Journal Home > Volume 16 , Issue 3

The development of high-performance solid-state electrolyte (SSE) films is critical to the practical application of all-solid-state Li metal batteries (ASSLMBs). However, developing high-performance free-standing electrolyte films remains a challenging task. In this work, we demonstrate a novel scalable solvent-free process for fabricating high ceramic content composite solid-state electrolyte (HCCSE) films. Specifically speaking, a mixture of ceramic and polymer is dry mixed, fibered, and calendered into a free-standing porous ceramic film, on which polymer precursor is coated and polymerized to bridge the inorganic ceramic particles, resulting in a flexible HCCSE film with a ceramic content of up to 80 wt.%. High ceramic content not only leads to high ionic conductivity but also brings good mechanical properties; while the organic phase enables electrode|electrolyte interfacial stability. When Li10GeP2S12 (LGPS) and polymeric ionic liquid-based solid polymer electrolytes (PIL-SPEs) were used as the inorganic and organic phases, respectively, the room temperature ionic conductivity of the resulted HCCSE reaches 0.91 mS·cm−1. Based on this HCCSE, Li||Li symmetric battery cycled stably for more than 2,400 h with ultra-low overpotential, and ASSLMBs with different cathodes (LiFePO4 and sulfurized polyacrylonitrile (PAN-S)) present small polarization and decent cyclability at room temperature. This work provides a novel scalable solvent-free strategy for preparing high-performance free-standing composite solid-state electrolyte (CSE) film for room temperature ASSLMBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High ceramic content composite solid-state electrolyte films prepared via a scalable solvent-free process

Show Author's information Daiqian Chen1,2Chenji Hu2,3Qi Chen4Guoyong Xue2Lingfei Tang2Qingyu Dong2Bowen Chen2Fengrui Zhang2Mingwen Gao4Jingjing Xu2Yanbin Shen2( )Liwei Chen1,2,3
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and in situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
Baosheng (Suzhou) Energy Technology Co., Ltd, Suzhou 215123, China

Abstract

The development of high-performance solid-state electrolyte (SSE) films is critical to the practical application of all-solid-state Li metal batteries (ASSLMBs). However, developing high-performance free-standing electrolyte films remains a challenging task. In this work, we demonstrate a novel scalable solvent-free process for fabricating high ceramic content composite solid-state electrolyte (HCCSE) films. Specifically speaking, a mixture of ceramic and polymer is dry mixed, fibered, and calendered into a free-standing porous ceramic film, on which polymer precursor is coated and polymerized to bridge the inorganic ceramic particles, resulting in a flexible HCCSE film with a ceramic content of up to 80 wt.%. High ceramic content not only leads to high ionic conductivity but also brings good mechanical properties; while the organic phase enables electrode|electrolyte interfacial stability. When Li10GeP2S12 (LGPS) and polymeric ionic liquid-based solid polymer electrolytes (PIL-SPEs) were used as the inorganic and organic phases, respectively, the room temperature ionic conductivity of the resulted HCCSE reaches 0.91 mS·cm−1. Based on this HCCSE, Li||Li symmetric battery cycled stably for more than 2,400 h with ultra-low overpotential, and ASSLMBs with different cathodes (LiFePO4 and sulfurized polyacrylonitrile (PAN-S)) present small polarization and decent cyclability at room temperature. This work provides a novel scalable solvent-free strategy for preparing high-performance free-standing composite solid-state electrolyte (CSE) film for room temperature ASSLMBs.

Keywords: free-standing, solid-state battery, composite solid-state electrolyte, solid-state electrolyte film

References(41)

[1]

Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.

[2]

Yang, X. F.; Adair, K. R.; Gao, X. J.; Sun, X. L. Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. Energy Environ. Sci. 2021, 14, 643–671.

[3]

Hu, C. J.; Shen, Y. B.; Chen, L. W. Recent advances in nanostructured composite solid electrolyte. Curr. Opin. Electrochem. 2020, 22, 51–57.

[4]

Shen, Y. B.; Zhang, Y. T.; Han, S. J.; Wang, J. W.; Peng, Z. Q.; Chen, L. W. Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes. Joule 2018, 2, 1674–1689.

[5]

Tan, D. H. S.; Banerjee, A.; Chen, Z.; Meng, Y. S. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 2020, 15, 170–180.

[6]

Sun, Y. K. Promising all-solid-state batteries for future electric vehicles. ACS Energy Lett. 2020, 5, 3221–3223.

[7]

Randau, S.; Weber, D. A.; Kötz, O.; Koerver, R.; Braun, P.; Weber, A.; Ivers-Tiffée, E.; Adermann, T.; Kulisch, J.; Zeier, W. G. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 2020, 5, 259–270.

[8]

Fan, L. Z.; He, H. C.; Nan, C. W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 2021, 6, 1003–1019.

