxO2. Appl. Catal. B: Environ. 2015, 162, 85–92.

[29]

Liu, H.; Yu, Q.; Fu, H. Y.; Wan, Y. Q.; Qu, X. L.; Xu, Z. Y.; Yin, D. Q.; Zheng, S. R. Pt supported on ordered microporous carbon as highly active catalyst for catalytic hydrodeiodination of iodinated X-ray contrast media. Appl. Catal. B Environ. 2018, 222, 167–175.

[30]

Islam, M. J.; Granollers Mesa, M.; Osatiashtiani, A.; Taylor, M. J.; Manayil, J. C.; Parlett, C. M. A.; Isaacs, M. A.; Kyriakou, G. The effect of metal precursor on copper phase dispersion and nanoparticle formation for the catalytic transformations of furfural. Appl. Catal. B: Environ. 2020, 273, 119062.

[31]

Kuljiraseth, J.; Wangriya, A.; Malones, J. M. C.; Klysubun, W.; Jitkarnka, S. Synthesis and characterization of AMO LDH-derived mixed oxides with various Mg/Al ratios as acid basic catalysts for esterification of benzoic acid with 2-ethylhexanol. Appl. Catal. B: Environ. 2019, 243, 415–427.

[32]

Wang, C. Y.; Li, Y. B.; Zheng, L. R.; Zhang, C. B.; Wang, Y.; Shan, W. P.; Liu, F. D.; He, H. A nonoxide catalyst system study: Alkali metal-promoted Pt/AC catalyst for formaldehyde oxidation at ambient temperature. ACS Catal. 2021, 11, 456–465.

[33]

Wang, S. H.; Feng, K.; Zhang, D. K.; Yang, D. R.; Xiao, M. Q.; Zhang, C. C.; He, L.; Yan, B. H.; Ozin, G. A.; Sun, W. Stable Cu catalysts supported by two-dimensional SiO2 with strong metal–support interaction. Adv. Sci. 2022, 9, 2104972.

[34]

Drzymała, E.; Gruzeł, G.; Depciuch, J.; Pawlyta, M.; Donten, M.; Parlinska-Wojtan, M. Ternary Pt/Re/SnO2/C catalyst for EOR: Electrocatalytic activity and durability enhancement. Nano Res. 2020, 13, 832–842.

[35]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[36]

Yang, F.; Zhao, H. F.; Wang, W.; Wang, L.; Zhang, L.; Liu, T. H.; Sheng, J.; Zhu, S.; He, D. S.; Lin, L. L. et al. Atomic origins of the strong metal–support interaction in silica supported catalysts. Chem. Sci. 2021, 12, 12651–12660.

[37]

Liu, B. Y.; Huang, N.; Wang, Y.; Lan, X. C.; Wang, T. F. Promotion of inorganic phosphorus on Rh catalysts in styrene hydroformylation: Geometric and electronic effects. ACS Catal. 2021, 11, 1787–1796.

[38]

Feng, S. Q.; Lin, X. S.; Song, X. G.; Mei, B. B.; Mu, J. L.; Li, J. W.; Liu, Y.; Jiang, Z.; Ding, Y. J. Constructing efficient single Rh sites on activated carbon via surface carbonyl groups for methanol carbonylation. ACS Catal. 2021, 11, 682–690.

[39]

Preikschas, P.; Plodinec, M.; Bauer, J.; Kraehnert, R.; Naumann d’Alnoncourt, R.; Schlögl, R.; Driess, M.; Rosowski, F. Tuning the Rh-FeOx interface in ethanol synthesis through formation phase studies at high pressures of synthesis gas. ACS Catal. 2021, 11, 4047–4060.

[40]

Li, C. C.; Nakagawa, Y.; Tamura, M.; Nakayama, A.; Tomishige, K. Hydrodeoxygenation of guaiacol to phenol over ceria-supported iron catalysts. ACS Catal. 2020, 10, 14624–14639.

[41]

Wang, C. Y.; Li, Y. B.; Zhang, C. B.; Chen, X. Y.; Liu, C. L.; Weng, W. Z.; Shan, W. P.; He, H. A simple strategy to improve Pd dispersion and enhance Pd/TiO2 catalytic activity for formaldehyde oxidation: The roles of surface defects. Appl. Catal. B: Environ. 2020, 282, 119540.

[42]

Yao, J. X.; Zhou, Y. T.; Yan, J. M.; Jiang, Q. Regulating Fe2(MoO4)3 by Au nanoparticles for efficient N2 electroreduction under ambient conditions. Adv. Energy Mater. 2021, 11, 2003701.

[43]

Zhou, Y. D.; Liu, L.; Li, G. Y.; Hu, C. W. Insights into the influence of ZrO2 crystal structures on methyl laurate hydrogenation over Co/ZrO2 catalysts. ACS Catal. 2021, 11, 7099–7113.

[44]

Jiang, Q.; Luo, W.; Piao, Y. A.; Matsumoto, H.; Liu, X.; Züttel, A.; Parkhomenko, K.; Pham-Huu, C.; Liu, Y. F. Surface oxygenate species on TiC reinforce cobalt-catalyzed Fischer–Tropsch synthesis. ACS Catal. 2021, 11, 8087–8096.

[45]

Saad, A.; Liu, D. Q.; Wu, Y. C.; Song, Z. Q.; Li, Y.; Najam, T.; Zong, K.; Tsiakaras, P.; Cai, X. K. Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance. Appl. Catal. B: Environ. 2021, 298, 120529.

[46]

De Coster, V.; Srinath, N. V.; Theofanidis, S. A.; Pirro, L.; Van Alboom, A.; Poelman, H.; Sabbe, M. K.; Marin, G. B.; Galvita, V. V. Looking inside a Ni-Fe/MgAl2O4 catalyst for methane dry reforming via Mössbauer spectroscopy and in situ QXAS. Appl. Catal. B: Environ. 2022, 300, 120720.

[47]

Chae, I. S.; Kang, S. W.; Park, J. Y.; Lee, Y. G.; Lee, J. H.; Won, J.; Kang, Y. S. Surface energy-level tuning of silver nanoparticles for facilitated olefin transport. Angew. Chem., Int. Ed. 2011, 50, 2982–2985.

[48]

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

[49]

Weber, S.; Batey, D.; Cipiccia, S.; Stehle, M.; Abel, K. L.; Gläser, R.; Sheppard, T. L. Hard X-ray nanotomography for 3D analysis of coking in nickel-based catalysts. Angew. Chem., Int. Ed. 2021, 60, 21772–21777.

[50]

Cui, J. Y.; Chen, Q. J.; Li, X. J.; Zhang, S. J. Recent advances in non-precious metal electrocatalysts for oxygen reduction in acidic media and PEMFCs: An activity, stability and mechanism study. Green Chem. 2021, 23, 6898–6925.

[51]

Lian, Z.; Si, C. W.; Jan, F.; Zhi, S. K.; Li, B. Coke deposition on Pt-based catalysts in propane direct dehydrogenation: Kinetics, suppression, and elimination. ACS Catal. 2021, 11, 9279–9292.

