Journal Home > Volume 16 , Issue 1

Plasmon-generated hot electrons show great potential for driving chemical reactions. The utilization efficiency of hot electrons is highly dependent on the interaction of the electronic states at the interfaces between plasmonic nanoparticles and other materials/molecules. Strong interaction can produce new hybridized electron states, which permit direct hot-electron transfer, a more efficient transfer mechanism. However, Au usually has very weak interaction with most molecules because of its inertness, which makes direct hot-electron transfer impossible. Herein, the improvement of the hot-electron transfer efficiency from Au to N2 is demonstrated by introducing a Ru bridging layer. Both the N2 fixation rate and Faradic efficiency (FE) are enhanced by the excitation of plasmons. The enhancement of the N2 fixation rate is found to arise from plasmon-generated hot electrons. Theoretical calculations show that the strong interaction of the Ru electronic states with the N2 molecular orbitals produces new hybridized electronic states, and the Ru d electrons also strongly couple with the Au sp electrons. Such a bridging role of Ru makes direct hot-electron transfer from Au to N2 possible, improving the FE of nitrogen fixation. Our findings demonstrate a new approach to increasing the utilization efficiency of plasmonic hot electrons for chemical reactions and will be helpful to the design of plasmonic catalysts in the future.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly efficient electrocatalytic nitrogen fixation enabled by the bridging effect of Ru in plasmonic nanoparticles

Show Author's information Hang Yin1Jinwu Hu2Caihong Fang2( )Yuyang Wang1Lixia Ma1Nan Zhang1Shouren Zhang3Ruibin Jiang1( )Jianfang Wang4
Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
Department of Physics, The Chinese University of Hong Kong, Hong Kong 999077, China

Abstract

Plasmon-generated hot electrons show great potential for driving chemical reactions. The utilization efficiency of hot electrons is highly dependent on the interaction of the electronic states at the interfaces between plasmonic nanoparticles and other materials/molecules. Strong interaction can produce new hybridized electron states, which permit direct hot-electron transfer, a more efficient transfer mechanism. However, Au usually has very weak interaction with most molecules because of its inertness, which makes direct hot-electron transfer impossible. Herein, the improvement of the hot-electron transfer efficiency from Au to N2 is demonstrated by introducing a Ru bridging layer. Both the N2 fixation rate and Faradic efficiency (FE) are enhanced by the excitation of plasmons. The enhancement of the N2 fixation rate is found to arise from plasmon-generated hot electrons. Theoretical calculations show that the strong interaction of the Ru electronic states with the N2 molecular orbitals produces new hybridized electronic states, and the Ru d electrons also strongly couple with the Au sp electrons. Such a bridging role of Ru makes direct hot-electron transfer from Au to N2 possible, improving the FE of nitrogen fixation. Our findings demonstrate a new approach to increasing the utilization efficiency of plasmonic hot electrons for chemical reactions and will be helpful to the design of plasmonic catalysts in the future.

Keywords: localized surface plasmon resonance, hot electron, electrocatalytic nitrogen fixation, Au/Ru electrocatalysts, electronic state hybridization

References(61)

[1]

Schlögl, R. Catalytic synthesis of ammonia-a “never-ending story”? Angew. Chem., Int. Ed. 2003, 42, 2004–2008.

[2]

Smil, V. Detonator of the population explosion. Nature 1999, 400, 415.

[3]

Wang, L.; Xia, M. K.; Wang, H.; Huang, K. F.; Qian, C. X.; Maravelias, C. T.; Ozon, G. A. Greening ammonia toward the solar ammonia refinery. Joule 2018, 2, 1055–1074.

[4]

Zhang, X.; Davidson, E. A.; Mauzerall, D. L.; Searchinger, T. D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59.

[5]

Brown, K. A.; Harris, D. F.; Wilker, M. B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C. et al. Light-driven dinitrogen reduction catalyzed by a CdS: Nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–450.

[6]

Service, R. F. Liquid sunshine. Science 2018, 361, 120–123.

[7]

Schiffer, Z. J.; Manthiram, K. Electrification and decarbonization of the chemical industry. Joule 2017, 1, 10–14.

[8]

Comer, B. M.; Fuentes, P.; Dimkpa, C. O.; Liu, Y. H.; Fernandez, C. A.; Arora, P.; Realff, M.; Singh, U.; Hatzell, M. C.; Medford, A. J. Prospects and challenges for solar fertilizers. Joule 2019, 3, 1578–1605.

[9]

Zhao, X.; Hu, G. Z.; Chen, G. F.; Zhang, H. B.; Zhang, S. S.; Wang, H. H. Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction. Adv. Mater. 2021, 33, 2007650.

[10]

Liu, D.; Chen, M. P.; Du, X. Y.; Ai, H. Q.; Lo, K. H.; Wang, S. P.; Chen, S.; Xing, G. C.; Wang, X. S.; Pan, H. Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Adv. Funct. Mater. 2021, 31, 2008983.

[11]

Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.

