Journal Home > Volume 16 , Issue 1

Nanoparticles-based drug delivery systems have attracted significant attention in biomedical fields because they can deliver loaded cargoes to the target site in a controlled manner. However, tremendous challenges must still be overcome to reach the expected targeting and therapeutic efficacy in vivo. These challenges mainly arise because the interaction between nanoparticles and biological systems is complex and dynamic and is influenced by the physicochemical properties of the nanoparticles and the heterogeneity of biological systems. Importantly, once the nanoparticles are injected into the blood, a protein corona will inevitably form on the surface. The protein corona creates a new biological identity which plays a vital role in mediating the bio–nano interaction and determining the ultimate results. Thus, it is essential to understand how the protein corona affects the delivery journey of nanoparticles in vivo and what we can do to exploit the protein corona for better delivery efficiency. In this review, we first summarize the fundamental impact of the protein corona on the delivery journey of nanoparticles. Next, we emphasize the strategies that have been developed for tailoring and exploiting the protein corona to improve the transportation behavior of nanoparticles in vivo. Finally, we highlight what we need to do as a next step towards better understanding and exploitation of the protein corona. We hope these insights into the “Yin and Yang” effect of the protein corona will have profound implications for understanding the role of the protein corona in a wide range of nanoparticles.


menu
Abstract
Full text
Outline
About this article

The Yin and Yang of the protein corona on the delivery journey of nanoparticles

Show Author's information Yi-Feng Wang1,2,§Yaxin Zhou3,§JiaBei Sun4Xiaotong Wang5Yaru Jia5Kun Ge5Yan Yan6Kenneth A. Dawson1,6Shutao Guo3( )Jinchao Zhang5( )Xing-Jie Liang1,2,5( )
Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
China National Institute of Food and Drug Control, Beijing 100061, China
Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
Centre for BioNano Interactions, School of Chemistry, School of Biomolecular and Biomedical Science, University College Dublin, Dublin D04V1W8, Ireland

§ Yi-Feng Wang and Yaxin Zhou contributed equally to this work.

Abstract

Nanoparticles-based drug delivery systems have attracted significant attention in biomedical fields because they can deliver loaded cargoes to the target site in a controlled manner. However, tremendous challenges must still be overcome to reach the expected targeting and therapeutic efficacy in vivo. These challenges mainly arise because the interaction between nanoparticles and biological systems is complex and dynamic and is influenced by the physicochemical properties of the nanoparticles and the heterogeneity of biological systems. Importantly, once the nanoparticles are injected into the blood, a protein corona will inevitably form on the surface. The protein corona creates a new biological identity which plays a vital role in mediating the bio–nano interaction and determining the ultimate results. Thus, it is essential to understand how the protein corona affects the delivery journey of nanoparticles in vivo and what we can do to exploit the protein corona for better delivery efficiency. In this review, we first summarize the fundamental impact of the protein corona on the delivery journey of nanoparticles. Next, we emphasize the strategies that have been developed for tailoring and exploiting the protein corona to improve the transportation behavior of nanoparticles in vivo. Finally, we highlight what we need to do as a next step towards better understanding and exploitation of the protein corona. We hope these insights into the “Yin and Yang” effect of the protein corona will have profound implications for understanding the role of the protein corona in a wide range of nanoparticles.

Keywords: nanoparticles, drug delivery, protein corona, biological identity, bio–nano interaction

References(146)

[1]

Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R. A.; Alves, F.; Andrews, A. M.; Ashraf, S.; Balogh, L. P.; Ballerini, L.; Bestetti, A.; Brendel, C. et al. Diverse applications of nanomedicine. ACS Nano 2017, 11, 2313–2381.

[2]

Sanhai, W. R.; Sakamoto, J. H.; Canady, R.; Ferrari, M. Seven challenges for nanomedicine. Nat. Nanotechnol. 2008, 3, 242–244.

[3]

Wang, Y. F.; Liu, L.; Xue, X.; Liang, X. J. Nanoparticle-based drug delivery systems: What can they really do in vivo? F1000Research 2017, 6, 681.

[4]

Zhao, Y.; Zhang, Z. Z.; Pan, Z.; Liu, Y. Advanced bioactive nanomaterials for biomedical applications. Exploration 2021, 1, 20210089.

[5]

Zhou, J.; Zhang, Z. Y.; Joseph, J.; Zhang, X. C.; Ferdows, B. E.; Patel, D. N.; Chen, W.; Banfi, G.; Molinaro, R.; Cosco, D. et al. Biomaterials and nanomedicine for bone regeneration: Progress and future prospects. Exploration 2021, 1, 20210011.

[6]

Abd Ellah, N. H.; Gad, S. F.; Muhammad, K.; Batiha, G. E.; Hetta, H. F. Nanomedicine as a promising approach for diagnosis, treatment and prophylaxis against COVID-19. Nanomedicine 2020, 15, 2085–2102.

[7]

Zheng, Y. H.; You, X. R.; Guan, S. Y.; Huang, J.; Wang, L. Y.; Zhang, J. Y.; Wu, J. Poly(ferulic acid) with an anticancer effect as a drug nanocarrier for enhanced colon cancer therapy. Adv. Funct. Mater. 2019, 29, 1808646.

[8]

Wei, Z.; Liang, P. P.; Xie, J. Q.; Song, C. H.; Tang, C. C.; Wang, Y. F.; Yin, X. T.; Cai, Y.; Han, W.; Dong, X. C. Carrier-free nano-integrated strategy for synergetic cancer anti-angiogenic therapy and phototherapy. Chem. Sci. 2019, 10, 2778–2784.