[52]

Ledendecker, M.; Mondschein, J. S.; Kasian, O.; Geiger, S.; Göhl, D.; Schalenbach, M.; Zeradjanin, A.; Cherevko, S.; Schaak, R. E.; Mayrhofer, K. Stability and activity of non-noble-metal-based catalysts toward the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 9767–9771.

[53]

Zhao, J. X.; Matsune, H.; Takenaka, S.; Kishida, M. Reduction of selenate with hydrazine monohydrate over Pt catalysts in aqueous solution. Chem. Eng. J. 2017, 308, 963–973.

[54]

Ochoa, A.; Bilbao, J.; Gayubo, A. G.; Castaño, P. Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review. Renew. Sustainable Energy Rev. 2020, 119, 109600.

[55]

Hammarback, L. A.; Robinson, A.; Lynam, J. M.; Fairlamb, I. J. S. Mechanistic insight into catalytic redox-neutral C–H bond activation involving manganese(I) carbonyls: Catalyst activation, turnover, and deactivation pathways reveal an intricate network of steps. J. Am. Chem. Soc. 2019, 141, 2316–2328.

[56]

Jiang, K. M.; Han, S. T.; Ma, M. Y.; Zhang, L.; Zhao, Y. C.; Chen, M. Photoorganocatalyzed reversible-deactivation alternating copolymerization of chlorotrifluoroethylene and vinyl ethers under ambient conditions: Facile access to main-chain fluorinated copolymers. J. Am. Chem. Soc. 2020, 142, 7108–7115.

[57]

Goodman, E. D.; Schwalbe, J. A.; Cargnello, M. Mechanistic understanding and the rational design of sinter-resistant heterogeneous catalysts. ACS Catal. 2017, 7, 7156–7173.

[58]

Zhang, L. Q.; Wan, S.; Jiang, Y.; Wang, Y. Y.; Fu, T.; Liu, Q. L.; Cao, Z. J.; Qiu, L. P.; Tan, W. H. Molecular elucidation of disease biomarkers at the interface of chemistry and biology. J. Am. Chem. Soc. 2017, 139, 2532–2540.

[59]

Otor, H. O.; Steiner, J. B.; García-Sancho, C.; Alba-Rubio, A. C. Encapsulation methods for control of catalyst deactivation: A review. ACS Catal. 2020, 10, 7630–7656.

[60]

Wang, J.; Dong, X.; Liu, J.; Li, W. Z.; Roling, L. T.; Xiao, J. P.; Jiang, L. H. Ultrafine nickel nanoparticles encapsulated in N-doped carbon promoting hydrogen oxidation reaction in alkaline media. ACS Catal. 2021, 11, 7422–7428.

[61]

Liu, G. G.; Zhou, W.; Ji, Y. R.; Chen, B.; Fu, G. T.; Yun, Q. B.; Chen, S. M.; Lin, Y. X.; Yin, P. F.; Cui, X. Y. et al. Hydrogen-intercalation-induced lattice expansion of Pd@Pt core–shell nanoparticles for highly efficient electrocatalytic alcohol oxidation. J. Am. Chem. Soc. 2021, 143, 11262–11270.

[62]

Gao, C. B.; Lyu, F. L.; Yin, Y. D. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 2021, 121, 834–881.

[63]

Li, S. R.; Gong. J. L. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions. Chem. Soc. Rev. 2014, 43, 7245–7256.

[64]

Song, K. F.; Ai, W.; Zhang, Y.; Zeng, Y. T.; Yu, Y. W.; Qiao, H. D.; Liu, Z. Y.; Shen, X. D.; Hu, X. H.; Hu, X. L. Three-dimensional self-supported CuCo2O4 nanowires@NiO nanosheets core/shell arrays as an oxygen electrode catalyst for Li-O2 batteries. J. Mater. Chem. A 2021, 9, 3007–3017.

[65]

Prieto, M. J.; Mullan, T.; Schlutow, M.; Gottlob, D. M.; Tănase, L. C.; Menzel, D.; Sauer, J.; Usvyat, D.; Schmidt, T.; Freund, H. J. Insights into reaction kinetics in confined space: Real time observation of water formation under a silica cover. J. Am. Chem. Soc. 2021, 143, 8780–8790.

[66]

Amatov, T.; Tsuji, N.; Maji, R.; Schreyer, L.; Zhou, H.; Leutzsch, M.; List, B. Confinement-controlled, either syn- or anti-selective catalytic asymmetric Mukaiyama aldolizations of propionaldehyde enolsilanes. J. Am. Chem. Soc. 2021, 143, 14475–14481.

[67]

Li, M. H.; Hu, Y.; Fu, H. Y.; Qu, X. L.; Xu, Z. Y.; Zheng, S. R. Pt embedded in carbon rods of N-doped CMK-3 as a highly active and stable catalyst for catalytic hydrogenation reduction of bromate. Chem. Commun. 2019, 55, 11786–11789.

[68]

Cho, H. J.; Kim, D.; Li, S.; Su, D.; Ma, D.; Xu, B. J. Molecular-level proximity of metal and acid sites in zeolite-encapsulated Pt nanoparticles for selective multistep tandem catalysis. ACS Catal. 2020, 10, 3340–3348.

[69]

Fu, T.; Wang, M.; Cai, W. M.; Cui, Y. M.; Gao, F.; Peng, L. M.; Chen, W.; Ding, W. P. Acid-resistant catalysis without use of noble metals: Carbon nitride with underlying nickel. ACS Catal. 2014, 4, 2536–2543.

[70]

Geng, H. Y.; Peng, Y.; Qu, L. T.; Zhang, H. J.; Wu, M. H. Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv. Energy Mater. 2020, 10, 1903030.

[71]

Lei, Q.; Guo, J. M.; Noureddine, A.; Wang, A. X.; Wuttke, S.; Brinker, C. J.; Zhu, W. Sol–gel-based advanced porous silica materials for biomedical applications. Adv. Funct. Mater. 2020, 30, 1909539.

[72]

Wei, X. Y.; Zhang, W. F.; Yu, G. Semiconducting polymers based on isoindigo and its derivatives: Synthetic tactics, structural modifications, and applications. Adv. Funct. Mater. 2021, 31, 2010979.

[73]

Wan, X.; Miao, X.; Yao, J.; Wang, S.; Shao, F.; Xiao, S. Q.; Zhan, R. Z.; Chen, K.; Zeng, X. L.; Gu, X. F. et al. In situ ultrafast and patterned growth of transition metal dichalcogenides from inkjet-printed aqueous precursors. Adv. Mater. 2021, 33, 2100260.

[74]

Zhang, J. C.; Lin, L.; Jia, K. C.; Sun, L. Z.; Peng, H. L.; Liu, Z. F. Controlled growth of single-crystal graphene films. Adv. Mater. 2020, 32, 1903266.

[75]

Zhang, J.; Tan, B. Y.; Zhang, X.; Gao, F.; Hu, Y. X.; Wang, L. F.; Duan, X. M.; Yang, Z. H.; Hu, P. A. Atomically thin hexagonal boron nitride and its heterostructures. Adv. Mater. 2021, 33, 2000769.

