Journal Home > Volume 16 , Issue 3

To develop high-performance metal-organic frameworks (MOFs) for catalysis is of great importance. Here, we synthesized the mesoporous Cu3−xZnx(BTC)2 (BTC = benzene-1,3,5-tricarboxylate) nanocubes in a deep eutectic solvent of ZnCl2/ethylene glycol solution. The route can proceed at room temperature and the reaction time needed is shortened to be 30 min, which is superior to the conventional solvothermal route that usually needs high temperature and long reaction time. The formation mechanism of the mesoporous Cu3−xZnx(BTC)2 nanocubes in deep eutectic solvent (DES) was investigated by in situ synchrotron X-ray diffraction/small angle X-ray scattering/X-ray absorption fine structure conjunction technique. The mesoporous Cu3−xZnx(BTC)2 nanocubes exhibit high catalytic activity and reusability for cyanosilylation reaction of benzaldehyde and aerobic oxidation reaction of benzylic alcohol.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Mesoporous Cu3−xZnx(BTC)2 nanocubes synthesized in deep eutectic solvent and their catalytic performances

Show Author's information Jingyang Hu1,2Jianling Zhang1,2( )Xiuniang Tan1,2Xiuyan Cheng1,2Zhuizhui Su1,2Lixiong Qian3Mingzhao Xu1,2Yufei Sha1,2Yanyue Wang1,2Yisen Yang1,2Yunpeng Liu3Guang Mo3Xueqing Xing3Zhonghua Wu3
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Abstract

To develop high-performance metal-organic frameworks (MOFs) for catalysis is of great importance. Here, we synthesized the mesoporous Cu3−xZnx(BTC)2 (BTC = benzene-1,3,5-tricarboxylate) nanocubes in a deep eutectic solvent of ZnCl2/ethylene glycol solution. The route can proceed at room temperature and the reaction time needed is shortened to be 30 min, which is superior to the conventional solvothermal route that usually needs high temperature and long reaction time. The formation mechanism of the mesoporous Cu3−xZnx(BTC)2 nanocubes in deep eutectic solvent (DES) was investigated by in situ synchrotron X-ray diffraction/small angle X-ray scattering/X-ray absorption fine structure conjunction technique. The mesoporous Cu3−xZnx(BTC)2 nanocubes exhibit high catalytic activity and reusability for cyanosilylation reaction of benzaldehyde and aerobic oxidation reaction of benzylic alcohol.

Keywords: formation mechanism, deep eutectic solvent, catalytic performance, bimetallic metal-organic framework (MOF), mesoporous nanocubes

References(46)

[1]

Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.

[2]

Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014, 346, 1356–1359.

[3]

Jeong, G. Y.; Singh, A. K.; Kim, M. G.; Gyak, K. W.; Ryu, U.; Choi, K. M.; Kim, D. P. Metal-organic framework patterns and membranes with heterogeneous pores for flow-assisted switchable separations. Nat. Commun. 2018, 9, 3968.

[4]

Li, Y. P.; Wang, Y.; Xue, Y. Y.; Li, H. P.; Zhai, Q. G.; Li, S. N.; Jiang, Y. C.; Hu, M. C.; Bu, X. H. Ultramicroporous building units as a path to Bi-microporous metal-organic frameworks with high acetylene storage and separation performance. Angew. Chem., Int. Ed. 2019, 58, 13590–13595.

[5]

Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

[6]

Zhang, F. Y.; Zhang, J. L.; Zhang, B. X.; Zheng, L. R.; Cheng, X. Y.; Wan, Q.; Han, B. X.; Zhang, J. CO2 controls the oriented growth of metal-organic framework with highly accessible active sites. Nat. Commun. 2020, 11, 1431.

[7]

Dolgopolova, E. A.; Rice, A. M.; Martin, C. R.; Shustova, N. B. Photochemistry and photophysics of MOFs: Steps towards MOF-based sensing enhancements. Chem. Soc. Rev. 2018, 47, 4710–4728.

[8]

Li, Y. T.; Tang, J. L.; He, L. C.; Liu, Y.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Core–shell upconversion nanoparticle@metal-organic framework nanoprobes for luminescent/magnetic dual-mode targeted imaging. Adv. Mater. 2015, 27, 4075–4080.

[9]

Li, W. B.; Zhang, Y. F.; Xu, Z. H.; Meng, Q.; Fan, Z.; Ye, S. J.; Zhang, G. L. Assembly of MOF microcapsules with size-selective permeability on cell walls. Angew. Chem., Int. Ed. 2016, 55, 955–959.

[10]

Phang, W. J.; Jo, H.; Lee, W. R.; Song, J. H.; Yoo, K.; Kim, B. S.; Hong, C. S. Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Angew. Chem., Int. Ed. 2015, 54, 5142–5146.

[11]

Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.