[9]

Luo, C.; Sun, B. J.; Wang, C.; Zhang, X. B.; Chen, Y.; Chen, Q.; Yu, H.; Zhao, H. Q.; Sun, M. C.; Li, Z. B. et al. Self-facilitated ROS-responsive nanoassembly of heterotypic dimer for synergistic chemo-photodynamic therapy. J. Control. Release 2019, 302, 79–89.

[10]

Liu, T.; Zou, H.; Mu, J. Q.; Yu, N.; Xu, Y.; Liu, G. H.; Liang, X. J.; Guo, S. T. Acid-sensitive PEGylated cabazitaxel prodrugs for antitumor therapy. Chin. Chem. Lett. 2021, 32, 1751–1754.

[11]

Mu, J. Q.; Zhong, H. P.; Zou, H.; Liu, T.; Yu, N.; Zhang, X.; Xu, Z. K.; Chen, Z. Q.; Guo, S. T. Acid-sensitive PEGylated paclitaxel prodrug nanoparticles for cancer therapy: Effect of PEG length on antitumor efficacy. J. Control. Release 2020, 326, 265–275.

[12]

Yu, N.; Liu, T.; Zhang, X.; Gong, N. Q.; Ji, T. J.; Chen, J.; Liang, X. J.; Kohane, D. S.; Guo, S. T. Dually enzyme- and acid-triggered self-immolative ketal glycoside nanoparticles for effective cancer prodrug monotherapy. Nano Lett. 2020, 20, 5465–5472.

[13]

Zhong, H. P.; Mu, J. Q.; Du, Y. Y.; Xu, Z. K.; Xu, Y.; Yu, N.; Zhang, S. B.; Guo, S. T. Acid-triggered release of native gemcitabine conjugated in polyketal nanoparticles for enhanced anticancer therapy. Biomacromolecules 2020, 21, 803–814.

[14]

Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011, 63, 136–151.

[15]

Ngoune, R.; Peters, A.; von Elverfeldt, D.; Winkler, K.; Pütz, G. Accumulating nanoparticles by EPR: A route of no return. J. Control. Release 2016, 238, 58–70.

[16]

Choi, C. H. J.; Alabi, C. A.; Webster, P.; Davis, M. E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl. Acad. Sci. USA 2010, 107, 1235–1240.

[17]

Yu, B.; Tai, H. C.; Xue, W. M.; Lee, L. J.; Lee, R. J. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol. Membr. Biol. 2010, 27, 286–298.

[18]

Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.

[19]

Tavares, A. J.; Poon, W.; Zhang, Y. N.; Dai, Q.; Besla, R.; Ding, D.; Ouyang, B.; Li, A.; Chen, J.; Zheng, G. et al. Effect of removing Kupffer cells on nanoparticle tumor delivery. Proc. Natl. Acad. Sci. USA 2017, 114, E10871–E10880.

[20]

Sun, Q. H.; Sun, X. R.; Ma, X. P.; Zhou, Z. X.; Jin, E. L.; Zhang, B.; Shen, Y. Q.; Van Kirk, E. A.; Murdoch, W. J.; Lott, J. R. et al. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv. Mater. 2014, 26, 7615–7621.

[21]

Sun, Q. H.; Zhou, Z. X.; Qiu, N. S.; Shen, Y. Q. Rational design of cancer nanomedicine: Nanoproperty integration and synchronization. Adv. Mater. 2017, 29, 1606628.

[22]

Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.

[23]

Cedervall, T.; Lynch, I.; Lindman, S.; Berggård, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050–2055.

[24]

Cedervall, T.; Lynch, I.; Foy, M.; Berggård, T.; Donnelly, S. C.; Cagney, G.; Linse, S.; Dawson, K. A. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew. Chem., Int. Ed. 2007, 46, 5754–5756.

[25]

Monopoli, M. P.; Åberg, C.; Salvati, A.; Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012, 7, 779–786.

[26]

Caracciolo, G.; Farokhzad, O. C.; Mahmoudi, M. Biological identity of nanoparticles in vivo: Clinical implications of the protein corona. Trends Biotechnol. 2017, 35, 257–264.

[27]

Walkey, C. D.; Chan, W. C. W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 2012, 41, 2780–2799.

[28]

Schöttler, S.; Landfester, K.; Mailänder, V. Controlling the stealth effect of nanocarriers through understanding the protein corona. Angew. Chem., Int. Ed. 2016, 55, 8806–8815.

[29]

Gravely, M.; Kindopp, A.; Hubert, L.; Card, M.; Nadeem, A.; Miller, C.; Roxbury, D. Aggregation reduces subcellular localization and cytotoxicity of single-walled carbon nanotubes. ACS Appl. Mater. Interfaces 2022, 14, 19168–19177.

[30]

Albanese, A.; Chan, W. C. W. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 2011, 5, 5478–5489.

[31]

Walczyk, D.; Bombelli, F. B.; Monopoli, M. P.; Lynch, I.; Dawson, K. A. What the cell “sees” in bionanoscience. J. Am. Chem. Soc. 2010, 132, 5761–5768.

[32]

Zhang, Y. N.; Poon, W.; Tavares, A. J.; McGilvray, I. D.; Chan, W. C. W. Nanoparticle–liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release 2016, 240, 332–348.

[33]

Martínez-Negro, M.; González-Rubio, G.; Aicart, E.; Landfester, K.; Guerrero-Martínez, A.; Junquera, E. Insights into colloidal nanoparticle–protein corona interactions for nanomedicine applications. Adv. Colloid Interface Sci. 2021, 289, 102366.