[76]

Kang, M.; Chai, H. J.; Jeong, H. B.; Park, C.; Jung, I. Y.; Park, E.; Çiçek, M. M.; Lee, I.; Bae, B. S.; Durgun, E. et al. Low-temperature and high-quality growth of Bi2O2Se layered semiconductors via cracking metal–organic chemical vapor deposition. ACS Nano 2021, 15, 8715–8723.

[77]

Kim, S. Y.; Kwak, J.; Ciobanu, C. V.; Kwon, S. Y. Recent developments in controlled vapor-phase growth of 2D group 6 transition metal dichalcogenides. Adv. Mater. 2019, 31, 1804939.

[78]

Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.

[79]

Novikov, I. V.; Khabushev, E. M.; Krasnikov, D. V.; Bubis, A. V.; Goldt, A. E.; Shandakov, S. D.; Nasibulin, A. G. Residence time effect on single-walled carbon nanotube synthesis in an aerosol CVD reactor. Chem. Eng. J. 2021, 420, 129869.

[80]

Wu, Y. G.; Zhu, X. B.; Wan, W. H.; Man, Z. N.; Wang, Y.; Lü, Z. Advanced engineering for cathode in lithium-oxygen batteries: Flexible 3D hierarchical porous architecture design and its functional modification. Adv. Funct. Mater. 2021, 31, 2105664.

[81]

Yang, F.; Wang, M.; Zhang, D. Q.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev. 2020, 120, 2693–2758.

[82]

Toh, C. T.; Zhang, H. J.; Lin, J. H.; Mayorov, A. S.; Wang, Y. P.; Orofeo, C. M.; Ferry, D. B.; Andersen, H.; Kakenov, N.; Guo, Z. L. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 2020, 577, 199–203.

[83]

Zeiger, M.; Jäckel, N.; Mochalin, V. N.; Presser, V. Review: Carbon onions for electrochemical energy storage. J. Mater. Chem. A 2016, 4, 3172–3196.

[84]

Li, T. S.; Luo, W. J.; Kitadai, H.; Wang, X. Z.; Ling, X. Probing the domain architecture in 2D α-Mo2C via polarized Raman spectroscopy. Adv. Mater. 2019, 31, 1807160.

[85]

Zhou, J. J.; Wang, X. Y.; Ge, K. Y.; Yang, Z. Y.; Li, H. Q.; Guo, C. F.; Wang, J. Y.; Shan, Q.; Xia, L. Core–shell structured nanocomposites formed by silicon coated carbon nanotubes with anti-oxidation and electromagnetic wave absorption. J. Colloid Interface Sci. 2022, 607, 881–889.

[86]

Jo, C.; Groombridge, A. S.; De La Verpilliere, J.; Lee, J. T.; Son, Y.; Liang, H. L.; Boies, A. M.; De Volder, M. Continuous-flow synthesis of carbon-coated silicon/iron silicide secondary particles for Li-ion batteries. ACS Nano 2020, 14, 698–707.

[87]

Ahmad, S.; Mustonen, K.; McLean, B.; Jiang, H.; Zhang, Q.; Hussain, A.; Khan, A. T.; Ding, E. X.; Liao, Y. P.; Wei, N. et al. Hybrid low-dimensional carbon allotropes formed in gas phase. Adv. Funct. Mater. 2020, 30, 2005016.

[88]

Li, Y.; Sha, J. W.; Sui, S.; Salvatierra, R. V.; Ma, L. Y.; Shi, C. S.; Liu, E. Z.; He, C. N.; Zhao, N. Q. W clusters in situ assisted synthesis of layered carbon nanotube arrays on graphene achieving high-rate performance. ACS Appl. Mater. Interfaces 2021, 13, 19117–19127.

[89]

Chen, W. Q.; Xiao, P. S.; Chen, H. H.; Zhang, H. T.; Zhang, Q. C.; Chen, Y. S. Polymeric graphene bulk materials with a 3D cross-linked monolithic graphene network. Adv. Mater. 2019, 31, 1802403.

[90]

Seipenbusch, M.; Binder, A. Structural stabilization of metal nanoparticles by chemical vapor deposition-applied silica coatings. J. Phys. Chem. C 2009, 113, 20606–20610.

[91]

Ren, B.; Liu, J. J.; Rong, Y. D.; Wang, L.; Lu, Y. J.; Xi, X. Q.; Yang, J. L. Nanofibrous aerogel bulk assembled by cross-linked SiC/SiOx core–shell nanofibers with multifunctionality and temperature-invariant hyperelasticity. ACS Nano 2019, 13, 11603–11612.

[92]

Yang, T.; Thomas, A. M.; Dangi, B. B.; Kaiser, R. I.; Mebel, A. M.; Millar, T. J. Directed gas phase formation of silicon dioxide and implications for the formation of interstellar silicates. Nat. Commun. 2018, 9, 774.

[93]

Way, A. J.; Jacobberger, R. M.; Guisinger, N. P.; Saraswat, V.; Zheng, X. Q.; Suresh, A.; Dwyer, J. H.; Gopalan, P.; Arnold, M. S. Graphene nanoribbons initiated from molecularly derived seeds. Nat. Commun. 2022, 13, 2992.

[94]

Hussainova, I.; Ivanov, R.; Stamatin, S. N.; Anoshkin, I. V.; Skou, E. M.; Nasibulin, A. G. A few-layered graphene on alumina nanofibers for electrochemical energy conversion. Carbon 2015, 88, 157–164.

[95]

Wang, F.; Wang, B.; Ruan, T. T.; Gao, T. T.; Song, R. S.; Jin, F.; Zhou, Y.; Wang, D. L.; Liu, H. K.; Dou, S. X. Construction of structure-tunable Si@Void@C anode materials for lithium-ion batteries through controlling the growth kinetics of resin. ACS Nano 2019, 13, 12219–12229.

[96]

Qin, L.; Ru, R.; Mao, J. W.; Meng, Q.; Fan, Z.; Li, X.; Zhang, G. L. Assembly of MOFs/polymer hydrogel derived Fe3O4-CuO@hollow carbon spheres for photochemical oxidation: Freezing replacement for structural adjustment. Appl. Catal. B: Environ. 2020, 269, 118754.

[97]

Zhou, L.; Zhuang, Z. C.; Zhao, H. H.; Lin, M. T.; Zhao, D. Y.; Mai, L. Q. Intricate hollow structures: Controlled synthesis and applications in energy storage and conversion. Adv. Mater. 2017, 29, 1602914.

[98]

Zhang, C. F.; Park, G.; Lee, B. J.; Xia, L.; Miao, H.; Yuan, J. L.; Yu, J. S. Self-templated formation of fluffy graphene-wrapped Ni5P4 hollow spheres for Li-ion battery anodes with high cycling stability. ACS Appl. Mater. Interfaces 2021, 13, 23714–23723.

[99]

Phaahlamohlaka, T. N.; Kumi, D. O.; Dlamini, M. W.; Jewell, L. L.; Coville, N. J. Ruthenium nanoparticles encapsulated inside porous hollow carbon spheres: A novel catalyst for Fischer–Tropsch synthesis. Catal. Today 2016, 275, 76–83.

