Journal Home > Volume 16 , Issue 3

The direct conversion of ethanol to 1,1-diethoxyethane (DEE) through one-pot dehydrogenation-acetalization has attracted broad interest from both academia and industry. Based on thermodynamics, the oxidative dehydrogenation of alcohol to acetaldehyde requires high temperature to activate oxygen to realize the C–H cleavage, while the acetalization of acetaldehyde with ethanol is exothermic reversible reaction favorable at low temperature. The mismatching of the reaction condition for the two consecutive steps makes it a great challenge to achieve both high ethanol conversion and high DEE selectivity. This work reports a highly efficient bi-functional catalysis by Bi/BiCeOx for one-pot oxidative dehydrogenation-acetalization route from ethanol to DEE under 150 °C and ambient pressure, affording a selectivity of 98.5% ± 0.5% to DEE at an ethanol conversion of 87.0% ± 1.0%. An efficient tandem catalysis has been achieved on the interfacial Biδ+-Ov-CeIII sites in Bi/BiCeOx established by strong metal–support interaction, in which Biδ+-Ov- sites contribute to the oxidative dehydrogenation of ethanol at mild temperature, and -Ov-CeIII sites to the subsequent acetalization between the generated acetaldehyde and ethanol.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Low temperature one-pot synthesis of 1,1-diethoxyethane from ethanol on Bi/BiCeOx with strong metal–support interactions

Show Author's information Zhe AnJiayu LiuMeng CaoJian ZhangYanru ZhuHongyan SongXu XiangJing He( )
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

The direct conversion of ethanol to 1,1-diethoxyethane (DEE) through one-pot dehydrogenation-acetalization has attracted broad interest from both academia and industry. Based on thermodynamics, the oxidative dehydrogenation of alcohol to acetaldehyde requires high temperature to activate oxygen to realize the C–H cleavage, while the acetalization of acetaldehyde with ethanol is exothermic reversible reaction favorable at low temperature. The mismatching of the reaction condition for the two consecutive steps makes it a great challenge to achieve both high ethanol conversion and high DEE selectivity. This work reports a highly efficient bi-functional catalysis by Bi/BiCeOx for one-pot oxidative dehydrogenation-acetalization route from ethanol to DEE under 150 °C and ambient pressure, affording a selectivity of 98.5% ± 0.5% to DEE at an ethanol conversion of 87.0% ± 1.0%. An efficient tandem catalysis has been achieved on the interfacial Biδ+-Ov-CeIII sites in Bi/BiCeOx established by strong metal–support interaction, in which Biδ+-Ov- sites contribute to the oxidative dehydrogenation of ethanol at mild temperature, and -Ov-CeIII sites to the subsequent acetalization between the generated acetaldehyde and ethanol.

Keywords: strong metal–support interaction, ethanol conversion, 1,1-diethoxyethane, Biδ+-Ov-CeIII sites

References(61)

[1]

Silva, V. M. T. M.; Rodrigues, A. E. Novel process for diethylacetal synthesis. AIChE J. 2005, 51, 2752–2768.

[2]

Silva, V. M. T. M.; Rodrigues, A. E. Synthesis of diethylacetal: Thermodynamic and kinetic studies. Chem. Eng. Sci. 2001, 56, 1255–1263.

[3]

Nord, K. E.; Haupt, D. Reducing the emission of particles from a diesel engine by adding an oxygenate to the fuel. Environ. Sci. Technol. 2005, 39, 6260–6265.

[4]

Yin, K.; Chao, Y. G.; Lv, F.; Tao, L.; Zhang, W. Y.; Lu, S. Y.; Li, M. G.; Zhang, Q. H.; Gu, L.; Li, H. B. et al. One nanometer PtIr nanowires as high-efficiency bifunctional catalysts for electrosynthesis of ethanol into high value-added multicarbon compound coupled with hydrogen production. J. Am. Chem. Soc. 2021, 143, 10822–10827.

[5]

Zhou, P.; Zhang, Q. H.; Chao, Y. G.; Wang, L.; Li, Y. J.; Chen, H.; Gu, L.; Guo S. J. Partially reduced Pd single atoms on CdS nanorods enable photocatalytic reforming of ethanol into high value-added multicarbon compound. Chem 2021, 7, 1033–1049.

[6]
Distillers Co Yeast Ltd; Bramwyche, P. L.; Mugdan, M.; Stanley, H. M. Improvements in or relating to the manufacture of diethyl acetal. GB Patent 625131A, September 18, 1949.
[7]

Capeletti, M. R.; Balzano, L.; de la Puente, G.; Laborde, M.; Sedran, U. Synthesis of acetal (1,1-diethoxyethane) from ethanol and acetaldehyde over acidic catalysts. Appl. Catal. A: Gen. 2000, 198, L1–L4.