[34]

Xiao, W.; Gao, H. L. The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system. Int. J. Pharm. 2018, 552, 328–339.

[35]

Papini, E.; Tavano, R.; Mancin, F. Opsonins and dysopsonins of nanoparticles: Facts, concepts, and methodological guidelines. Front. Immunol. 2020, 11, 567365.

[36]

Aggarwal, P.; Hall, J. B.; McLeland, C. B.; Dobrovolskaia, M. A.; McNeil, S. E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 2009, 61, 428–437.

[37]

Saha, K.; Rahimi, M.; Yazdani, M.; Kim, S. T.; Moyano, D. F.; Hou, S.; Das, R.; Mout, R.; Rezaee, F.; Mahmoudi, M. et al. Regulation of macrophage recognition through the interplay of nanoparticle surface functionality and protein corona. ACS Nano 2016, 10, 4421–4430.

[38]

Bertrand, N.; Grenier, P.; Mahmoudi, M.; Lima, E. M.; Appel, E. A.; Dormont, F.; Lim, J. M.; Karnik, R.; Langer, R.; Farokhzad, O. C. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun. 2017, 8, 777.

[39]

Srivastav, A. K.; Dhiman, N.; Khan, H.; Srivastav, A. K.; Yadav, S. K.; Prakash, J.; Arjaria, N.; Singh, D.; Yadav, S.; Patnaik, S. et al. Impact of surface-engineered ZnO nanoparticles on protein corona configuration and their interactions with biological system. J. Pharm. Sci. 2019, 108, 1872–1889.

[40]

Fedeli, C.; Segat, D.; Tavano, R.; De Franceschi, G.; de Laureto, P. P.; Lubian, E.; Selvestrel, F.; Mancin, F.; Papini, E. Variations of the corona HDL: Albumin ratio determine distinct effects of amorphous SiO2 nanoparticles on monocytes and macrophages in serum. Nanomedicine 2014, 9, 2481–2497.

[41]

Lara, S.; Perez-Potti, A.; Herda, L. M.; Adumeau, L.; Dawson, K. A.; Yan, Y. Differential recognition of nanoparticle protein corona and modified low-density lipoprotein by macrophage receptor with collagenous structure. ACS Nano 2018, 12, 4930–4937.

[42]

Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J. M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018, 9, 1410.

[43]

Nel, A.; Ruoslahti, E.; Meng, H. New insights into “permeability” as in the enhanced permeability and retention effect of cancer nanotherapeutics. ACS Nano 2017, 11, 9567–9569.

[44]

Fasoli, E. Protein corona: Dr. Jekyll and Mr. Hyde of nanomedicine. Biotechnol Appl. Biochem. 2020, 68, 1139–1152.

[45]

Kang, H.; Rho, S.; Stiles, W. R.; Hu, S.; Baek, Y.; Hwang, D. W.; Kashiwagi, S.; Kim, M. S.; Choi, H. S. Size-dependent EPR effect of polymeric nanoparticles on tumor targeting. Adv. Healthc. Mater. 2020, 9, 1901223.

[46]

Caro, C.; Avasthi, A.; Paez-Muñoz, J. M.; Pernia Leal, M.; García-Martín, M. L. Passive targeting of high-grade gliomas via the EPR effect: A closed path for metallic nanoparticles? Biomater. Sci. 2021, 9, 7984–7995.

[47]

Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010, 148, 135–146.

[48]

Corbo, C.; Molinaro, R.; Parodi, A.; Furman, N. E. T.; Salvatore, F.; Tasciotti, E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 2016, 11, 81–100.

[49]

Bai, X.; Wang, J. L.; Mu, Q. X.; Su, G. X. In vivo protein corona formation:Characterizations, effects on engineered nanoparticles’ biobehaviors, and applications. Front. Bioeng. Biotechnol. 2021, 9, 646708.

[50]

Mirshafiee, V.; Mahmoudi, M.; Lou, K.; Cheng, J. J.; Kraft, M. L. Protein corona significantly reduces active targeting yield. Chem. Commun. 2013, 49, 2557–2559.

[51]

Smerkova, K.; Dolezelikova, K.; Bozdechova, L.; Heger, Z.; Zurek, L.; Adam, V. Nanomaterials with active targeting as advanced antimicrobials. WIREs Nanomed. Nanobiotechnol. 2020, 12, e1636.

[52]

Salvati, A.; Pitek, A. S.; Monopoli, M. P.; Prapainop, K.; Bombelli, F. B.; Hristov, D. R.; Kelly, P. M.; Åberg, C.; Mahon, E.; Dawson, K. A. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 2013, 8, 137–143.

[53]

Wang, Y. Z.; Zhang, H. L.; Xiao, W.; Liu, Y. W.; Zhou, Y.; He, X. Q.; Xia, X.; Gong, T.; Wang, L.; Gao, H. L. Unmasking CSF protein corona: Effect on targeting capacity of nanoparticles. J. Control. Release 2021, 333, 352–361.

[54]

Zou, Y. J.; Nishikawa, M.; Kang, H. G.; Cheng, G. Q.; Wang, W.; Wang, Y. Q.; Komatsu, N. Effect of protein corona on mitochondrial targeting ability and cytotoxicity of triphenylphosphonium conjugated with polyglycerol-functionalized nanodiamond. Mol. Pharmaceutics 2021, 18, 2823–2832.