[100]

Zhang, P. F.; Qiao, Z. A.; Dai, S. Recent advances in carbon nanospheres: Synthetic routes and applications. Chem. Commun. 2015, 51, 9246–9256.

[101]

Hu, J.; Yuan, C. G.; Zhi, L. P.; Zhang, H. M.; Yuan, Z. Z.; Li. X. F. In situ defect-free vertically aligned layered double hydroxide composite membrane for high areal capacity and long-cycle zinc-based flow battery. Adv. Funct. Mater. 2021, 31, 2102167.

[102]

Zhang, X. Y.; Zhu, T. T.; Ji, C. M.; Yao, Y. P.; Luo, J. H. In situ epitaxial growth of centimeter-sized lead-free (BA)2CsAgBiBr7/Cs2AgBiBr6 heterocrystals for self-driven X-ray detection. J. Am. Chem. Soc. 2021, 143, 20802–20810.

[103]

Li, N.; Pranantyo, D.; Kang, E. T.; Wright, D. S.; Luo, H. K. In situ self-assembled polyoxotitanate cages on flexible cellulosic substrates: Multifunctional coating for hydrophobic, antibacterial, and UV-blocking applications. Adv. Funct. Mater. 2018, 28, 1800345.

[104]

Chen, C. C.; Xie, M.; Kong, L. S.; Lu, W. H.; Feng, Z. Y.; Zhan, J. H. Mn3O4 nanodots loaded g-C3N4 nanosheets for catalytic membrane degradation of organic contaminants. J. Hazard. Mater. 2020, 390, 122146.

[105]

Sun, N.; Liu, Q. S.; Cao, Y.; Lou, S. F.; Ge, M. Y.; Xiao, X. H.; Lee, W. K.; Gao, Y. Z.; Yin, G. P.; Wang, J. J. et al. Anisotropically electrochemical–mechanical evolution in solid-state batteries and interfacial tailored strategy. Angew. Chem. 2019, 13, 18820–18826.

[106]

Wang, J. G.; Liang, H.; Zhang, C.; Jin, B.; Men, Y. Bi2WO6−x nanosheets with tunable Bi quantum dots and oxygen vacancies for photocatalytic selective oxidation of alcohols. Appl. Catal. B: Environ. 2019, 256, 117874.

[107]

Puche, M.; Liu, L. C.; Concepción, P.; Sorribes, I.; Corma, A. Tuning the catalytic performance of cobalt nanoparticles by tungsten doping for efficient and selective hydrogenation of quinolines under mild conditions. ACS Catal. 2021, 11, 8197–8210.

[108]

Mondal, I.; Lee, H.; Kim, H.; Park, J. Y. Plasmon-induced hot carrier separation across dual interface in gold–nickel phosphide heterojunction for photocatalytic water splitting. Adv. Funct. Mater. 2020, 30, 1908239.

[109]

Li, M. S.; Zhong, L. X.; Chen, W.; Huang, Y. M.; Chen, Z. X.; Xiao, D. Q.; Zou, R.; Chen, L.; Hao, Q.; Liu, Z. H. et al. Regulating the electron−hole separation to promote selective oxidation of biomass using ZnS@Bi2S3 nanosheet catalyst. Appl. Catal. B: Environ. 2021, 292, 120180.

[110]

Chen, H. X.; Zhang, R. D.; Wang, H.; Bao, W. J.; Wei, Y. Encapsulating uniform Pd nanoparticles in TS-1 zeolite as efficient catalyst for catalytic abatement of indoor formaldehyde at room temperature. Appl. Catal. B: Environ. 2020, 278, 119311.

[111]

Dai, Q. G.; Bai, S. X.; Lou, Y.; Wang, X. Y.; Guo, Y.; Lu, G. Z. Sandwich-like PdO/CeO2 nanosheet@HZSM-5 membrane hybrid composite for methane combustion: Self-redispersion, sintering-resistance and oxygen, water-tolerance. Nanoscale 2016, 8, 9621–9628.

[112]

Li, M. H.; Sun, Y. H.; Tang, Y. Q.; Sun, J. Y.; Xu, Z. Y.; Zheng, S. R. Efficient removal and recovery of copper by liquid phase catalytic hydrogenation using highly active and stable carbon-coated Pt catalyst supported on carbon nanotube. J. Hazard. Mater. 2020, 388, 121745.

[113]

Evans, A. M.; Parent, L. R.; Flanders, N. C.; Bisbey, R. P.; Vitaku, E.; Kirschner, M. S.; Schaller, R. D.; Chen, L. X.; Gianneschi, N. C.; Dichtel, W. R. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 2018, 361, 52–57.

[114]

Wu, C. Y.; Liu, Y. M.; Liu, H.; Duan, C. H.; Pan, Q. Y.; Zhu, J.; Hu, F.; Ma, X. Y.; Jiu, T. G.; Li, Z. B. et al. Highly conjugated three-dimensional covalent organic frameworks based on spirobifluorene for perovskite solar cell enhancement. J. Am. Chem. Soc. 2018, 140, 10016–10024.

[115]

Wu, X. Y.; Wu, H. Y.; Xie, B.; Wang, R.; Wang, J. M.; Wang, D. G.; Shi, Q. F.; Diao, G. W.; Chen, M. Atomic welded dual-wall hollow nanospheres for three-in-one hybrid storage mechanism of alkali metal ion batteries. ACS Nano 2021, 15, 14125–14136.

[116]

Liu, J.; Yu, Y.; Qi, R. L.; Cao, C. Y.; Liu, X. Y.; Zheng, Y. J.; Song, W. G. Enhanced electron separation on in-plane benzene-ring doped g-C3N4 nanosheets for visible light photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2019, 244, 459–464.

[117]

Zhang, W.; Ou, J.; Wang, B.; Wang, H. Y.; He, Q. L.; Song, J. Y.; Zhang, H. N.; Tang, M. Y.; Zhou, L. A.; Gao, Y. et al. Efficient heavy metal removal from water by alginate-based porous nanocomposite hydrogels: The enhanced removal mechanism and influencing factor insight. J. Hazard. Mater. 2021, 418, 126358.

[118]

Zhang, Z. C. Y.; Xi, B. J.; Wang, X.; Ma, X. J.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Oxygen defects engineering of VO2·xH2O nanosheets via in situ polypyrrole polymerization for efficient aqueous zinc ion storage. Adv. Funct. Mater. 2021, 31, 2103070.

[119]

Seid, L.; Lakhdari, D.; Berkani, M.; Belgherbi, O.; Chouder, D.; Vasseghian, Y.; Lakhdari, N. High-efficiency electrochemical degradation of phenol in aqueous solutions using Ni-PPy and Cu-PPy composite materials. J. Hazard. Mater. 2022, 423, 126986.

[120]

Yang, M. X.; Wang, W. X.; Qiu, J. C.; Bai, M. Y.; Xia, Y. N. Direct visualization and semi-quantitative analysis of payload loading in the case of gold nanocages. Angew. Chem., Int. Ed. 2019, 58, 17671–17674.