[9]

Wang, C. H.; Yu, R. Z.; Duan, H.; Lu, Q. W.; Li, Q. Z.; Adair, K. R.; Bao, D. N.; Liu, Y.; Yang, R.; Wang, J. T. et al. Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes. ACS Energy Lett. 2022, 7, 410–416.

[10]

Pang, Y. P.; Pan, J. Y.; Yang, J. H.; Zheng, S. Y.; Wang, C. S. Electrolyte/electrode interfaces in all-solid-state lithium batteries: A review. Electrochem. Energy Rev. 2021, 4, 169–193.

[11]

Chu, Y. L.; Shen, Y. B.; Guo, F.; Zhao, X.; Dong, Q. Y.; Zhang, Q. Y.; Li, W.; Chen, H.; Luo, Z. J.; Chen, L. W. Advanced characterizations of solid electrolyte interphases in lithium-ion batteries. Electrochem. Energy Rev. 2020, 3, 187–219.

[12]

Lopez, J.; Mackanic, D. G.; Cui, Y.; Bao, Z. N. Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 2019, 4, 312–330.

[13]

Wang, Y. Y.; Zhai, F. F.; Zhou, Q.; Lv, Z. L.; Jian, L.; Han, P. X.; Zhou, X. H.; Cui, G. L. Functional applications of polymer electrolytes in high-energy-density lithium batteries. Macromol. Chem. Phys. 2022, 223, 2100410.

[14]

Hu, C. J.; Qi, J. Z.; Zhang, Y. X.; Xie, S. J.; Liu, B. T.; Xue, G. Y.; Chen, D. Q.; Zheng, Q. F.; Li, P.; Bo, S. H. et al. Room-temperature all-solid-state sodium battery based on bulk interfacial superionic conductor. Nano Lett. 2021, 21, 10354–10360.

[15]

Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18, 1278–1291.

[16]

Xu, L. Q.; Li, J. Y.; Deng, W. T.; Shuai, H. L.; Li, S.; Xu, Z. F.; Li, J. H.; Hou, H. S.; Peng, H. J.; Zou, G. Q. et al. Garnet solid electrolyte for advanced all-solid-state Li batteries. Adv. Energy Mater. 2021, 11, 2000648.

[17]

Wu, J. H.; Liu, S. F.; Han, F. D.; Yao, X. Y.; Wang, C. S. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 2021, 33, 2000751.

[18]

Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16030.

[19]

Zhao, N.; Khokhar, W.; Bi, Z. J.; Shi, C.; Guo, X. X.; Fan, L. Z.; Nan, C. W. Solid garnet batteries. Joule 2019, 3, 1190–1199.

[20]

Zhang, Z. H.; Wu, L. P.; Zhou, D.; Weng, W.; Yao, X. Y. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries. Nano Lett. 2021, 21, 5233–5239.

[21]

Jiang, T. L.; He, P. G.; Liang, Y. H.; Fan, L. Z. All-dry synthesis of self-supporting thin Li10GeP2S12 membrane and interface engineering for solid state lithium metal batteries. Chem. Eng. J. 2021, 421, 129965.

[22]

Jiang, Z. Y.; Wang, S. Q.; Chen, X. Z.; Yang, W. L.; Yao, X.; Hu, X. C.; Han, Q. Y.; Wang, H. H. Tape-casting Li0.34La0. 56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Adv. Mater. 2020, 32, 1906221.

[23]

Li, A. J.; Liao, X. B.; Zhang, H. R.; Shi, L.; Wang, P. Y.; Cheng, Q.; Borovilas, J.; Li, Z. Y.; Huang, W. L.; Fu, Z. X. et al. Nacre-inspired composite electrolytes for load-bearing solid-state lithium-metal batteries. Adv. Mater. 2020, 32, 1905517.

[24]

Sun, Y. Y.; Jin, F.; Li, J.; Liu, B. T.; Chen, X.; Dong, H. C.; Mao, Y. Y.; Gu, W.; Xu, J. J.; Shen, Y. B. et al. Composite solid electrolyte for solid-state lithium batteries workable at room temperature. ACS Appl. Energy Mater. 2020, 3, 12127–12133.

[25]

Liu, G. Z.; Shi, J. M.; Zhu, M. T.; Weng, W.; Shen, L.; Yang, J.; Yao, X. Y. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries. Energy Storage Mater. 2021, 38, 249–254.

[26]

Shen, L.; Deng, S. G.; Jiang, R. R.; Liu, G. Z.; Yang, J.; Yao, X. Y. Flexible composite solid electrolyte with 80 wt.% Na3.4Zr1.9Zn0.1Si2.2P0.8O12 for solid-state sodium batteries. Energy Storage Mater. 2022, 46, 175–181.

[27]

Hu, C. J.; Shen, Y. B.; Shen, M.; Liu, X.; Chen, H. W.; Liu, C. H.; Kang, T.; Jin, F.; Li, L.; Li, J. et al. Superionic conductors via bulk interfacial conduction. J. Am. Chem. Soc. 2020, 142, 18035–18041.