[55]

Caracciolo, G.; Caputo, D.; Pozzi, D.; Colapicchioni, V.; Coppola, R. Size and charge of nanoparticles following incubation with human plasma of healthy and pancreatic cancer patients. Colloids Surf. B: Biointerf. 2014, 123, 673–678.

[56]

Mahmoudi, M.; Sheibani, S.; Milani, A. S.; Rezaee, F.; Gauberti, M.; Dinarvand, R.; Vali, H. Crucial role of the protein corona for the specific targeting of nanoparticles. Nanomedicine 2015, 10, 215–226.

[57]

Yameen, B.; Choi, W. I.; Vilos, C.; Swami, A.; Shi, J. J.; Farokhzad, O. C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 2014, 190, 485–499.

[58]

Patel, P. C.; Giljohann, D. A.; Daniel, W. L.; Zheng, D.; Prigodich, A. E.; Mirkin, C. A. Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjugate Chem. 2010, 21, 2250–2256.

[59]

Guarnieri, D.; Guaccio, A.; Fusco, S.; Netti, P. A. Effect of serum proteins on polystyrene nanoparticle uptake and intracellular trafficking in endothelial cells. J. Nanopart. Res. 2011, 13, 4295–4309.

[60]

Bajaj, A.; Samanta, B.; Yan, H. H.; Jerry, D. J.; Rotello, V. M. Stability, toxicity and differential cellular uptake of protein passivated-Fe3O4 nanoparticles. J. Mater. Chem. 2009, 19, 6328–6331.

[61]

Lesniak, A.; Fenaroli, F.; Monopoli, M. P.; Åberg, C.; Dawson, K. A.; Salvati, A. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 2012, 6, 5845–5857.

[62]

Wang, Y. F.; Zhang, C. Q.; Yang, K. N.; Wang, Y. F.; Shan, S. B.; Yan, Y.; Dawson, K. A.; Wang, C.; Liang, X. J. Transportation of AIE-visualized nanoliposomes is dominated by the protein corona. Natl. Sci. Rev. 2021, 8, nwab068.

[63]

Francia, V.; Yang, K. N.; Deville, S.; Reker-Smit, C.; Nelissen, I.; Salvati, A. Corona composition can affect the mechanisms cells use to internalize nanoparticles. ACS Nano 2019, 13, 11107–11121.

[64]

Amici, A.; Caracciolo, G.; Digiacomo, L.; Gambini, V.; Marchini, C.; Tilio, M.; Capriotti, A. L.; Colapicchioni, V.; Matassa, R.; Familiari, G. et al. In vivo protein corona patterns of lipid nanoparticles. RSC Adv. 2017, 7, 1137–1145.

[65]

Sharifi, S.; Caracciolo, G.; Mahmoudi, M. Biomolecular corona affects controlled release of drug payloads from nanocarriers. Trends Pharmacol. Sci. 2020, 41, 641–652.

[66]

Falahati, M.; Attar, F.; Sharifi, M.; Haertlé, T.; Berret, J. F.; Khan, R. H.; Saboury, A. A. A health concern regarding the protein corona, aggregation and disaggregation. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2019, 1863, 971–991.

[67]

Isaia, H. A.; Pinilla, C. M. B.; Brandelli, A. Evidence that protein corona reduces the release of antimicrobial peptides from polymeric nanocapsules in milk. Food Res. Int. 2021, 140, 110074.

[68]

Al-Ahmady, Z. S.; Hadjidemetriou, M.; Gubbins, J.; Kostarelos, K. Formation of protein corona in vivo affects drug release from temperature-sensitive liposomes. J. Control. Release 2018, 276, 157–167.

[69]

Mittag, J. J.; Kneidl, B.; Preiβ, T.; Hossann, M.; Winter, G.; Wuttke, S.; Engelke, H.; Rädler, J. O. Impact of plasma protein binding on cargo release by thermosensitive liposomes probed by fluorescence correlation spectroscopy. Eur. J. Pharm. Biopharm. 2017, 119, 215–223.

[70]

Comiskey, S. J.; Heath, T. D. Serum-induced leakage of negatively-charged liposomes at nanomolar lipid concentrations. Biochemistry 1990, 29, 3626–3631.

[71]

Yingchoncharoen, P.; Kalinowski, D. S.; Richardson, D. R. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol. Rev. 2016, 68, 701–787.

[72]
Xue, X. D.; Qu, H. J.; Li, Y. P. Stimuli-responsive crosslinked nanomedicine for cancer treatment. Exploration, in press, http://doi.org/10.1002/EXP.20210134.
[73]

Smolková, B.; MacCulloch, T.; Rockwood, T. F.; Liu, M. H.; Henry, S. J. W.; Frtús, A.; Uzhytchak, M.; Lunova, M.; Hof, M.; Jurkiewicz, P. et al. Protein corona inhibits endosomal escape of functionalized DNA nanostructures in living cells. ACS Appl. Mater. Interfaces 2021, 13, 46375–46390.

[74]

Chien, M. P.; Thompson, M. P.; Lin, E. C.; Gianneschi, N. C. Fluorogenic enzyme-responsive micellar nanoparticles. Chem. Sci. 2012, 3, 2690–2694.

[75]

de la Rica, R.; Aili, D.; Stevens, M. M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev. 2012, 64, 967–978.

[76]

Shahriari, M.; Zahiri, M.; Abnous, K.; Taghdisi, S. M.; Ramezani, M.; Alibolandi, M. Enzyme responsive drug delivery systems in cancer treatment. J. Control. Release 2019, 308, 172–189.