[121]

Zhang, Z. Y.; Liu, S. S.; Tian, X.; Wang, J.; Xu, P.; Xiao, F.; Wang, S. Facile synthesis of N-doped porous carbon encapsulated bimetallic PdCo as a highly active and durable electrocatalyst for oxygen reduction and ethanol oxidation. J. Mater. Chem. A 2017, 5, 10876–10884.

[122]
LiT. J.LinH. F.OuyangX. P.QiuX. Q.WanZ. C. In situ preparation of Ru@N-doped carbon catalyst for the hydrogenolysis of lignin to produce aromatic monomersACS Catal.201995828583610.1021/acscatal.9b01452

Li, T. J.; Lin, H. F.; Ouyang, X. P.; Qiu, X. Q.; Wan, Z. C. In situ preparation of Ru@N-doped carbon catalyst for the hydrogenolysis of lignin to produce aromatic monomers. ACS Catal. 2019, 9, 5828–5836.

[123]

Wang, X. J.; Zhang, H. G.; Lin, H. H.; Gupta, S.; Wang, C.; Tao, Z. X.; Fu, H.; Wang, T.; Zheng, J.; Wu, G. et al. Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid. Nano Energy 2016, 25, 110–119.

[124]

Li, M. H.; He, J.; Tang, Y. Q.; Sun, J. Y.; Fu, H. Y.; Wan, Y. Q.; Qu, X. L.; Xu, Z. Y.; Zheng, S. R. Liquid phase catalytic hydrogenation reduction of Cr(VI) using highly stable and active Pd/CNT catalysts coated by N-doped carbon. Chemosphere 2019, 217, 742–753.

[125]

Gao, B.; Wang, T.; Li, Y.; Guo, Y.; Xue, H. R.; He, J. P.; Zhao, Y. L. Boosting the stability and photoelectrochemical activity of a BiVO4 photoanode through a bifunctional polymer coating. J. Mater. Chem. A 2021, 9, 3309–3313.

[126]

Xia, J. H.; Zhao, P.; Zheng, K.; Lu, C. J.; Yin, S. C.; Xu, H. P. Surface modification based on diselenide dynamic chemistry: Towards liquid motion and surface bioconjugation. Angew. Chem., Int. Ed. 2019, 58, 542–546.

[127]

Celebi, M.; Yurderi, M.; Bulut, A.; Kaya, M.; Zahmakiran, M. Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction. Appl. Catal. B: Environ. 2016, 180, 53–64.

[128]

Heise, K.; Delepierre, G.; King, A. W. T.; Kostiainen, M. A.; Zoppe, J.; Weder, C.; Kontturi, E. Chemical modification of reducing end-groups in cellulose nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 66–87.

[129]

Wang, L. M.; Schubert, U. S.; Hoeppener, S. Surface chemical reactions on self-assembled silane based monolayers. Chem. Soc. Rev. 2021, 50, 6507–6540.

[130]

Qing, W. H.; Liu, F.; Yao, H.; Sun, S. B.; Chen, C.; Zhang, W. Functional catalytic membrane development: A review of catalyst coating techniques. Adv. Colloid Interface Sci. 2020, 282, 102207.

[131]

Li, W.; Sheng, W. B.; Li, B.; Jordan, R. Surface grafting “band-aid” for “everyone”: Filter paper-assisted surface-initiated polymerization in the presence of air. Angew. Chem., Int. Ed. 2021, 60, 13621–13625.

[132]

Jing, H. Y.; Yeo, H.; Lyu, B. Z.; Ryou, J.; Choi, S.; Park, J. H.; Lee, B. H.; Kim, Y. H.; Lee, S. Modulation of the electronic properties of MXene (Ti3C2Tx) via surface-covalent functionalization with diazonium. ACS Nano 2021, 15, 1388–1396.

[133]

John, D.; Stanzel, M.; Andrieu-Brunsen, A. Surface plasmons and visible light iniferter initiated polymerization for nanolocal functionalization of mesoporous separation layers. Adv. Funct. Mater. 2021, 31, 2009732.

[134]

Yue, Q.; Sun, J. G.; Kang, Y. J.; Deng, Y. H. Advances in the interfacial assembly of mesoporous silica on magnetite particles. Angew. Chem., Int. Ed. 2020, 59, 15804–15817.

[135]

Peng, H. G.; Rao, C.; Zhang, N.; Wang, X.; Liu, W. M.; Mao, W. T.; Han, L.; Zhang, P. F.; Dai, S. Confined ultrathin Pd-Ce nanowires with outstanding moisture and SO2 tolerance in methane combustion. Angew. Chem., Int. Ed. 2018, 57, 8953–8957.

[136]

Cheng, G. Y.; Lin, K. T.; Ye, Y. H.; Jiang, H.; Ngai, T.; Ho, Y. P. Photo-responsive fluorosurfactant enabled by plasmonic nanoparticles for light-driven droplet manipulation. ACS Appl. Mater. Interfaces 2021, 13, 21914–21923.

[137]

Guo, Q. Y.; Yan, X. Y.; Zhang, W.; Li, X. H.; Xu, Y. S.; Dai, S. Q.; Liu, Y. C.; Zhang, B. X.; Feng, X. Y.; Yin, J. F. et al. Ordered mesoporous silica pyrolyzed from single-source self-assembled organic–inorganic giant surfactants. J. Am. Chem. Soc. 2021, 143, 12935–12942.

[138]

Wang, J.; Liu, Y. P.; Cai, Q. F.; Dong, A. G.; Yang, D.; Zhao, D. Y. Hierarchically porous silica membrane as separator for high-performance lithium-ion batteries. Adv. Mater. 2022, 34, 2107957.

[139]

Olivier-Bourbigou, H.; Breuil, P. A. R.; Magna, L.; Michel, T.; Espada Pastor, M. F.; Delcroix, D. Nickel catalyzed olefin oligomerization and dimerization. Chem. Rev. 2020, 120, 7919–7983.

[140]

Song, H.; Yu, M. H.; Lu, Y.; Gu, Z. Y.; Yang, Y. N.; Zhang, M.; Fu, J. Y.; Yu. C. Z. Plasmid DNA delivery: Nanotopography matters. J. Am. Chem. Soc. 2017, 139, 18247–18254.

[141]

Gao, J.; Kong, W. X.; Zhou, L. Y.; He, Y.; Ma, L.; Wang, Y.; Yin, L. Y.; Jiang, Y. J. Monodisperse core–shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization. Chem. Eng. J. 2017, 309, 70–79.

[142]

Corsini, F.; Tatsi, E.; Colombo, A.; Dragonetti, C.; Botta, C.; Turri, S. Griffini, G. Highly emissive fluorescent silica-based core/shell nanoparticles for efficient and stable luminescent solar concentrators. Nano Energy 2021, 80, 105551.

[143]

Zhou, X. H.; Yu, G. Preparation engineering of two-dimensional heterostructures via bottom–up growth for device applications. ACS Nano 2021, 15, 11040–11065.