[12]

Peng, L.; Zhang, J. L.; Xue, Z. M.; Han, B. X.; Sang, X. X.; Liu, C. C.; Yang, G. Y. Highly mesoporous metal-organic framework assembled in a switchable solvent. Nat. Commun. 2014, 5, 4465.

[13]

Liu, Y. Y.; Klet, R. C.; Hupp, J. T.; Farha, O. Probing the correlations between the defects in metal-organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chem. Commun. 2016, 52, 7806–7809.

[14]

Martí-Gastaldo, C.; Antypov, D.; Warren, J. E.; Briggs, M. E.; Chater, P. A.; Wiper, P. V.; Miller, G. J.; Khimyak, Y. Z.; Darling, G. R.; Berry, N. G. et al. Side-chain control of porosity closure in single- and multiple-peptide-based porous materials by cooperative folding. Nat. Chem. 2014, 6, 343–351.

[15]

Karagiaridi, O.; Bury, W.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K. Solvent-assisted linker exchange: An alternative to the de novo synthesis of unattainable metal-organic frameworks. Angew. Chem., Int. Ed. 2014, 53, 4530–4540.

[16]

McDonald, T. M.; Lee, W. R.; Mason, J. A.; Wiers, B. M.; Hong, C. S.; Long, J. R. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 2012, 134, 7056–7065.

[17]

Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082.

[18]

Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W. et al. Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev. 2021, 121, 1232–1285.

[19]

Söldner, A.; Zach, J.; König, B. Deep eutectic solvents as extraction media for metal salts and oxides exemplarily shown for phosphates from incinerated sewage sludge ash. Green Chem. 2019, 21, 321–328.

[20]

Gutierrez, M. C.; Ferrer, M. L.; Mateo, C. R.; Del Monte, F. Freeze-drying of aqueous solutions of deep eutectic solvents: A suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir 2009, 25, 5509–5515.

[21]

Gutierrez, M. C.; Ferrer, M. L.; Yuste, L.; Rojo, F.; Del Monte, F. Bacteria incorporation in deep-eutectic solvents through freeze-drying. Angew. Chem., Int. Ed. 2010, 49, 2158–2162.

[22]

Mota-Morales, J. D.; Gutiérrez, M. C.; Ferrer, M. L.; Jiménez, R.; Santiago, P.; Sanchez, I. C.; Terrones, M.; Del Monte, F.; Luna-Bárcenas, G. Synthesis of macroporous poly(acrylic acid)-carbon nanotube composites by frontal polymerization in deep-eutectic solvents. J. Mater. Chem. A 2013, 1, 3970–3976.

[23]

Mohammadpour, Z.; Abdollahi, S. H.; Safavi, A. Sugar-based natural deep eutectic mixtures as green intercalating solvents for high-yield preparation of stable MoS2 nanosheets: Application to electrocatalysis of hydrogen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 5896–5906.

[24]

Zainal-Abidin, M. H.; Hayyan, M.; Ngoh, G. C.; Wong, W. F. From nanoengineering to nanomedicine: A facile route to enhance biocompatibility of graphene as a potential nano-carrier for targeted drug delivery using natural deep eutectic solvents. Chem. Eng. Sci. 2019, 195, 95–106.

[25]

Albayati, N.; Kadhom, M. Preparation of functionalised UiO-66 metal-organic frameworks (MOFs) nanoparticles using deep eutectic solvents as a benign medium. Micro Nano Lett. 2020, 15, 1075–1078.

[26]

Pati, Y. A.; Shankarling, G. S. Deep eutectic solvent-mediated, energy-efficient synthesis of copper terephthalate metal-organic framework and its application in degradation of an azo dye. Chem. Eng. J. Adv. 2020, 3, 100032.

[27]

Maia, R. A.; Louis, B.; Baudron, S. A. HKUST-1 MOF in reline deep eutectic solvent: Synthesis and phase transformation. Dalton Trans. 2021, 50, 4145–4151.

[28]

Dolgopolova, E. A.; Brandt, A. J.; Ejegbavwo, O. A.; Duke, A. S.; Maddumapatabandi, T. D.; Galhenage, R. P.; Larson, B. W.; Reid, O. G.; Ammal, S. C.; Heyden, A. et al. Electronic properties of bimetallic metal-organic frameworks (MOFs): Tailoring the density of electronic states through MOF modularity. J. Am. Chem. Soc. 2017, 139, 5201–5209.

[29]

Nagarjun, N.; Arthy, K.; Dhakshinamoorthy, A. Copper(II)-doped ZIF-8 as a reusable and size selective heterogeneous catalyst for the hydrogenation of alkenes using hydrazine hydrate. Eur. J. Inorg. Chem. 2021, 2021, 2108–2119.