[77]

Stepien, G.; Moros, M.; Pérez-Hernández, M.; Monge, M.; Gutiérrez, L.; Fratila, R. M.; de las Heras, M.; Menao Guillén, S.; Puente Lanzarote, J. J.; Solans, C. et al. Effect of surface chemistry and associated protein corona on the long-term biodegradation of iron oxide nanoparticles in vivo. ACS Appl. Mater. Interfaces 2018, 10, 4548–4560.

[78]

Cao, M. J.; Cai, R.; Zhao, L. N.; Guo, M. Y.; Wang, L. M.; Wang, Y. C.; Zhang, L. L.; Wang, X. F.; Yao, H. D.; Xie, C. Y. et al. Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nat. Nanotechnol. 2021, 16, 708–716.

[79]

Kooijmans, S. A. A.; Fliervoet, L. A. L.; van der Meel, R.; Fens, M. H. A. M.; Heijnen, H. F. G.; van Bergen en Henegouwen, P. M. P.; Vader, P.; Schiffelers, R. M. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J. Control. Release 2016, 224, 77–85.

[80]

Perry, J. L.; Reuter, K. G.; Kai, M. P.; Herlihy, K. P.; Jones, S. W.; Luft, J. C.; Napier, M.; Bear, J. E.; DeSimone, J. M. PEGylated PRINT nanoparticles: The impact of peg density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 2012, 12, 5304–5310.

[81]

Xu, H.; Wang, K. Q.; Deng, Y. H.; Chen, D. W. Effects of cleavable PEG-cholesterol derivatives on the accelerated blood clearance of PEGylated liposomes. Biomaterials 2010, 31, 4757–4763.

[82]

Dai, Q.; Walkey, C.; Chan, W. C. W. Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew. Chem., Int. Ed. 2014, 53, 5093–5096.

[83]

Li, M. Y.; Jiang, S.; Simon, J.; Paßlick, D.; Frey, M. L.; Wagner, M.; Mailänder, V.; Crespy, D.; Landfester, K. Brush conformation of polyethylene glycol determines the stealth effect of nanocarriers in the low protein adsorption regime. Nano Lett. 2021, 21, 1591–1598.

[84]

Wang, F. L.; Wu, Y. F.; Zhang, J. W.; Wang, H. H.; Xie, X. T.; Ye, X.; Peng, D. Y.; Chen, W. D. Induction of cytochrome P450 involved in the accelerated blood clearance phenomenon induced by PEGylated liposomes in vivo. Drug Metab. Dispos. 2019, 47, 364–376.

[85]

Ishida, T.; Kiwada, H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int. J. Pharm. 2008, 354, 56–62.

[86]

Lokerse, W. J. M.; Lazarian, A.; Kleinhempel, A.; Petrini, M.; Schwarz, P.; Hossann, M.; Holdt, L. M.; Mailänder, V.; Lindner, L. H. Mechanistic investigation of thermosensitive liposome immunogenicity and understanding the drivers for circulation half-life: A polyethylene glycol versus 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol study. J. Control. Release 2021, 333, 1–15.

[87]

Bauer, K. N.; Simon, J.; Mailänder, V.; Landfester, K.; Wurm, F. R. Polyphosphoester surfactants as general stealth coatings for polymeric nanocarriers. Acta Biomater. 2020, 116, 318–328.

[88]

Simon, J.; Bauer, K. N.; Langhanki, J.; Opatz, T.; Mailänder, V.; Landfester, K.; Wurm, F. R. Noncovalent targeting of nanocarriers to immune cells with polyphosphoester-based surfactants in human blood plasma. Adv. Sci. 2019, 6, 1901199.

[89]

Liu, Y.; Wang, H.; Tang, M. S.; Cao, W. X.; Zhang, Z. L.; Li, X. H. Hierarchically targetable fiber rods decorated with dual targeting ligands and detachable zwitterionic coronas. Acta Biomater. 2020, 110, 231–241.

[90]

Schlenoff, J. B. Zwitteration: Coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 2014, 30, 9625–9636.

[91]

Huang, B.; Yang, Z. X.; Fang, S. B.; Li, Y.; Zhong, Z. C.; Zheng, R. Q.; Zhang, J. Z.; Wang, H. X.; Wang, S. X.; Zou, Q. C. et al. Amphoteric natural starch-coated polymer nanoparticles with excellent protein corona-free and targeting properties. Nanoscale 2020, 12, 5834–5847.

[92]

Jalil, A. R.; Andrechak, J. C.; Discher, D. E. Macrophage checkpoint blockade: Results from initial clinical trials, binding analyses, and CD47-SIRPα structure-function. Antib. Ther. 2020, 3, 80–94.

[93]

Barclay, A. N.; van den Berg, T. K. The interaction between signal regulatory protein alpha (SIRPα) and CD47: Structure, function, and therapeutic target. Annu. Rev. Immunol. 2014, 32, 25–50.

[94]

Matozaki, T.; Murata, Y.; Okazawa, H.; Ohnishi, H. Functions and molecular mechanisms of the CD47-SIRPα signalling pathway. Trends Cell Biol. 2009, 19, 72–80.

[95]

Belhadj, Z.; He, B.; Deng, H. L.; Song, S. Y.; Zhang, H.; Wang, X. Q.; Dai, W. B.; Zhang, Q. A combined “eat me/don't eat me” strategy based on extracellular vesicles for anticancer nanomedicine. J. Extracell. Vesicles 2020, 9, 1806444.