[144]

Cang, Y.; Wang, Z. Y.; Bishop, C.; Yu, L.; Ediger, M. D.; Fytas, G. Extreme elasticity anisotropy in molecular glasses. Adv. Funct. Mater. 2020, 30, 2001481.

[145]

Lobe, S.; Bauer, A.; Uhlenbruck, S.; Fattakhova-Rohlfing, D. Physical vapor deposition in solid-state battery development: From materials to devices. Adv. Sci. 2021, 8, 2002044.

[146]

Schranghamer, T. F.; Sharma, M.; Singh, R.; Das, S. Review and comparison of layer transfer methods for two-dimensional materials for emerging applications. Chem. Soc. Rev. 2021, 50, 11032–11054.

[147]

Fu, Y.; Zhang, Q. P.; Zhang, D. Q.; Tang, Y. Q.; Shu, L.; Zhu, Y. Y.; Fan, Z. Y. Scalable all-evaporation fabrication of efficient light-emitting diodes with hybrid 2D–3D perovskite nanostructures. Adv. Funct. Mater. 2020, 30, 2002913.

[148]

Correa, S.; Boehnke, N.; Barberio, A. E.; Deiss-Yehiely, E.; Shi, A.; Oberlton, B.; Smith, S. G.; Zervantonakis, I.; Dreaden, E. C.; Hammond, P. T. Tuning nanoparticle interactions with ovarian cancer through layer-by-layer modification of surface chemistry. ACS Nano 2020, 14, 2224–2237.

[149]

Guzmán, E.; Rubio, R. G.; Ortega, F. A closer physico-chemical look to the layer-by-layer electrostatic self-assembly of polyelectrolyte multilayers. Adv. Colloid Interface Sci. 2020, 282, 102197.

[150]

An, Q.; Huang, T.; Shi, F. Covalent layer-by-layer films: Chemistry, design, and multidisciplinary applications. Chem. Soc. Rev. 2018, 47, 5061–5098.

[151]

Lee, S.; Yeom, B.; Kim, Y.; Cho, J. Layer-by-layer assembly for ultrathin energy-harvesting films: Piezoelectric and triboelectric nanocomposite films. Nano Energy 2019, 56, 1–15.

[152]

Szweda, R.; Tschopp, M.; Felix, O.; Decher, G.; Lutz, J. F. Sequences of sequences: Spatial organization of coded matter through layer-by-layer assembly of digital polymers. Angew. Chem., Int. Ed. 2018, 57, 15817–15821.

[153]

Jia, Y.; Li, J. B. Molecular assembly of rotary and linear motor proteins. Acc. Chem. Res. 2019, 52, 1623–1631.

[154]

Kim, D.; Lee, S.; Ko, Y.; Kwon, C. H.; Cho, J. Layer-by-layer assembly-induced triboelectric nanogenerators with high and stable electric outputs in humid environments. Nano Energy 2018, 44, 228–239.

[155]

Lv, W. Z.; Li, L.; Xu, M. C.; Hong, J. X.; Tang, X. X.; Xu, L. G.; Wu, Y. H.; Zhu, R.; Chen, R. F.; Huang, W. Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv. Mater. 2019, 31, 1900682.

[156]

Thompson, W. A.; Perier, C.; Maroto-Valer, M. M. Systematic study of sol–gel parameters on TiO2 coating for CO2 photoreduction. Appl. Catal. B Environ. 2018, 238, 136–146.

[157]

Zoppe, J. O.; Ataman, N. C.; Mocny, P.; Wang, J.; Moraes, J.; Klok, H. A. Surface-initiated controlled radical polymerization: State-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem. Rev. 2017, 117, 1105–1318.

[158]

Wang, H.; Wang, L.; Xiao, F. S. Metal@zeolite hybrid materials for catalysis. ACS Cent. Sci. 2020, 6, 1685–1697.

[159]

Jongkind, L. J.; Caumes, X.; Hartendorp, A. P. T.; Reek, J. N. H. Ligand template strategies for catalyst encapsulation. Acc. Chem. Res. 2018, 51, 2115–2128.

[160]

Sun, L. C.; Zhang, Q. F.; Li, G. G.; Villarreal, E.; Fu, X. Q.; Wang, H. Multifaceted gold–palladium bimetallic nanorods and their geometric, compositional, and catalytic tunabilities. ACS Nano 2017, 11, 3213–3228.

[161]

Bordet, A.; Leitner, W. Metal nanoparticles immobilized on molecularly modified surfaces: Versatile catalytic systems for controlled hydrogenation and hydrogenolysis. Acc. Chem. Res. 2021, 54, 2144–2157.

[162]

Kang, W.; Guo, H.; Varma, A. Noble-metal-free NiCu/CeO2 catalysts for H2 generation from hydrous hydrazine. Appl. Catal. B: Environ. 2019, 249, 54–62.

[163]

Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2021, 64, 642–650.

[164]

Favier, I.; Pla, D.; Gómez, M. Palladium nanoparticles in polyols: Synthesis, catalytic couplings, and hydrogenations. Chem. Rev. 2020, 120, 1146–1183.

[165]

Chen, T.; Guo, S. Q.; Yang, J.; Xu, Y. D.; Sun, J.; Wei, D. L.; Chen, Z. X.; Zhao, B.; Ding, W. P. Nitrogen-doped carbon activated in situ by embedded nickel through the Mott–Schottky effect for the oxygen reduction reaction. ChemPhysChem 2017, 18, 3454–3461.

[166]

Chen, S. Y.; Yan, Y.; Hao, P. P.; Li, M. H.; Liang, J. Y.; Guo, J.; Zhang, Y.; Chen, S. W.; Ding, W. P.; Guo, X. F. Iron nanoparticles encapsulated in S, N-codoped carbon: Sulfur doping enriches surface electron density and enhances electrocatalytic activity toward oxygen reduction. ACS Appl. Mater. Interfaces 2020, 12, 12686–12695.

[167]

Li, C. Y.; Wang, G. W. Dehydrogenation of light alkanes to mono-olefins. Chem. Soc. Rev. 2021, 50, 4359–4381.

[168]

Sun, Y. H.; Li, M. H.; Qu, X. L.; Zheng, S. R.; Alvarez, P. J. J.; Fu, H. Y. Efficient reduction of selenite to elemental selenium by liquid-phase catalytic hydrogenation using a highly stable multiwalled carbon nanotube-supported Pt catalyst coated by N-doped carbon. ACS Appl. Mater. Interfaces 2021, 13, 29541–29550.

[169]

Yu, L.; Zhou, J. Y.; Xu, Z. Y.; Zheng, S. R. One-step elimination of Cr(VI) by catalytic hydrogenation of Cr(VI) and simultaneous Cr(OH)3 recovery on Pt catalysts encapsulated in N-doped mesoporous carbon. J. Hazard. Mater. 2022, 422, 126782.

[170]

Gou, X. X.; Liu, T.; Wang, Y. Y.; Han, Y. F. Ultrastable and highly catalytically active N-heterocyclic-carbene-stabilized gold nanoparticles in confined spaces. Angew. Chem., Int. Ed. 2020, 59, 16683–16689.

