Journal Home > Volume 16 , Issue 1

A thorough understanding of antimicrobial mechanism is of great importance for developing novel, efficient antibacterial agents. While cationic nanoparticles, such as metal nanoclusters (NCs), represent an attractive type of antibacterial nanoagents, their interactions with bacteria remains largely un-elucidated. Herein, we report the synthesis of cationic bovine serum albumin-protected AuAgNCs (cBSA-AuAgNCs), which exhibit both near-infrared (NIR) fluorescence properties and significant antimicrobial effects. With E. coli and S. aureus as the representative bacteria, we investigated the antimicrobial process of cBSA-AuAgNCs in real-time based on their intrinsic fluorescence properties via fluorescence imaging. Our results showed that these cBSA-AuAgNCs exert their antimicrobial effects primarily by attaching on the outer membrane of bacteria without obvious internalization, which is significantly different from the antibacterial process of negatively-charged metal NCs. Further mechanistic investigation showed that these cationic NCs will cause serious disruption to the bacterial membrane due to strong electrostatic interactions, which then leads to over accumulation of reactive oxygen species (ROS) that finally causes the bactericidal action. This study demonstrates the great potential of cationic luminescent metal NCs as novel, traceable antimicrobial agents, which also provides new tools for further understanding microbial interactions of nanomedicines.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Cationic antibacterial metal nanoclusters with traceable capability for fluorescent imaging the nano–bio interactions

Show Author's information Yixiao Li1Shaohua Qu1Yumeng Xue1Lianbing Zhang2Li Shang1,3( )
School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China

Abstract

A thorough understanding of antimicrobial mechanism is of great importance for developing novel, efficient antibacterial agents. While cationic nanoparticles, such as metal nanoclusters (NCs), represent an attractive type of antibacterial nanoagents, their interactions with bacteria remains largely un-elucidated. Herein, we report the synthesis of cationic bovine serum albumin-protected AuAgNCs (cBSA-AuAgNCs), which exhibit both near-infrared (NIR) fluorescence properties and significant antimicrobial effects. With E. coli and S. aureus as the representative bacteria, we investigated the antimicrobial process of cBSA-AuAgNCs in real-time based on their intrinsic fluorescence properties via fluorescence imaging. Our results showed that these cBSA-AuAgNCs exert their antimicrobial effects primarily by attaching on the outer membrane of bacteria without obvious internalization, which is significantly different from the antibacterial process of negatively-charged metal NCs. Further mechanistic investigation showed that these cationic NCs will cause serious disruption to the bacterial membrane due to strong electrostatic interactions, which then leads to over accumulation of reactive oxygen species (ROS) that finally causes the bactericidal action. This study demonstrates the great potential of cationic luminescent metal NCs as novel, traceable antimicrobial agents, which also provides new tools for further understanding microbial interactions of nanomedicines.

Keywords: metal nanoclusters, antimicrobial agents, bacterial imaging, near-infrared fluorescence

References(47)

[1]

Vasilev, K.; Sah, V.; Anselme, K.; Ndi, C.; Mateescu, M.; Dollmann, B.; Martinek, P.; Ys, H.; Ploux, L.; Griesser, H. J. Tunable antibacterial coatings that support mammalian cell growth. Nano Lett. 2010, 10, 202–207.

[2]

Qiu, H.; Pu, F.; Liu, Z. W.; Liu, X. M.; Dong, K.; Liu, C. Q.; Ren, J. S.; Qu, X. G. Hydrogel-based artificial enzyme for combating bacteria and accelerating wound healing. Nano Res. 2020, 13, 496–502.

[3]

Neu, H. C. The crisis in antibiotic resistance. Science 1992, 257, 1064–1073.

[4]

Levy, S. B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, S122–S129.

[5]

Chen, X. K.; Zhang, X. D.; Lin, F. M.; Guo, Y. X.; Wu, F. G. One-step synthesis of epoxy group-terminated organosilica nanodots: A versatile nanoplatform for imaging and eliminating multidrug-resistant bacteria and their biofilms. Small 2019, 15, 1901647.

[6]

Mei, L.; Lu, Z. T.; Zhang, X. E.; Li, C. X.; Jia, Y. X. Polymer-Ag nanocomposites with enhanced antimicrobial activity against bacterial infection. ACS Appl. Mater. Interfaces 2014, 6, 15813–15821.

[7]

Pillai, P. P.; Kowalczyk, B.; Kandere-Grzybowska, K.; Borkowska, M.; Grzybowski, B. A. Engineering Gram selectivity of mixed-charge gold nanoparticles by tuning the balance of surface charges. Angew. Chem., Int. Ed. 2016, 55, 8610–8614.

[8]

Pranantyo, D.; Liu, P.; Zhong, W. B.; Kang, E. T.; Chan-Park, M. B. Antimicrobial peptide-reduced gold nanoclusters with charge-reversal moieties for bacterial targeting and imaging. Biomacromolecules 2019, 20, 2922–2933.