[8]

Silva, V. M. T. M.; Rodrigues, A. E. Dynamics of a fixed-bed adsorptive reactor for synthesis of diethylacetal. AIChE J. 2002, 48, 625–634.

[9]

Gaspar, A. B.; Esteves, A. M. L.; Mendes, F. M. T.; Barbosa, F. G.; Appel, L. G. Chemicals from ethanol—The ethyl acetate one-pot synthesis. Appl. Catal. A: Gen. 2009, 363, 109–114.

[10]

Chakraborty, S.; Piszel, P. E.; Hayes, C. E.; Baker, R. T.; Jones W. D. Highly selective formation of n-butanol from ethanol through the Guerbet process: A tandem catalytic approach. J. Am. Chem. Soc. 2015, 137, 14264–14267.

[11]

Liu, H. C.; Iglesia, E. Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures. J. Phys. Chem. B 2005, 109, 2155–2163.

[12]

Bueno, A. C.; Gonçalves, J. A.; Gusevskaya, E. V. Palladium-catalyzed oxidation of primary alcohols: Highly selective direct synthesis of acetals. Appl. Catal. A: Gen. 2007, 329, 1–6.

[13]

Thavornprasert, K. A.; de la Goublaye de Ménorval, B.; Capron, M.; Gornay, J.; Jalowiecki-Duhamel, L.; Sécordel, X.; Cristol, S.; Dubois, J. L.; Dumeignil, F. Selective oxidation of ethanol towards a highly valuable product over industrial and model catalysts. Biofuels 2012, 3, 25–34.

[14]

He, X. H.; Liu, H. C. Efficient synthesis of 1,1-diethoxyethane via sequential ethanol reactions on silica-supported copper and H-Y zeolite catalysts. Catal. Today 2014, 233, 133–139.

[15]

Liu, H. C.; Iglesia, E. Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+nVnMo12−nPO40 keggin structures. J. Phys. Chem. B 2003, 107, 10840–10847.

[16]

Kolah, A. K.; Mahajani, S. M.; Sharma, M. M. Acetalization of formaldehyde with methanol in batch and continuous reactive distillation columns. Ind. Eng. Chem. Res. 1996, 35, 3707–3720.

[17]

Ding, J.; Huang, L.; Ji, G. J.; Zeng, Y. W.; Chen, Z. X.; Eddings, E. G.; Fan, M. H.; Zhong, Q.; Kung, H. H. Modification of catalytic properties of hollandite manganese oxide by Ag intercalation for oxidative acetalization of ethanol to diethoxyethane. ACS Catal. 2021, 11, 5347–5357.

[18]

Zhang, H. X.; Zhang, W. Q.; Zhao, M.; Yang, P. J.; Zhu, Z. P. A site-holding effect of TiO2 surface hydroxyl in the photocatalytic direct synthesis of 1,1-diethoxyethane from ethanol. Chem. Commun. 2017, 53, 1518–1521.

[19]

Zhang, H. X.; Wu, Y. P.; Li, L.; Zhu, Z. P. Photocatalytic direct conversion of ethanol to 1,1- diethoxyethane over noble-metal-loaded TiO2 nanotubes and nanorods. Chem. Sus. Chem. 2015, 8, 1226–1231.

[20]

Chao, Y. G.; Zhang, W. Q.; Wu, X. M.; Gong, N. N.; Bi, Z. H.; Li, Y. Q.; Zheng, J. F.; Zhu, Z. P.; Tan, Y. S. Visible-light direct conversion of ethanol to 1,1-diethoxyethane and hydrogen over a non-precious metal photocatalyst. Chem.—Eur. J. 2019, 25, 189–194.

[21]

Xiao, Y.; Wang, Y.; Varma, A. Low-temperature selective oxidation of methanol over Pt-Bi bimetallic catalysts. J. Catal. 2018, 363, 144–153.

[22]

Besson, M.; Gallezot, P. Selective oxidation of alcohols and aldehydes on metal catalysts. Catal. Today 2000, 57, 127–141.

[23]

Xiao, Y.; Greeley, J.; Varma, A.; Zhao, Z. J.; Xiao, G. M. An experimental and theoretical study of glycerol oxidation to 1, 3-dihydroxyacetone over bimetallic Pt-Bi catalysts. AIChE J. 2017, 63, 705–715.

[24]

Zhao, S.; Dai, Z.; Guo, W. J.; Chen, F. X.; Liu, Y. L.; Chen, R. Highly selective oxidation of glycerol over Bi/Bi3.64Mo0.36O6.55 heterostructure:Dual reaction pathways induced by photogenerated 1O2 and holes. Appl. Catal. B: Environ. 2019, 244, 206–214.

[25]

Pearson, R. G. Hard and soft acids and bases. J. Am. Chem. Soc. 1963, 85, 3533–3539.