[171]

Wang, L. X.; Wang, L.; Meng, X. J.; Xiao, F. S. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts. Adv. Mater. 2019, 31, 1901905.

[172]

Huo, J. J.; Tessonnier, J. P.; Shanks, B. H. Improving hydrothermal stability of supported metal catalysts for biomass conversions: A review. ACS Catal. 2021, 11, 5248–5270.

[173]

Mun, J.; Ochiai, Y.; Wang, W. C.; Zheng, Y.; Zheng, Y. Q.; Wu, H. C.; Matsuhisa, N.; Higashihara, T.; Tok, J. B. H.; Yun, Y. et al. A design strategy for high mobility stretchable polymer semiconductors. Nat. Commun. 2021, 12, 3572.

[174]

Xiong, H. F.; Schwartz, T. J.; Andersen, N. I.; Dumesic, J. A.; Datye, A. K. Graphitic-carbon layers on oxides: Toward stable heterogeneous catalysts for biomass conversion reactions. Angew. Chem., Int. Ed. 2015, 54, 7939–7943.

[175]

Shifrina, Z. B.; Matveeva, V. G.; Bronstein, L. M. Role of polymer structures in catalysis by transition metal and metal oxide nanoparticle composites. Chem. Rev. 2020, 120, 1350–1396.

[176]

Son, Y.; Kim, N.; Lee, T.; Lee, Y.; Ma, J.; Chae, S.; Sung, J.; Cha, H.; Yoo, Y.; Cho, J. Calendering-compatible macroporous architecture for silicon-graphite composite toward high-energy lithium-ion batteries. Adv. Mater. 2020, 32, 2003286.

[177]

Lange, T.; Reichenberger, S.; Rohe, M.; Bartsch, M.; Kampermann, L.; Klein, J.; Strunk, J.; Bacher, G.; Schlögl, R.; Barcikowski, S. Alumina-protected, durable and photostable zinc sulfide particles from scalable atomic layer deposition. Adv. Funct. Mater. 2021, 31, 2009323.

[178]

Xiao, F.; Xu, G. L.; Sun, C. J.; Hwang, I.; Xu, M. J.; Wu, H. W.; Wei, Z. D.; Pan, X. Q.; Amine, K.; Shao, M. H. Durable hybrid electrocatalysts for proton exchange membrane fuel cells. Nano Energy 2020, 77, 105192.

[179]

Qiao, Z.; Hwang, S.; Li, X.; Wang, C. Y.; Samarakoon, W.; Karakalos, S.; Li, D. G.; Chen, M. J.; He, Y. H.; Wang, M. Y. et al. 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: A balance between graphitization and hierarchical porosity. Energy Environ. Sci. 2019, 12, 2830–2841.

[180]

He, Y. H.; Guo, H.; Hwang, S.; Yang, X. X.; He, Z. Z.; Braaten, J.; Karakalos, S.; Shan, W. T.; Wang, M. Y.; Zhou, H. et al. Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells. Adv. Mater. 2020, 32, 2003577.

[181]

Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong , Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

[182]

Liu, D. B.; Li, X. Y.; Chen, S. M.; Yan, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518.

[183]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[184]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformationmaterials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[185]

Zhou, A. W.; Wang, D. S.; Li, Y. D. Hollow microstructural regulation of single-atom catalysts for optimized electrocatalytic performance. Microstructures 2022, 2, 2022005.

[186]

Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

[187]

Zhao, J.; Ji, S. F.; Guo, C. X.; Li, H. J.; Dong, J. C.; Guo, P.; Wang, D. S.; Li, Y. D.; Toste, F. D. A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nat. Catal. 2021, 4, 523–531.

[188]

Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal–organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

[189]

Guo, X. H.; Zhang, M.; Zheng, J.; Xu, J. L.; Hayat, T.; Alharbi, N. S.; Xi, B. J.; Xiong, S. L. Fabrication of Co@SiO2@C/Ni submicrorattles as highly efficient catalysts for 4-nitrophenol reduction. Dalton Trans. 2017, 46, 11598–11607.

[190]

Ailawar, S.; Hunoor, A.; Rudzinski, B.; Celik, G.; Burel, L.; Millet, J. M.; Miller, J. T.; Edmiston, P. L.; Ozkan, U. S. On the dual role of the reactant during aqueous phase hydrodechlorination of trichloroethylene (HDC of TCE) using Pd supported on swellable organically modified silica (SOMS). Appl. Catal. B: Environ. 2021, 291, 120060.

[191]

Wang, H. L.; Jin, Y. H.; Sun, N. N.; Zhang, W.; Jiang, J. Z. Post-synthetic modification of porous organic cages. Chem. Soc. Rev. 2021, 50, 8874–8886.

[192]

Büchele, S.; Chen, Z. P.; Fako, E.; Krumeich, F.; Hauert, R.; Safonova, O. V.; López, N.; Mitchell, S.; Pérez-Ramirez, J. Carrier-induced modification of palladium nanoparticles on porous boron nitride for alkyne semi-hydrogenation. Angew. Chem., Int. Ed. 2020, 59, 19639–19644.

[193]

Nasir Baig, R. B.; Nadagouda, M. N.; Varma, R. S. Magnetically retrievable catalysts for asymmetric synthesis. Coord. Chem. Rev. 2015, 287, 137–156.

[194]

Wang, L.; Lin, J. H. Recent advances on magnetic nanobead based biosensors: From separation to detection. Trends Analyt. Chem. 2020, 128, 115915.

[195]

Mourdikoudis, S.; Kostopoulou, A.; LaGrow, A. P. Magnetic nanoparticle composites: Synergistic effects and applications. Adv. Sci. 2021, 8, 2004951.

[196]

Geiss, C. E.; Gourley, J. R. A thermomagnetic technique to quantify the risk of internal sulfur attack due to pyrrhotite. Cem. Concr. Res. 2019, 115, 1–7.

[197]

Sanna Angotzi, M.; Musinu, A.; Mameli, V.; Ardu, A.; Cara, C.; Niznansky, D.; Xin, H. L.; Cannas, C. Spinel ferrite core–shell nanostructures by a versatile solvothermal seed-mediated growth approach and study of their nanointerfaces. ACS Nano 2017, 11, 7889–7900.

[198]

Guo, L.; Zhang, K. L.; Shen, H. D.; Wang, C.; Zhao, Q.; Wang, D. J.; Fu, F.; Liang, Y. C. Magnetically recyclable Fe3O4@SiO2/Bi2WO6−xF2x photocatalyst with well-designed core–shell nanostructure for the reduction of Cr(VI). Chem. Eng. J. 2019, 370, 1522–1533.

[199]

Ouyang, T.; Wang, X. T.; Mai, X. Q.; Chen, A. N.; Tang, Z. Y.; Liu, Z. Q. Coupling magnetic single-crystal Co2Mo3O8 with ultrathin nitrogen-rich carbon layer for oxygen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 11948–11957.

[200]

Sánchez-Grande, A.; Urgel, J. I.; Cahlík, A.; Santos, J.; Edalatmanesh, S.; Rodríguez-Sánchez, E.; Lauwaet, K.; Mutombo, P.; Nachtigallová, D.; Nieman, R. et al. Diradical organic one-dimensional polymers synthesized on a metallic surface. Angew. Chem., Int. Ed. 2020, 59, 17594–17599.