[96]

Nguyen, T. D. T.; Marasini, R.; Rayamajhi, S.; Aparicio, C.; Biller, D.; Aryal, S. Erythrocyte membrane concealed paramagnetic polymeric nanoparticle for contrast-enhanced magnetic resonance imaging. Nanoscale 2020, 12, 4137–4149.

[97]

Tesarova, B.; Dostalova, S.; Smidova, V.; Goliasova, Z.; Skubalova, Z.; Michalkova, H.; Hynek, D.; Michalek, P.; Polanska, H.; Vaculovicova, M. et al. Surface-PASylation of ferritin to form stealth nanovehicles enhances in vivo therapeutic performance of encapsulated ellipticine. Appl. Mater. Today 2020, 18, 100501.

[98]

Lundberg, P.; Langel, Ü. A brief introduction to cell-penetrating peptides. J. Mol. Recognit. 2003, 16, 227–233.

[99]

Ding, Y. X.; Liu, J. J.; Zhang, Y. M.; Li, X.; Ou, H. L.; Cheng, T. J.; Ma, L.; An, Y. L.; Liu, J. F.; Huang, F. et al. A novel strategy based on a ligand-switchable nanoparticle delivery system for deep tumor penetration. Nanoscale Horiz. 2019, 4, 658–666.

[100]

Wang, F. H.; Wang, Y.; Zhang, X.; Zhang, W. J.; Guo, S. R.; Jin, F. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J. Control. Release 2014, 174, 126–136.

[101]

Brooks, H.; Lebleu, B.; Vives, E. TAT peptide-mediated cellular delivery: Back to basics. Adv. Drug Deliv. Rev. 2005, 57, 559–577.

[102]

Sarko, D.; Beijer, B.; Boy, R. G.; Nothelfer, E. M.; Leotta, K.; Eisenhut, M.; Altmann, A.; Haberkorn, U.; Mier, W. The pharmacokinetics of cell-penetrating peptides. Mol. Pharmaceutics 2010, 7, 2224–2231.

[103]

Amin, M.; Bagheri, M.; Mansourian, M.; Jaafari, M. R.; ten Hagen, T. L. M. Regulation of in vivo behavior of TAT-modified liposome by associated protein corona and avidity to tumor cells. Int. J. Nanomed. 2018, 13, 7441–7455.

[104]

Chen, D. Y.; Ganesh, S.; Wang, W. M.; Amiji, M. Protein corona-enabled systemic delivery and targeting of nanoparticles. AAPS J. 2020, 22, 83.

[105]
PalanikumarL.Al-HosaniS.KalmouniM.NguyenV. P.AliL.PasrichaR.BarreraF. N.MagzoubM. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeuticsCommun. Biol.202039510.1038/s42003-020-0817-4

Palanikumar, L.; Al-Hosani, S.; Kalmouni, M.; Nguyen, V. P.; Ali, L.; Pasricha, R.; Barrera, F. N.; Magzoub, M. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun. Biol. 2020, 3, 95.

[106]
LiZ. B.LiD.LiQ. S.LuoC.LiJ.KouL. F.ZhangD.ZhangH. T.ZhaoS. Y.KanQ. M. In situ low-immunogenic albumin-conjugating-corona guiding nanoparticles for tumor-targeting chemotherapyBiomater. Sci.201862681269310.1039/C8BM00692J

Li, Z. B.; Li, D.; Li, Q. S.; Luo, C.; Li, J.; Kou, L. F.; Zhang, D.; Zhang, H. T.; Zhao, S. Y.; Kan, Q. M. et al. In situ low-immunogenic albumin-conjugating-corona guiding nanoparticles for tumor-targeting chemotherapy. Biomater. Sci. 2018, 6, 2681–2693.

[107]

Li, H. M.; Wang, Y.; Tang, Q.; Yin, D.; Tang, C.; He, E.; Zou, L.; Peng, Q. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater. 2021, 129, 57–72.

[108]

Li, Z. B.; Li, D.; Zhang, W. J.; Zhang, P.; Kan, Q. M.; Sun, J. Insight into the preformed albumin corona on in vitro and in vivo performances of albumin-selective nanoparticles. Asian J. Pharm. Sci. 2019, 14, 52–62.

[109]

Zeng, X.; Sun, J.; Li, S. P.; Shi, J. Y.; Gao, H.; Leong, W. S.; Wu, Y. Q.; Li, M. H.; Liu, C. X.; Li, P. et al. Blood-triggered generation of platinum nanoparticle functions as an anti-cancer agent. Nat. Commun. 2020, 11, 567.

[110]

Giulimondi, F.; Digiacomo, L.; Pozzi, D.; Palchetti, S.; Vulpis, E.; Capriotti, A. L.; Chiozzi, R. Z.; Laganà, A.; Amenitsch, H.; Masuelli, L. et al. Interplay of protein corona and immune cells controls blood residency of liposomes. Nat. Commun. 2019, 10, 3686.

[111]

Lu, X.; Xu, P. P.; Ding, H. M.; Yu, Y. S.; Huo, D.; Ma, Y. Q. Tailoring the component of protein corona via simple chemistry. Nat. Commun. 2019, 10, 4520.

[112]

Zanganeh, S.; Hutter, G.; Spitler, R.; Lenkov, O.; Mahmoudi, M.; Shaw, A.; Pajarinen, J. S.; Nejadnik, H.; Goodman, S.; Moseley, M. et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 2016, 11, 986–994.