[9]

Yang, J. J.; Zhang, X. D.; Ma, Y. H.; Gao, G.; Chen, X. K.; Jia, H. R.; Li, Y. H.; Chen, Z.; Wu, F. G. Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Appl. Mater. Interfaces 2016, 8, 32170–32181.

[10]

Li, D.; Kumari, B.; Makabenta, J. M.; Tao, B. L.; Qian, K.; Mei, X. F.; Rotello, V. M. Development of coinage metal nanoclusters as antimicrobials to combat bacterial infections. J. Mater. Chem. B 2020, 8, 9466–9480.

[11]

Zhao, Y.; Chen, L.; Wang, Y. N.; Song, X. Y.; Li, K. Y.; Yan, X. F.; Yu, L. M.; He, Z. Y. Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Res. 2021, 14, 4417–4441.

[12]

Lin, B.; Li, R.; Handley, T. N. G.; Wade, J. D.; Li, W. Y.; O'Brien-Simpson, N. M. Cationic antimicrobial peptides are leading the way to combat oropathogenic infections. ACS Infect. Dis. 2021, 7, 2959–2970.

[13]

Sang, Y. J.; Li, W.; Liu, H.; Zhang, L.; Wang, H.; Liu, Z. W.; Ren, J. S.; Qu, X. G. Construction of nanozyme-hydrogel for enhanced capture and elimination of bacteria. Adv. Funct. Mater. 2019, 29, 1900518.

[14]

Hayden, S. C.; Zhao, G. X.; Saha, K.; Phillips, R. L.; Li, X. N.; Miranda, O. R.; Rotello, V. M.; El-Sayed, M. A.; Schmidt-Krey, I.; Bunz, U. H. F. Aggregation and interaction of cationic nanoparticles on bacterial surfaces. J. Am. Chem. Soc. 2012, 134, 6920–6923.

[15]

Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Antimicrobial gold nanoclusters. ACS Nano 2017, 11, 6904–6910.

[16]

Zheng, K. Y.; Xie, J. P. Cluster materials as traceable antibacterial agents. Acc. Mater. Res. 2021, 2, 1104–1116.

[17]

Yougbare, S.; Chang, T. K.; Tan, S. H.; Kuo, J. C.; Hsu, P. H.; Su, C. Y.; Kuo, T. R. Antimicrobial gold nanoclusters: Recent developments and future perspectives. Int. J. Mol. Sci. 2019, 20, 2924.

[18]

Wang, Z. P.; Fang, Y. S.; Zhou, X. F.; Li, Z. B.; Zhu, H. G.; Du, F. L.; Yuan, X.; Yao, Q. F.; Xie, J. P. Embedding ultrasmall Ag nanoclusters in Luria-Bertani extract via light irradiation for enhanced antibacterial activity. Nano Res. 2020, 13, 203–208.

[19]

Li, Y. X.; Zhen, J. B.; Tian, Q.; Shen, C. Q.; Zhang, L. B.; Yang, K. W.; Shang, L. One step synthesis of positively charged gold nanoclusters as effective antimicrobial nanoagents against multidrug-resistant bacteria and biofilms. J. Colloid Interface Sci. 2020, 569, 235–243.

[20]

Xie, Y. Z. Y.; Liu, Y.; Yang, J. C.; Liu, Y.; Hu, F. P.; Zhu, K.; Jiang, X. Y. Gold nanoclusters for targeting methicillin-resistant staphylococcus aureus in vivo. Angew. Chem., Int. Ed. 2018, 57, 3958–3962.

[21]

Mi, W. Y.; Tang, S.; Guo, S. S.; Li, H. J.; Shao, N. In situ synthesis of red fluorescent gold nanoclusters with enzyme-like activity for oxidative stress amplification in chemodynamic therapy. Chin. Chem. Lett. 2022, 33, 1331–1336.

[22]

Zheng, Y. K.; Wu, J. B.; Jiang, H.; Wang, X. M. Gold nanoclusters for theranostic applications. Coord. Chem. Rev. 2021, 431, 213689.

[23]

Qiao, Z. J.; Zhang, J.; Hai, X.; Yan, Y. C.; Song, W. L.; Bi, S. Recent advances in templated synthesis of metal nanoclusters and their applications in biosensing, bioimaging and theranostics. Biosens. Bioelectron. 2021, 176, 112898.

[24]

Shang, L.; Nienhaus, G. U. Research update: Interfacing ultrasmall metal nanoclusters with biological systems. APL Mater. 2017, 5, 053101.

[25]

Su, Y.; Xue, T. T.; Liu, Y. X.; Qi, J. X.; Jin, R. C.; Lin, Z. K. Luminescent metal nanoclusters for biomedical applications. Nano Res. 2019, 12, 1251–1265.

[26]

Yang, L. X.; Shang, L.; Nienhaus, G. U. Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells. Nanoscale 2013, 5, 1537–1543.

[27]

Xu, J.; Shang, L. Emerging applications of near-infrared fluorescent metal nanoclusters for biological imaging. Chin. Chem. Lett. 2018, 29, 1436–1444.