[26]

Tateiwa, J. I.; Horiuchi, H.; Uemura, S. Ce3+-exchanged montmorillonite (Ce3+-mont) as a useful substrate-selective acetalization catalyst. J. Org. Chem. 1995, 60, 4039–4043.

[27]

Idriss, H.; Diagne, C.; Hindermann, J. P.; Kiennemann, A.; Barteau, M. A. Reactions of acetaldehyde on CeO2 and CeO2-supported catalysts. J. Catal. 1995, 155, 219–237.

[28]

Calaza, F. C.; Xu, Y.; Mullins, D. R.; Overbury, S. H. Oxygen vacancy-assisted coupling and enolization of acetaldehyde on CeO2 (111). J. Am. Chem. Soc. 2012, 134, 18034–18045.

[29]

Millange, F.; Walton, R. I.; O’Hare, D. Time-resolved in-situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds. J. Mater. Chem. 2000, 10, 1713–1720.

[30]

Fornasari, G.; Gazzano, M.; Matteuzzi, D.; Trifirò, F.; Vaccari, A. Structure and reactivity of high-surface-area Ni/Mg/Al mixed oxides. Appl. Clay Sci. 1995, 10, 69–82.

[31]

Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu, H. C.; Yan, C. H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 2005, 109, 24380–24385.

[32]

Sood, S.; Umar, A.; Mehta, S. K.; Kansal, S. K. α-Bi2O3 nanorods: An efficient sunlight active photocatalyst for degradation of Rhodamine B and 2,4,6-trichlorophenol. Ceram. Int. 2015, 41, 3355–3364.

[33]

Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–767.

[34]

Li, G. S.; Mao, Y. C.; Li, L. P.; Feng, S. H.; Wang, M. Q.; Yao, X. Solid solubility and transport properties of nanocrystalline (CeO2)1−x(BiO1.5)x by hydrothermal conditions. Chem. Mater. 1999, 11, 1259–1266.

[35]

Lou, Y.; Wang, L.; Zhao, Z. Y.; Zhang, Y. H.; Zhang, Z. G.; Lu, G. Z.; Guo, Y.; Guo, Y. L. Low-temperature CO oxidation over Co3O4-based catalysts: Significant promoting effect of Bi2O3 on Co3O4 catalyst. Appl. Catal. B: Environ. 2014, 146, 43–49.

[36]

Grabchenko, M. V.; Mamontov, G. V.; Zaikovskii, V. I.; La Parola, V.; Liotta, L. F.; Vodyankina, O. V. The role of metal–support interaction in Ag/CeO2 catalysts for CO and soot oxidation. Appl. Catal. B: Environ. 2020, 260, 118148.

[37]

Aneggi, E.; Wiater, D.; de Leitenburg, C.; Llorca, J.; Trovarelli, A. Shape-dependent activity of ceria in soot combustion. ACS Catal. 2014, 4, 172–181.

[38]

Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Strong interactions in supported-metal catalysts. Science 1981, 211, 1121–1125.

[39]

van Deelen, T. W.; Mejía, C. H.; de Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.

[40]

Ro, I.; Resasco, J.; Christopher, P. Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts. ACS Catal. 2018, 8, 7368–7387.

[41]

Morgan, W. E.; Stec, W. J.; Van Wazer, J. R. Inner-orbital binding-energy shifts of antimony and bismuth compounds. Inorg. Chem. 1973, 12, 953–955.

[42]

Zhang, Q.; Zhou, Y.; Wang, F.; Dong, F.; Li, W.; Li, H. M.; Patzke, G. R. From semiconductors to semimetals: Bismuth as a photocatalyst for NO oxidation in air. J. Mater. Chem. A 2014, 2, 11065–11072.

[43]

Zhao, Z. W.; Zhang, W. D.; Lv, X. S.; Sun, Y. J.; Dong, F.; Zhang, Y. X. Noble metal-free Bi nanoparticles supported on TiO2 with plasmon-enhanced visible light photocatalytic air purification. Environ. Sci.: Nano 2016, 3, 1306–1317.

[44]

Lai, M.; Zhao, J.; Chen, Q. C.; Feng, S. J.; Bai, Y. J.; Li, Y. X.; Wang, C. Y. Photocatalytic toluene degradation over Bi-decorated TiO2: Promoted O2 supply to catalyst’s surface by metallic Bi. Catal. Today 2019, 335, 372–380.

[45]

Zhang, X. Y.; Yang, P. F.; Liu, Y. N.; Pan, J. H.; Li, D. Q.; Wang, B.; Feng, J. T. Support morphology effect on the selective oxidation of glycerol over AuPt/CeO2 catalysts. J. Catal. 2020, 385, 146–159.