[113]

Cardoso, V. F.; Francesko, A.; Ribeiro, C.; Bañobre-López, M.; Martins, P.; Lanceros-Mendez, S. Advances in magnetic nanoparticles for biomedical applications. Adv. Healthc. Mater. 2018, 7, 1700845.

[114]

Zhang, T. B.; Li, G. L.; Miao, Y. Q.; Lu, J. J.; Gong, N. Q.; Zhang, Y. F.; Sun, Y. T.; He, Y.; Peng, M. L.; Liu, X. L. et al. Magnetothermal regulation of in vivo protein corona formation on magnetic nanoparticles for improved cancer nanotherapy. Biomaterials 2021, 276, 121021.

[115]

Cui, T.; Ma, Y.; Yang, J. Y.; Liu, S.; Wang, Z. Z.; Zhang, F. F.; Wang, J.; Cai, T.; Dong, L.; Hong, J. et al. Protein corona-guided tumor targeting therapy via the surface modulation of low molecular weight PEG. Nanoscale 2021, 13, 5883–5891.

[116]

Chen, D. Y.; Ganesh, S.; Wang, W. M.; Amiji, M. The role of surface chemistry in serum protein corona-mediated cellular delivery and gene silencing with lipid nanoparticles. Nanoscale 2019, 11, 8760–8775.

[117]

Chen, D. Y.; Parayath, N.; Ganesh, S.; Wang, W. M.; Amiji, M. The role of apolipoprotein- and vitronectin-enriched protein corona on lipid nanoparticles for in vivo targeted delivery and transfection of oligonucleotides in murine tumor models. Nanoscale 2019, 11, 18806–18824.

[118]

Tang, H.; Zou, P.; Zhang, C. M.; Chen, R.; Chen, W.; Lin, H. Identification of apolipoprotein using feature selection technique. Sci. Rep. 2016, 6, 30441.

[119]

Dal Magro, R.; Albertini, B.; Beretta, S.; Rigolio, R.; Donzelli, E.; Chiorazzi, A.; Ricci, M.; Blasi, P.; Sancini, G. Artificial apolipoprotein corona enables nanoparticle brain targeting. Nanomed.: Nanotechnol. Biol. Med. 2018, 14, 429–438.

[120]

Yu, L.; Xu, M. Y.; Xu, W. W.; Xiao, W.; Jiang, X. H.; Wang, L.; Gao, H. L. Enhanced cancer-targeted drug delivery using precoated nanoparticles. Nano Lett. 2020, 20, 8903–8911.

[121]

Oh, J. Y.; Kim, H. S.; Palanikumar, L.; Go, E. M.; Jana, B.; Park, S. A.; Kim, H. Y.; Kim, K.; Seo, J. K.; Kwak, S. K. et al. Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nat. Commun. 2018, 9, 4548.

[122]

Xiao, W.; Wang, Y. Z.; Zhang, H. L.; Liu, Y. W.; Xie, R.; He, X. Q.; Zhou, Y.; Liang, L. Q.; Gao, H. L. The protein corona hampers the transcytosis of transferrin-modified nanoparticles through blood-brain barrier and attenuates their targeting ability to brain tumor. Biomaterials 2021, 274, 120888.

[123]

Li, Z. B.; Zhu, J. J.; Wang, Y. Q.; Zhou, M.; Li, D.; Zheng, S. Z.; Yin, L. L.; Luo, C.; Zhang, H. C.; Zhong, L. et al. In situ apolipoprotein E-enriched corona guides dihydroartemisinin-decorating nanoparticles towards LDLr-mediated tumor-homing chemotherapy. Asian J. Pharm. Sci. 2020, 15, 482–491.

[124]

Arcella, A.; Palchetti, S.; Digiacomo, L.; Pozzi, D.; Capriotti, A. L.; Frati, L.; Oliva, M. A.; Tsaouli, G.; Rota, R.; Screpanti, I. et al. Brain targeting by liposome-biomolecular corona boosts anticancer efficacy of temozolomide in glioblastoma cells. ACS Chem. Neurosci. 2018, 9, 3166–3174.

[125]

Zhang, Z.; Guan, J.; Jiang, Z. X.; Yang, Y.; Liu, J. C.; Hua, W.; Mao, Y.; Li, C.; Lu, W. Y.; Qian, J. et al. Brain-targeted drug delivery by manipulating protein corona functions. Nat. Commun. 2019, 10, 3561.

[126]

Guan, J.; Zhang, Z.; Hu, X. F.; Yang, Y.; Chai, Z. L.; Liu, X. Q.; Liu, J. C.; Gao, B.; Lu, W. Y.; Qian, J. et al. Cholera toxin subunit B enabled multifunctional glioma-targeted drug delivery. Adv. Healthc. Mater. 2017, 6, 1700709.

[127]

Huo, T. T.; Yang, Y. F.; Qian, M.; Jiang, H. L.; Du, Y. L.; Zhang, X. Y.; Xie, Y. B.; Huang, R. Q. Versatile hollow COF nanospheres via manipulating transferrin corona for precise glioma-targeted drug delivery. Biomaterials 2020, 260, 120305.

[128]

Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178.

[129]

Ashley, C. E.; Carnes, E. C.; Phillips, G. K.; Padilla, D.; Durfee, P. N.; Brown, P. A.; Hanna, T. N.; Liu, J. W.; Phillips, B.; Carter, M. B. et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 2011, 10, 389–397.