[12]

Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

[13]

Luo, Y. R.; Chen, G. F.; Ding, L.; Chen, X. Z.; Ding, L. X.; Wang, H. H. Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule 2019, 3, 279–289.

[14]

Liu, H. H.; Cao, X. R.; Ding, L. X.; Wang, H. H. Sn-doped black phosphorene for enhancing the selectivity of nitrogen electroreduction to ammonia. Adv. Funct. Mater. 2022, 32, 2111161.

[15]

Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578–1586.

[16]

Suljo. L.; Umar. A.; Calvin. B.; Matthew. M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576.

[17]

Reddy, H.; Wang, K.; Kudyshev, Z.; Zhu, L. X.; Yan, S.; Vezzoli, A.; Higgins, S. J.; Gavini, V.; Boltasseva, A.; Reddy, P. et al. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science 2020, 369, 423–426.

[18]

Kim, Y.; Torres, D. D.; Jain, P. K. Activation energies of plasmonic catalysts. Nano Lett. 2016, 16, 3399–3407.

[19]

Yang, H.; He, L. Q.; Hu, Y. W.; Lu, X. H.; Li, G. R.; Liu, B. J.; Ren, B.; Tong, Y. X.; Fang, P. P. Quantitative detection of photothermal and photoelectrocatalytic effects induced by SPR from Au@Pt nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 11462–11466.

[20]

Shi, Y.; Wang, J.; Wang, C.; Zhai, T. T.; Bao, W. J.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 7365–7370.

[21]

Yu, Y.; Sundaresan, V.; Willets, K. A. Hot carriers versus thermal effects: Resolving the enhancement mechanisms for Plasmon-mediated photoelectrochemical reactions. J. Phys. Chem. C 2018, 122, 5040–5048.

[22]

Wilson, A, J.; Mohan, V.; Jain, P. K. Mechanistic understanding of plasmon-enhanced electrochemistry. J. Phys. Chem. C 2019, 123, 29360–29369.

[23]

Zhang, Y. C.; He, S.; Guo, W. X.; Hu, Y.; Huang, J. W.; Mulcahy, J. R.; Wei, W. D. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 2018, 118, 2927–2954.

[24]

Wu, K.; Chen, J.; McBride, J. R.; Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 2015, 349, 632–635.

[25]

Wang, D.; Schaaf, P. Plasmonic nanosponges. Adv. Phys:X 2018, 3, 1456361.

[26]

Hergert, G.; Vogelsang, J.; Schwarz, F.; Wang, D.; Kollmann, H.; Groß, P.; Lienau, C.; Runge. E.; Schaaf, P. Long-lived electron emission reveals localized plasmon modes in disordered nanosponge antennas. Light:Sci. Appl. 2017, 6, e17075.

[27]

Besteiro, L. V.; Kong, X. T.; Wang, Z. M.; Hartland, G.; Govorov, A. O. Understanding hot-electron generation and plasmon relaxation in metal nanocrystals: Quantum and classical mechanisms. ACS Photonics 2017, 4, 2759–2781.

[28]

Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

[29]

Harutyunyan, H.; Martinson, A. B. F.; Rosenmann, D.; Khorashad, L. K.; Besteiro, L. V.; Govorov, A. O.; Wiederrecht, G. P. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat. Nanotechnol. 2015, 10, 770–774.

[30]

Hu, J. H.; Jiang, R. B.; Zhang, H.; Guo, Y. Z.; Wang, J.; Wang, J. F. Colloidal porous gold nanoparticles. Nanoscale 2018, 10, 18473–18481.

[31]

Zhou, G. B.; Jiang, L.; He, D. P. Nanoparticulate Ru on TiO2 exposed the {1 0 0} facets: Support facet effect on selective hydrogenation of benzene to cyclohexene. J. Catal. 2019, 369, 352–362.

[32]

Casey-Stevens, C. A.; Lambie, S. G.; Ruffman, C.; Skúlason, E.; Garden, A. L. Geometric and electronic effects contributing to N2 dissociation barriers on a range of active sites on Ru nanoparticles. J. Phys. Chem. C 2019, 123, 30458–30466.

[33]

I shikawa, A.; Doi, T.; Nakai, H. Catalytic performance of Ru, Os, and Rh nanoparticles for ammonia synthesis: A density functional theory analysis. J. Catal. 2018, 357, 213–222.

[34]

Dahl, S.; Logadottir, A.; Egeberg, R. C.; Larsen, J. H.; Chorkendorff, I.; Törnqvist, E.; Nørskov, J. K. Role of steps in N2 activation on Ru(0001). Phys. Rev. Lett. 1999, 83, 1814–1817.

[35]

Engelbrekt, C.; Crampton, K. T.; Fishman, D. A.; Law, M.; Apkarian, V. A. Efficient plasmon-mediated energy funneling to the surface of Au@Pt core−shell nanocrystals. ACS Nano 2020, 14, 5061–5074.

[36]

Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónsson, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.

[37]

Yang, Y. J.; Wang, S. Q.; Wen, H. M.; Tao, Y.; Chen, J.; Li, C. P.; Du, M. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation. Angew. Chem. Int. Ed. 2019, 58, 15362–15366.