[28]

Liu, H. L.; Hong, G. S.; Luo, Z. T.; Chen, J. C.; Chang, J. L.; Gong, M.; He, H.; Yang, J.; Yuan, X.; Li, L. L. et al. Atomic-precision gold clusters for NIR-II imaging. Adv. Mater. 2019, 31, 1901015.

[29]

Kang, X.; Zhu, M. Z. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457.

[30]

Crawford, S. E.; Hartmann, M. J.; Millstone, J. E. Surface chemistry-mediated near-infrared emission of small coinage metal nanoparticles. Acc. Chem. Res. 2019, 52, 695–703.

[31]

Xiao, Y.; Wu, Z. N.; Yao, Q. F.; Xie, J. P. Luminescent metal nanoclusters: Biosensing strategies and bioimaging applications. Aggregate 2021, 2, 114–132.

[32]

Wang, Z. J.; Li, Q.; Tan, L. L.; Liu, C. G.; Shang, L. Metal-organic frameworks-mediated assembly of gold nanoclusters for sensing applications. J. Anal. Test. 2022, 6, 163–177.

[33]

Nosrati, H.; Sefidi, N.; Sharafi, A.; Danafar, H.; Manjili, H. K. Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg. Chem. 2018, 76, 501–509.

[34]

Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.

[35]

Zhong, W. C.; Wen, M. Y.; Xu, J.; Wang, H. X.; Tan, L. L.; Shang, L. Simultaneous regulation of optical properties and cellular behaviors of gold nanoclusters by pre-engineering the biotemplates. Chem. Commun. 2020, 56, 11414–11417.

[36]

He, K.; Zhu, J. Y.; Gong, L. S.; Tan, Y.; Chen, H. R.; Liang, H. R.; Huang, B. H.; Liu, J. B. He, K.; Zhu, J. Y.; Gong, L. S.; Tan, Y.; Chen, H. R.; Liang, H. R.; Huang, B. H.; Liu, J. B. Nano Res. 2021, 14, 1087–1094.

[37]

Zhao, W. B.; Wang, R. T.; Liu, K. K.; Du, M. R.; Wang, Y.; Wang, Y. Q.; Zhou, R.; Liang, Y. C.; Ma, R. N.; Sui, L. Z. et al. Near-infrared carbon nanodots for effective identification and inactivation of Gram-positive bacteria. Nano Res. 2022, 15, 1699–1708.

[38]

Xu, J.; Li, J. M.; Zhong, W. C.; Wen, M. Y.; Sukhorukov, G.; Shang, L. The density of surface ligands regulates the luminescence of thiolated gold nanoclusters and their metal ion response. Chin. Chem. Lett. 2021, 32, 2390–2394.

[39]

Wu, Z. K.; Jin, R. C. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568–2573.

[40]

Wilson, W. W.; Wade, M. M.; Holman, S. C.; Champlin, F. R. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J. Microbiol. Methods 2001, 43, 153–164.

[41]

Zhang, Y. Q.; Hudson-Smith, N. V.; Frand, S. D.; Cahill, M. S.; Davis, L. S.; Feng, Z. V.; Haynes, C. L.; Hamers, R. J. Influence of the spatial distribution of cationic functional groups at nanoparticle surfaces on bacterial viability and membrane interactions. J. Am. Chem. Soc. 2020, 142, 10814–10823.

[42]

Dutta, D.; Chattopadhyay, A.; Ghosh, S. S. Cationic BSA templated Au-Ag bimetallic nanoclusters as a theranostic gene delivery vector for HeLa cancer cells. ACS Biomater. Sci. Eng. 2016, 2, 2090–2098.

[43]

Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Surface ligand chemistry of gold nanoclusters determines their antimicrobial ability. Chem. Mater. 2018, 30, 2800–2808.

[44]

Cao, W. W.; Wang, X.; Li, Q.; Peng, X. F.; Wang, L. N.; Li, P. L.; Ye, Z. W.; Xing, X. D. Designing of membrane-active nano-antimicrobials based on cationic copolymer functionalized nanodiamond: Influence of hydrophilic segment on antimicrobial activity and selectivity. Mater. Sci. Eng. C 2018, 92, 307–316.

[45]

Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Observing antimicrobial process with traceable gold nanoclusters. Nano Res. 2021, 14, 1026–1033.

[46]

Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Overcoming bacterial physical defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. Bioact. Mater. 2021, 6, 941–950.

[47]

Zhao, Y. Y.; Tian, Y.; Cui, Y.; Liu, W. W.; Ma, W. S.; Jiang, X. Y. Small molecule-capped gold nanoparticles as potent antibacterial agents that target Gram-negative bacteria. J. Am. Chem. Soc. 2010, 132, 12349–12356.

File
12274_2022_4837_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 June 2022
Revised: 28 July 2022
Accepted: 30 July 2022
Published: 20 September 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Youth Talents Programme, the Natural Science Foundation of Chongqing (No. cstc2021jcyj-msxmX0980), and the Research Fund of the State Key Laboratory of Solidification Processing (NPU, No. 2020-QZ-01).

Return