[130]

Behzadi, S.; Serpooshan, V.; Sakhtianchi, R.; Müller, B.; Landfester, K.; Crespy, D.; Mahmoudi, M. Protein corona change the drug release profile of nanocarriers: The “overlooked” factor at the nanobio interface. Colloids Surf. B: Biointerf. 2014, 123, 143–149.

[131]

Kah, J. C. Y.; Chen, J.; Zubieta, A.; Hamad-Schifferli, K. Exploiting the protein corona around gold nanorods for loading and triggered release. ACS Nano 2012, 6, 6730–6740.

[132]

Cifuentes-Rius, A.; de Puig, H.; Kah, J. C. Y.; Borros, S.; Hamad-Schifferli, K. Optimizing the properties of the protein corona surrounding nanoparticles for tuning payload release. ACS Nano 2013, 7, 10066–10074.

[133]

Irvine, D. J.; Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 2020, 20, 321–334.

[134]

Nam, J.; Son, S.; Park, K. S.; Zou, W. P.; Shea, L. D.; Moon, J. J. Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 2019, 4, 398–414.

[135]

Du, Y. Q.; Zhou, H. Z.; Su, G. L.; Ma, M. D.; Liu, Y. C. Protein corona-driven nanovaccines improve antigen intracellular release and immunotherapy efficacy. J. Control. Release 2022, 345, 601–609.

[136]

Corbo, C.; Li, A. A.; Poustchi, H.; Lee, G. Y.; Stacks, S.; Molinaro, R.; Ma, P.; Platt, T.; Behzadi, S.; Langer, R. et al. Analysis of the human plasma proteome using multi-nanoparticle protein corona for detection of Alzheimer's disease. Adv. Healthc. Mater. 2021, 10, 2000948.

[137]

Papi, M.; Palmieri, V.; Palchetti, S.; Pozzi, D.; Digiacomo, L.; Guadagno, E.; del Basso De Caro, M.; Di Domenico, M.; Ricci, S.; Pani, R. et al. Exploitation of nanoparticle–protein interactions for early disease detection. Appl. Phys. Lett. 2019, 114, 163702.

[138]

Caputo, D.; Digiacomo, L.; Cascone, C.; Pozzi, D.; Palchetti, S.; Di Santo, R.; Quagliarini, E.; Coppola, R.; Mahmoudi, M.; Caracciolo, G. Synergistic analysis of protein corona and haemoglobin levels detects pancreatic cancer. Cancers 2021, 13, 93.

[139]

Papi, M.; Palmieri, V.; Digiacomo, L.; Giulimondi, F.; Palchetti, S.; Ciasca, G.; Perini, G.; Caputo, D.; Cartillone, M. C.; Cascone, C. et al. Converting the personalized biomolecular corona of graphene oxide nanoflakes into a high-throughput diagnostic test for early cancer detection. Nanoscale 2019, 11, 15339–15346.

[140]

Digiacomo, L.; Caputo, D.; Coppola, R.; Cascone, C.; Giulimondi, F.; Palchetti, S.; Pozzi, D.; Caracciolo, G. Efficient pancreatic cancer detection through personalized protein corona of gold nanoparticles. Biointerphases 2021, 16, 011010.

[141]

Di Santo, R.; Digiacomo, L.; Quagliarini, E.; Capriotti, A. L.; Laganà, A.; Chiozzi, R. Z.; Caputo, D.; Cascone, C.; Coppola, R.; Pozzi, D. et al. Personalized graphene oxide-protein corona in the human plasma of pancreatic cancer patients. Front. Bioeng. Biotechnol. 2020, 8, 491.

[142]

del Pilar Chantada-Vazquez, M.; Castro López, A.; García Vence, M.; Vázquez-Estévez, S.; Acea-Nebril, B.; Calatayud, D. G.; Jardiel, T.; Bravo, S. B.; Núñez, C. Proteomic investigation on bio-corona of Au, Ag and Fe nanoparticles for the discovery of triple negative breast cancer serum protein biomarkers. J. Proteomics 2020, 212, 103581.

[143]

Weber, C.; Morsbach, S.; Landfester, K. Possibilities and limitations of different separation techniques for the analysis of the protein corona. Angew. Chem., Int. Ed. 2019, 58, 12787–12794.

[144]

Simonsen, J. B.; Münter, R. Pay attention to biological nanoparticles when studying the protein corona on nanomedicines. Angew. Chem., Int. Ed. 2020, 59, 12584–12588.

[145]
CarrilM.PadroD.del PinoP.Carrillo-CarrionC.GallegoM.ParakW. J. In situ detection of the protein corona in complex environmentsNat. Commun.20178154210.1038/s41467-017-01826-4

Carril, M.; Padro, D.; del Pino, P.; Carrillo-Carrion, C.; Gallego, M.; Parak, W. J. In situ detection of the protein corona in complex environments. Nat. Commun. 2017, 8, 1542.

[146]

Lara, S.; Alnasser, F.; Polo, E.; Garry, D.; Lo Giudice, M. C.; Hristov, D. R.; Rocks, L.; Salvati, A.; Yan, Y.; Dawson, K. A. Identification of receptor binding to the biomolecular corona of nanoparticles. ACS Nano 2017, 11, 1884–1893.

Publication history
Copyright
Acknowledgements

Publication history

Received: 28 May 2022
Revised: 30 July 2022
Accepted: 01 August 2022
Published: 16 September 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 32171386, 51773098, 31971304, 21807023, and 32101126), the Science Fund for Creative Research Groups of Nature Science Foundation of Hebei Province (No. B2021201038), and the China Postdoctoral Science Foundation (No. 2021M700954).

Return