[46]

Liu, M. H.; Wu, X. D.; Liu, S.; Gao, Y. X.; Chen, Z.; Ma, Y.; Ran, R.; Weng, D. Study of Ag/CeO2 catalysts for naphthalene oxidation: Balancing the oxygen availability and oxygen regeneration capacity. Appl. Catal. B: Environ. 2017, 219, 231–240.

[47]

Zhang, X.; Wang, D. K.; Jing, M. Z.; Liu, J.; Zhao, Z.; Xu, G. H.; Song, W. Y.; Wei, Y. C.; Sun, Y. Q. Ordered mesoporous CeO2-supported Ag as an effective catalyst for carboxylative coupling reaction using CO2. ChemCatChem 2019, 11, 2089–2098.

[48]

Liu, S.; Wu, X. D.; Liu, W.; Chen, W. M.; Ran, R.; Li, M.; Weng, D. Soot oxidation over CeO2 and Ag/CeO2: Factors determining the catalyst activity and stability during reaction. J. Catal. 2016, 337, 188–198.

[49]

Binet, C.; Daturi, M.; Lavalley, J. C. IR study of polycrystalline ceria properties in oxidised and reduced states. Catal. Today 1999, 50, 207–225.

[50]

Aliotta, C.; Liotta, L. F.; La Parola, V.; Martorana, A.; Muccillo, E. N. S.; Muccillo, R.; Deganello, F. Ceria-based electrolytes prepared by solution combustion synthesis: The role of fuel on the materials properties. Appl. Catal. B: Environ. 2016, 197, 14–22.

[51]

Hu, Z.; Liu, X. F.; Meng, D. M.; Guo, Y.; Guo, Y. L.; Lu, G. Z. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation. ACS Catal. 2016, 6, 2265–2279.

[52]

Kang, D. J.; Yu, X. L.; Ge, M. F. Morphology-dependent properties and adsorption performance of CeO2 for fluoride removal. Chem. Eng. J. 2017, 330, 36–43.

[53]

Hao, Q.; Wang, R. T.; Lu, H. J.; Xie, C. A.; Ao, W. H.; Chen, D. M.; Ma, C.; Yao, W. Q.; Zhu, Y. F. One-pot synthesis of C/Bi/Bi2O3 composite with enhanced photocatalytic activity. Appl. Catal. B: Environ. 2017, 219, 63–72.

[54]

Hardcastle, F. D.; Wachs, I. E. The molecular structure of bismuth oxide by Raman spectroscopy. J. Solid State Chem. 1992, 97, 319–331.

[55]

Lu, Y. F.; Huang, Y.; Zhang, Y. F.; Cao, J. J.; Li, H. W.; Bian, C.; Lee, S. C. Oxygen vacancy engineering of Bi2O3/Bi2O2CO3 heterojunctions: Implications of the interfacial charge transfer, NO adsorption and removal. Appl. Catal. B: Environ. 2018, 231, 357–367.

[56]

Emeis, C. A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 1993, 141, 347–354.

[57]

Zaki, M. I.; Hasan, M. A.; Al-Sagheer, F. A.; Pasupulety L. In situ FTIR spectra of pyridine adsorbed on SiO2-Al2O3, TiO2, ZrO2 and CeO2: General considerations for the identification of acid sites on surfaces of finely divided metal oxides. Colloids Surf. A: Physicochem. Eng. Aspects 2001, 190, 261–274.

[58]

Mann, A. K. P.; Wu, Z. L.; Calaza, F. C.; Overbury, S. H. Adsorption and reaction of acetaldehyde on shape-controlled CeO2 nanocrystals: Elucidation of structure–function relationships. ACS Catal. 2014, 4, 2437–2448.

[59]

Ochoa, J. V.; Trevisanut, C.; Millet, J. M. M.; Busca, G.; Cavani, F. In situ DRIFTS-MS study of the anaerobic oxidation of ethanol over spinel mixed oxides. J. Phys. Chem. C 2013, 117, 23908–23918.

[60]

Llorca, J.; Homs, N.; de la Piscina, P. R. In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts. J. Catal. 2004, 227, 556–560.

[61]

Taifan, W. E.; Yan, G. X.; Baltrusaitis, J. Surface chemistry of MgO/SiO2 catalyst during the ethanol catalytic conversion to 1,3-butadiene: In-situ DRIFTS and DFT study. Catal. Sci. Technol. 2017, 7, 4648–4668.

File
12274_2022_4848_MOESM1_ESM.pdf (302.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 May 2022
Revised: 14 July 2022
Accepted: 02 August 2022
Published: 13 September 2022
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

Financial support from the National Natural Science Foundation of China (Nos. 22138001 and 21521005) and the National Key R&D Program of China (No. 2017YFA0206804) is acknowledged. We thank the support of Beijing Engineering Center for Hierarchical Catalysts.

Return