[38]

Nazemi, M.; Panikkanvalappil, S. R.; El-Sayed, M. A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy 2018, 49, 316–323.

[39]

Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.

[40]

Xue, Z. H.; Zhang, S. N.; Lin, Y. X.; Su, H.; Zhai, G. Y.; Han, J. T.; Yu, Q. Y.; Li, X. H.; Antonietti. M.; Chen, J. S. Electrochemical reduction of N2 into NH3 by donor-acceptor couples of Ni and Au nanoparticles with a 67.8% Faradaic efficiency. J. Am. Chem. Soc. 2019, 141, 14976–14980.

[41]

Yin, S. L.; Liu, S. L.; Zhang, H. G.; Jiao, S. Q.; Xu, Y.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Engineering one-dimensional AuPd nanospikes for efficient electrocatalytic nitrogen fixation. ACS Appl. Mater. Interfaces 2021, 13, 20233–20239.

[42]

Singh, A. R.; Rohr, B. A.; Schwalbe, J. A.; Cargnello, M.; Chan, K.; Jaramillo, T. F.; Chorkendorff, I.; Nørskov, J. K. Electrochemical ammonia synthesis-the selectivity challenge. ACS Catal. 2017, 7, 706–709.

[43]

Yao, C. H.; Guo, N.; Xi, S. B.; Xu, C. Q.; Liu, W.; Zhao, X. X.; Li, J.; Fang, H. Y.; Su, J.; Chen, Z. X. et al. Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat. Commun. 2020, 11, 4389.

[44]

Wang, F.; Li, C. H.; Chen, H. J.; Jiang, R. B.; Sun, L. D.; Li, Q.; Wang, J. F.; Yu, J. C.; Yan, C. H. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 2013, 135, 5588–5601.

[45]

Baffou, G.; Bordacchini, I.; Baldi, A.; Quidant, R. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. Light:Sci. Appl. 2020, 9, 108.

[46]

Christopher, P.; Xin, H. L.; Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 2011, 3, 467–472.

[47]

Wilson, A. J.; Jain, P. K. Light-induced voltages in catalysis by plasmonic nanostructures. Acc. Chem. Res. 2020, 53, 1773–1781.

[48]

Huang, L.; Zou, J. S.; Ye, J. Y.; Zhou, Z. Y.; Lin, Z.; Kang, X. W.; Jain, P. K.; Chen, S. W. Synergy between plasmonic and electrocatalytic activation of methanol oxidation on palladium-silver alloy nanotubes. Angew. Chem., Int. Ed. 2019, 58, 8794–8798.

[49]

Wang, J.; Heo, J.; Chen, C. Q.; Wilson, A. J.; Jain, P. K. Ammonia oxidation enhanced by photopotential generated by plasmonic excitation of a bimetallic electrocatalyst. Angew. Chem., Int. Ed. 2020, 59, 18430–18434.

[50]

Zhan, C.; Liu, B. W.; Huang, Y. F.; Hu, S.; Ren, B.; Moskovits, M.; Tian, Z. Q. Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. Nat. Commun. 2019, 10, 2671.

[51]

Yao, Y.; Zhu, S. Q.; Wang, H. J.; Li, H.; Shao, M. H. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 2018, 140, 1496–1501.

[52]

Yang, J. H.; Guo, Y. Z.; Jiang, R. B.; Qin, F.; Zhang, H.; Lu, W. Z.; Wang, J. F.; Yu, J. C. High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin Titania nanosheets. J. Am. Chem. Soc. 2018, 140, 8497–8508.

[53]

Zhao, Z. H.; Zhang, K.; Zhang, J. H.; Yang, K.; He, C. Z.; Dong, F. X.; Yang, B. Synthesis of size and shape controlled PbS nanocrystals and their self-assembly. Colloids Surf. A:Physicochem. Eng. Asp. 2010, 355, 114–120.

[54]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[55]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[56]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[57]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[58]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[59]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[60]

Amft, M.; Lebègue, S.; Eriksson, O.; Skorodumova, N. V. Adsorption of Cu, Ag, and Au atoms on graphene including van der Waals interactions. J. Phys. :Condens. Matter 2011, 23, 395001.

[61]

Medeiros, P. V. C.; Gueorguiev, G. K.; Stafström, S. Benzene, coronene, and circumcoronene adsorbed on gold, and a gold cluster adsorbed on graphene: Structural and electronic properties. Phys. Rev. B 2012, 85, 205423.

File
12274_2022_4842_MOESM1_ESM.pdf (5.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 June 2022
Revised: 16 July 2022
Accepted: 31 July 2022
Published: 05 September 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by Fundamental Research Funds for Central Universities (No. GK202201003), Funded Projects for the Academic Leaders and Academic Backbones of Shaanxi Normal University (No. 18QNGG008), Shaanxi Sanqin Scholars Innovation Team, and Free Exploring Research Project for PhD Students of Shaanxi Normal University (No. 2020TS106).

Return