[30]

Peng, L.; Zhang, J. L.; Li, J. S.; Han, B. X.; Xue, Z. M.; Yang, G. Y. Surfactant-directed assembly of mesoporous metal-organic framework nanoplates in ionic liquids. Chem. Commun. 2012, 48, 8688–8690.

[31]

Diring, S.; Furukawa, S.; Takashima, Y.; Tsuruoka, T.; Kitagawa, S. Controlled multiscale synthesis of porous coordination polymer in nano/micro regimes. Chem. Mater. 2010, 22, 4531–4538.

[32]

Rowsell, J. L. C.; Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc. 2006, 128, 1304–1315.

[33]

Hafizovic, J.; Bjørgen, M.; Olsbye, U.; Dietzel, P. D. C.; Bordiga, S.; Prestipino, C.; Lamberti, C.; Lillerud, K. P. The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. J. Am. Chem. Soc. 2007, 129, 3612–3620.

[34]

Duke, A. S.; Dolgopolova, E. A.; Galhenage, R. P.; Ammal, S. C.; Heyden, A.; Smith, M. D.; Chen, D. A.; Shustova, N. B. Active sites in copper-based metal-organic frameworks: Understanding substrate dynamics, redox processes, and valence-band structure. J. Phys. Chem. C 2015, 119, 27457–27466.

[35]

Huang, J. H.; Chen, J. T.; Yao, T.; He, J. F.; Jiang, S.; Sun, Z. H.; Liu, Q. H.; Cheng, W. R.; Hu, F. C.; Jiang, Y. et al. CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem., Int. Ed. 2015, 54, 8722–8727.

[36]

Tan, D. X.; Cheng, X. Y.; Zhang, J. L.; Sha, Y. F.; Shen, X. J.; Su, Z. Z.; Han, B. X.; Zheng, L. R. Photocatalytic carbon dioxide reduction coupled with benzylamine oxidation over Zn-Bi2WO6 microflowers. Green Chem. 2021, 23, 2913–2917.

[37]

Sang, X. X.; Zhang, J. L.; Xiang, J. F.; Cui, J.; Zheng, L. R.; Zhang, J.; Wu, Z. H.; Li, Z. H.; Mo, G.; Xu, Y. et al. Ionic liquid accelerates the crystallization of Zr-based metal-organic frameworks. Nat. Commun. 2017, 8, 175.

[38]

He, S.; Chen, Y. F.; Zhang, Z. C.; Ni, B.; He, W.; Wang, X. Competitive coordination strategy for the synthesis of hierarchical-pore metal-organic framework nanostructures. Chem. Sci. 2016, 7, 7101–7105.

[39]

Zhang, F. Y.; Zhang, J. L.; Zhang, B. X.; Zheng, L. R.; Cheng, X. Y.; Wan, Q.; Han, B. X.; Zhang, J. Improved catalytic performance of Co-MOF-74 by nanostructure construction. Green Chem. 2020, 22, 5995–6000.

[40]

Schlichte, K.; Kratzke, T.; Kaskel, S. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater. 2004, 73, 81–88.

[41]

Carné, A.; Carbonell, C.; Imaz, I.; Maspoch, D. Nanoscale metal-organic materials. Chem. Soc. Rev. 2011, 40, 291–305.

[42]

Su, T. M.; Shao, Q.; Qin, Z. Z.; Guo, Z. H.; Wu, Z. L. Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 2018, 8, 2253–2276.

[43]

Du, J. J.; Zhang, X.; Zhou, X. P.; Li, D. Robust heterometallic MOF catalysts for the cyanosilylation of aldehydes. Inorg. Chem. Front. 2018, 5, 2772–2776.

[44]

Liu, A.; Zhu, H. H.; Park, W. T.; Kim, S. J.; Kim, H.; Kim, M. G.; Noh, Y. Y. High-performance p-channel transistors with transparent Zn doped-CuI. Nat. Commun. 2020, 11, 4309.

[45]

Lim, S. Y.; Park, S.; Im, S. W.; Ha, H.; Seo, H.; Nam, K. T. Chemically deposited amorphous Zn-doped NiFeOxHy for enhanced water oxidation. ACS Catal. 2020, 10, 235–244.

[46]

Chi, L. P.; Niu, Z. Z.; Zhang, X. L.; Yang, P. P.; Liao, J.; Gao, F. Y.; Wu, Z. Z.; Tang, K. B.; Gao, M. R. Stabilizing indium sulfide for CO2 electroreduction to formate at high rate by zinc incorporation. Nat. Commun. 2021, 12, 5835.

File
12274_2022_4844_MOESM1_ESM.pdf (848 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 April 2022
Revised: 13 July 2022
Accepted: 02 August 2022
Published: 13 September 2022
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We gratefully acknowledge financial support by Ministry of Science and Technology of China (No. 2017YFA0403003) and the National Natural Science Foundation of China (Nos. 22033009 and 22121002).

Return