[28]

Zhang, F. R.; Sun, Y. Y.; Wang, Z. C.; Fu, D. S.; Li, J.; Hu, J. C.; Xu, J. J.; Wu, X. D. Highly conductive polymeric ionic liquid electrolytes for ambient-temperature solid-state lithium batteries. ACS Appl. Mater. Interfaces 2020, 12, 23774–23780.

[29]

Hu, C. J.; Chen, H. W.; Shen, Y. B.; Lu, D.; Zhao, Y. F.; Lu, A. H.; Wu, X. D.; Lu, W.; Chen, L. W. In situ wrapping of the cathode material in lithium-sulfur batteries. Nat. Commun. 2017, 8, 479.

[30]

Li, M. R.; Frerichs, J. E.; Kolek, M.; Sun, W.; Zhou, D.; Huang, C. J.; Hwang, B. J.; Hansen, M. R.; Winter, M.; Bieker, P. Solid-state lithium-sulfur battery enabled by thio-LiSICON/Polymer composite electrolyte and sulfurized polyacrylonitrile cathode. Adv. Funct. Mater. 2020, 30, 1910123.

[31]

Liu, G. Z.; Weng, W.; Zhang, Z. H.; Wu, L. P.; Yang, J.; Yao, X. Y. Densified Li6PS5Cl nanorods with high ionic conductivity and improved critical current density for all-solid-state lithium batteries. Nano Lett. 2020, 20, 6660–6665.

[32]

Chen, W. P.; Duan, H.; Shi, J. L.; Qian, Y., Min;Wan, J.; Zhang, X. D.; Sheng, H.; Guan, B.; Wen, R.; Yin, Y. X. et al. Bridging interparticle Li+ conduction in a soft ceramic oxide electrolyte. J. Am. Chem. Soc. 2021, 143, 5717–5726.

[33]

Song, X. L.; Wang, C. L.; Chen, J. W.; Xin, S.; Yuan, D.; Wang, Y. L.; Dong, K.; Yang, L. P.; Wang, G. Y.; Zhang, H. T et al. Unraveling the synergistic coupling mechanism of Li+ transport in an “Ionogel-in-Ceramic” hybrid solid electrolyte for rechargeable lithium metal battery. Adv. Funct. Mater. 2022, 32, 2108706.

[34]

Ma, F. R.; Zhang, Z. Q.; Yan, W. C.; Ma, X. D.; Sun, D. Y.; Jin, Y. C.; Chen, X. C.; He, K. Solid polymer electrolyte based on polymerized ionic liquid for high performance all-solid-state lithium-ion batteries. ACS Sustainable Chem. Eng. 2019, 7, 4675–4683.

[35]

Zhao, J.; Shen, X. J.; Yan, F.; Qiu, L. H.; Lee, S.; Sun, B. Q. Solvent-free ionic liquid/poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. J. Mater. Chem. 2011, 21, 7326–7330.

[36]

Zhang, Z. H.; Chen, S. J.; Yang, J.; Wang, J. Y.; Yao, L. L.; Yao, X. Y.; Cui, P.; Xu, X. X. Interface Re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life. ACS Appl. Mater. Interfaces 2018, 10, 2556–2565.

[37]

Wenzel, S.; Randau, S.; Leichtweiß, T.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 2016, 28, 2400–2407.

[38]

Wang, C. H.; Adair, K. R.; Liang, J. W.; Li, X. N.; Sun, Y. P.; Li, X.; Wang, J. W.; Sun, Q.; Zhao, F. P.; Lin, X. T. et al. Solid-state plastic crystal electrolytes: Effective protection interlayers for sulfide-based all-solid-state lithium metal batteries. Adv. Funct. Mater. 2019, 29, 1900392.

[39]

Zheng, B. Z.; Zhu, J. P.; Wang, H. C.; Feng, M.; Umeshbabu, E.; Li, Y. X.; Wu, Q. H.; Yang, Y. Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer. ACS Appl. Mater. Interfaces 2018, 10, 25473–25482.

[40]

Zhou, T. H.; Zhao, Y.; Choi, J. W.; Coskun, A. Ionic liquid functionalized gel polymer electrolytes for stable lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 22791–22796.

[41]

Jin, F.; Hu, C. J.; Liu, C. H.; Zheng, Y.; Chen, H. W.; Shen, Y. B.; Chen, L. W. Enhancing the performance of sulfurized polyacrylonitrile cathode by in-situ wrapping. J. Electroanal. Chem. 2019, 835, 156–160.

File
12274_2022_4845_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 April 2022
Revised: 30 July 2022
Accepted: 01 August 2022
Published: 12 September 2022
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21733012 and 22179143) and the National Key R&D Program of China (No. 2021YFB3800300). We acknowledge Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics for the support in XPS characterization.

Return