[201]

Pan, P. P.; Zhang, T.; Yue, Q.; Elzatahry, A. A.; Alghamdi, A.; Cheng, X. W.; Deng, Y. H. Interface coassembly and polymerization on magnetic colloids: Toward core–shell functional mesoporous polymer microspheres and their carbon derivatives. Adv. Sci. 2020, 7, 2000443.

[202]

Wang, A. P.; Sudarsanam, P.; Xu, Y. F.; Zhang, H.; Li, H.; Yang, S. Functionalized magnetic nanosized materials for efficient biodiesel synthesis via acid-base/enzyme catalysis. Green Chem. 2020, 22, 2977–3012.

[203]

Ravula, T.; Ramamoorthy, A. Magnetic alignment of polymer macro-nanodiscs enables residual-dipolar-coupling-based high-resolution structural studies by NMR spectroscopy. Angew. Chem., Int. Ed. 2019, 58, 14925–14928.

[204]

Shokouhimehr, M.; Hong, K.; Lee, T. H.; Moon, C. W.; Hong, S. P.; Zhang, K. Q.; Suh, J. M.; Choi, K. S.; Varma, R. S.; Jang, H. W. Magnetically retrievable nanocomposite adorned with Pd nanocatalysts: Efficient reduction of nitroaromatics in aqueous media. Green Chem. 2018, 20, 3809–3817.

[205]

Das, R.; Sypu, V. S.; Paumo, H. K.; Bhaumik, M.; Maharaj, V.; Maity, A. Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes. Appl. Catal. B: Environ. 2019, 244, 546–558.

[206]

Kiwi, J.; Rtimi, S. Insight into the interaction of magnetic photocatalysts with the incoming light accelerating bacterial inactivation and environmental cleaning. Appl. Catal. B: Environ. 2021, 281, 119420.

[207]

Lan, S. Y.; Yu, C.; Sun, F.; Chen, Y. X.; Chen, D. Y.; Mai, W. J.; Zhu, M. S. Tuning piezoelectric driven photocatalysis by La-doped magnetic BiFeO3-based multiferroics for water purification. Nano Energy 2022, 93, 106792.

[208]

Kreissl, H.; Jin, J.; Lin, S. H.; Schüette, D.; Störtte, S.; Levin, N.; Chaudret, B.; Vorholt, A. J.; Bordet, A.; Leitner, W. Commercial Cu2Cr2O5 decorated with iron carbide nanoparticles as a multifunctional catalyst for magnetically induced continuous-flow hydrogenation of aromatic ketones. Angew. Chem., Int. Ed. 2021, 60, 26639–26646.

[209]

Jin, H.; Tian, X. K.; Nie, Y. L.; Zhou, Z. X.; Yang, C.; Li, Y.; Lu, L. Q. Oxygen vacancy promoted heterogeneous Fenton-like degradation of ofloxacin at pH 3.2–9.0 by Cu substituted magnetic Fe3O4@FeOOH nanocomposite. Environ. Sci. Technol. 2017, 51, 12699–12706.

[210]

Fan, S.; Dong, W. J.; Huang, X. B.; Gao, H. Y.; Wang, J. J.; Jin, Z. K.; Tang, J.; Wang, G. In situ-induced synthesis of magnetic Cu-CuFe2O4@HKUST-1 heterostructures with enhanced catalytic performance for selective aerobic benzylic C-H oxidation. ACS Catal. 2017, 7, 243–249.

[211]

Aygün, M.; Chamberlain, T. W.; del Carmen Gimenez-Lopez, M.; Khlobystov, A. N. Magnetically recyclable catalytic carbon nanoreactors. Adv. Funct. Mater. 2018, 28, 1802869.

[212]

Yan, J. H.; Wang, Y.; Zhang, Y. Y.; Xia, S. H.; Yu, J. Y.; Ding, B. Direct magnetic reinforcement of electrocatalytic ORR/OER with electromagnetic induction of magnetic catalysts. Adv. Mater. 2021, 33, 2007525.

[213]

Zhao, L. M.; Qin, X. T.; Zhang, X. R.; Cai, X. B.; Huang, F.; Jia, Z. M.; Diao, J. Y.; Xiao, D. Q.; Jiang, Z.; Lu, R. F. et al. A magnetically separable Pd single-atom catalyst for efficient selective hydrogenation of phenylacetylene. Adv. Mater. 2022, 34, 2110455.

[214]

Wang, T. Q.; Jiang, Z. F.; An, T. C.; Li, G. Y.; Zhao, H. J.; Wong, P. K. Enhanced visible-light-driven photocatalytic bacterial inactivation by ultrathin carbon-coated magnetic cobalt ferrite nanoparticles. Environ. Sci. Technol. 2018, 52, 4774–4784.

[215]

Le, T. S.; Takahashi, M.; Isozumi, N.; Miyazato, A.; Hiratsuka, Y.; Matsumura, K.; Taguchi, T.; Maenosono, S. Quick and mild isolation of intact lysosomes using magnetic-plasmonic hybrid nanoparticles. ACS Nano 2022, 16, 885–896.

[216]

Li, M. H.; Zhou, X. M.; Sun, J. Y.; Fu, H. Y.; Qu, X. L.; Xu, Z. Y.; Zheng, S. R. Highly effective bromate reduction by liquid phase catalytic hydrogenation over Pd catalysts supported on core–shell structured magnetites: Impact of shell properties. Sci. Total. Environ. 2019, 663, 673–685.

[217]

Chipman, J. A.; Berry, J. F. Paramagnetic metal–metal bonded heterometallic complexes. Chem. Rev. 2020, 120, 2409–2447.

[218]

Gramigna, K. M.; Dickie, D. A.; Foxman, B. M.; Thomas, C. M. Cooperative H2 activation across a metal–metal multiple bond and hydrogenation reactions catalyzed by a Zr/Co heterobimetallic complex. ACS Catal. 2019, 9, 3153–3164.

[219]

Wang, C. Y.; Zhang, Z. C.; Zhu, Y. T.; Yang, C. H.; Wu, J. S.; Hu, W. P. 2D covalent organic frameworks: From synthetic strategies to advanced optical–electrical–magnetic functionalities. Adv. Mater. 2022, 34, 2102290.

[220]

Rubio-Giménez, V.; Tatay, S.; Martí-Gastaldo, C. Electrical conductivity and magnetic bistability in metal–organic frameworks and coordination polymers: Charge transport and spin crossover at the nanoscale. Chem. Soc. Rev. 2020, 49, 5601–5638.

File
12274_2022_4859_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 July 2022
Revised: 29 July 2022
Accepted: 02 August 2022
Published: 02 September 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21971002 and 42077361), the Natural Science Foundation of Anhui Province (No. 1908085QB45), Open Fund of State Key Lab of Pollution Control and Resource Reuse Research, China (No. PCRRF20002), and the University Natural Science Research Project of Anhui Province (No. KJ2020A0064).

Return